Geospatial data about Seattle City Council Districts. Export to CAD, GIS, PDF, CSV and access via API.
Streets data includes: Arterial Classification, Street Names, Block Number, Direction, One-way, Surface Width, Surface Type, Pavement Condition, Speed Limit, Percent Slope. From the Hansen Asset Management System:The linework is from the SND(Street Network Database) which can be found at our open data site - https://data-seattlecitygis.opendata.arcgis.com/datasets/street-network-database-snd. | Attribute Information: https://www.seattle.gov/Documents/Departments/SDOT/GIS/Seattle_Streets_OD.pdf | Update Cycle: Weekly| Contact Email: DOT_IT_GIS@seattle.gov--- Common SDOT queries and data downloads | Arterial Classification: of Seattle StreetsARTCLASS IN(1,2,3,4)| Transit Classification: of Seattle StreetsTRANCLASS IN(1,2,3,4,5,6)
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
U.S. Census Bureau QuickFacts statistics for Seattle city, Washington. QuickFacts data are derived from: Population Estimates, American Community Survey, Census of Population and Housing, Current Population Survey, Small Area Health Insurance Estimates, Small Area Income and Poverty Estimates, State and County Housing Unit Estimates, County Business Patterns, Nonemployer Statistics, Economic Census, Survey of Business Owners, Building Permits.
https://www.washington-demographics.com/terms_and_conditionshttps://www.washington-demographics.com/terms_and_conditions
A dataset listing Washington cities by population for 2024.
Geospatial data about Seattle City Light Poles. Export to CAD, GIS, PDF, CSV and access via API.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Seattle population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Seattle across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2023, the population of Seattle was 755,078, a 0.79% increase year-by-year from 2022. Previously, in 2022, Seattle population was 749,134, an increase of 2.37% compared to a population of 731,757 in 2021. Over the last 20 plus years, between 2000 and 2023, population of Seattle increased by 190,969. In this period, the peak population was 755,078 in the year 2023. The numbers suggest that the population has not reached its peak yet and is showing a trend of further growth. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Seattle Population by Year. You can refer the same here
ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
License information was derived automatically
Neighborhood Map Atlas neighborhoods are derived from the Seattle City Clerk's Office Geographic Indexing Atlas. These are the smallest neighborhood areas and have been supplemented with alternate names from other sources in 2020. They roll up to the district areas. The sub-neighborhood field contains the most common name and the alternate name field is a comma delimited list of all the alternate names.The original atlas is designed for subject indexing of legislation, photographs, and other documents and is an unofficial delineation of neighborhood boundaries used by the City Clerks Office. Sources for this atlas and the neighborhood names used in it include a 1980 neighborhood map produced by the Department of Community Development, Seattle Public Library indexes, a 1984-1986 Neighborhood Profiles feature series in the Seattle Post-Intelligencer, numerous parks, land use and transportation planning studies, and records in the Seattle Municipal Archives. Many of the neighborhood names are traditional names whose meaning has changed over the years, and others derive from subdivision names or elementary school attendance areas.Disclaimer: The Seattle City Clerk's Office Geographic Indexing Atlas is designed for subject indexing of legislation, photographs, and other records in the City Clerk's Office and Seattle Municipal Archives according to geographic area. Neighborhoods are named and delineated in this collection of maps in order to provide consistency in the way geographic names are used in describing records of the Archives and City Clerk, thus allowing precise retrieval of records. The neighborhood names and boundaries are not intended to represent any "official" City of Seattle neighborhood map.
The Office of the City Clerk makes no claims as to the completeness, accuracy, or content of any data contained in the Geographic Indexing Atlas; nor does it make any representation of any kind, including, but not limited to, warranty of the accuracy or fitness for a particular use; nor are any such warranties to be implied or inferred with respect to the representations furnished herein. The maps are subject to change for administrative purposes of the Office of the City Clerk. Information contained in the site, if used for any purpose other than as an indexing and search aid for the databases of the Office of the City Clerk, is being used at one's own risk.
Shows the Seattle City Council boundaries approved by voters in 2013. The voters approved a measure amending the City of Seattle charter to establish City Council Districts. Full metadata: http://www5.kingcounty.gov/sdc/Metadata.aspx?Layer=sccdst
© King County
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
This dataset includes sales data for fleet equipment that was sold in the current and previous three years. This dataset does not include sales data for Seattle City Light (SCL) fleet equipment.
This point feature contains geographic and attribute information for the purpose of depicting the location of City Hall within the City of SeaTac, Washington.Incorporated in February 1990, the City of SeaTac is located in the Pacific Northwest, approximately midway between the cities of Seattle and Tacoma in the State of Washington. SeaTac is a vibrant community, economically strong, environmentally sensitive, and people-oriented. The City boundaries surround the Seattle-Tacoma International Airport, (approximately 3 square miles in area) which is owned and operated by the Port of Seattle. For additional information regarding the City of SeaTac, its people, or services, please visit https://www.seatacwa.gov. For additional information regarding City GIS data or maps, please visit https://www.seatacwa.gov/our-city/maps-and-gis.
This data layer references data from a high-resolution tree canopy change-detection layer for Seattle, Washington. Tree canopy change was mapped by using remotely sensed data from two time periods (2016 and 2021). Tree canopy was assigned to three classes: 1) no change, 2) gain, and 3) loss. No change represents tree canopy that remained the same from one time period to the next. Gain represents tree canopy that increased or was newly added, from one time period to the next. Loss represents the tree canopy that was removed from one time period to the next. Mapping was carried out using an approach that integrated automated feature extraction with manual edits. Care was taken to ensure that changes to the tree canopy were due to actual change in the land cover as opposed to differences in the remotely sensed data stemming from lighting conditions or image parallax. Direct comparison was possible because land-cover maps from both time periods were created using object-based image analysis (OBIA) and included similar source datasets (LiDAR-derived surface models, multispectral imagery, and thematic GIS inputs). OBIA systems work by grouping pixels into meaningful objects based on their spectral and spatial properties, while taking into account boundaries imposed by existing vector datasets. Within the OBIA environment a rule-based expert system was designed to effectively mimic the process of manual image analysis by incorporating the elements of image interpretation (color/tone, texture, pattern, location, size, and shape) into the classification process. A series of morphological procedures were employed to ensure that the end product is both accurate and cartographically pleasing. No accuracy assessment was conducted, but the dataset was subjected to manual review and correction.University of Vermont Spatial Analysis LaboratoryThis dataset consists of hexagons 50-acres in area, or several city blocks. The dataset covers the following tree canopy categories:Existing tree canopy percentPossible tree canopy - vegetation percentRelative percent changeAbsolute percent changeAverage maximum afternoon temperature (F)Tree canopy percentage & average afternoon temperature (F)For more information, please see the 2021 Tree Canopy Assessment.
Tabular data that powers basic monitoring dashboards for the total population, housing and jobs for the City of Seattle. Each record represents the totals for each year since 2000 (and 1995) through the most recently available data. Includes the change from the previous year.
Geospatial data about Seattle Zoning Boundaries. Export to CAD, GIS, PDF, CSV and access via API.
These are Parks that are not owned by Seattle Parks and Recreation but open to the public. These are parks that are made available to the public by other government agencies (Port of Seattle, King County, Washington State Ferries, Seattle Public Utilities, Seattle City Light, Seattle Department of Transportation, UW) and some private owners.The data does not include Private Open Places aka POPs which are Open Places in private buildings for the public use.
2020 census geography including tracts for the city of Seattle, King County, Washington. Excludes partial tracts with very small populations within the city limits along the southern border of the city.Includes assignment of Seattle Community Reporting Areas (CRA-53), Community Reporting Area Groups (neighborhood roll up-13), Council Districts (7-assigned to the tract with the majority of the population based on the distribution of the component census blocks), and Urban Village Demographic Areas (UVDA). UVDA assignments subject to change based on future planning areas.
This data layer references data from a high-resolution tree canopy change-detection layer for Seattle, Washington. Tree canopy change was mapped by using remotely sensed data from two time periods (2016 and 2021). Tree canopy was assigned to three classes: 1) no change, 2) gain, and 3) loss. No change represents tree canopy that remained the same from one time period to the next. Gain represents tree canopy that increased or was newly added, from one time period to the next. Loss represents the tree canopy that was removed from one time period to the next. Mapping was carried out using an approach that integrated automated feature extraction with manual edits. Care was taken to ensure that changes to the tree canopy were due to actual change in the land cover as opposed to differences in the remotely sensed data stemming from lighting conditions or image parallax. Direct comparison was possible because land-cover maps from both time periods were created using object-based image analysis (OBIA) and included similar source datasets (LiDAR-derived surface models, multispectral imagery, and thematic GIS inputs). OBIA systems work by grouping pixels into meaningful objects based on their spectral and spatial properties, while taking into account boundaries imposed by existing vector datasets. Within the OBIA environment a rule-based expert system was designed to effectively mimic the process of manual image analysis by incorporating the elements of image interpretation (color/tone, texture, pattern, location, size, and shape) into the classification process. A series of morphological procedures were employed to ensure that the end product is both accurate and cartographically pleasing. No accuracy assessment was conducted, but the dataset was subjected to manual review and correction.University of Vermont Spatial Analysis LaboratoryThis dataset consists of City of Seattle Public Schools areas which cover the following tree canopy categories:Existing tree canopy percentPossible tree canopy - vegetation percentRelative percent changeAbsolute percent changeFor more information, please see the 2021 Tree Canopy Assessment.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
Most recent list of fleet equipment sent to auction
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Chart and table of population level and growth rate for the Seattle metro area from 1950 to 2025.
This data layer references data from a high-resolution tree canopy change-detection layer for Seattle, Washington. Tree canopy change was mapped by using remotely sensed data from two time periods (2016 and 2021). Tree canopy was assigned to three classes: 1) no change, 2) gain, and 3) loss. No change represents tree canopy that remained the same from one time period to the next. Gain represents tree canopy that increased or was newly added, from one time period to the next. Loss represents the tree canopy that was removed from one time period to the next. Mapping was carried out using an approach that integrated automated feature extraction with manual edits. Care was taken to ensure that changes to the tree canopy were due to actual change in the land cover as opposed to differences in the remotely sensed data stemming from lighting conditions or image parallax. Direct comparison was possible because land-cover maps from both time periods were created using object-based image analysis (OBIA) and included similar source datasets (LiDAR-derived surface models, multispectral imagery, and thematic GIS inputs). OBIA systems work by grouping pixels into meaningful objects based on their spectral and spatial properties, while taking into account boundaries imposed by existing vector datasets. Within the OBIA environment a rule-based expert system was designed to effectively mimic the process of manual image analysis by incorporating the elements of image interpretation (color/tone, texture, pattern, _location, size, and shape) into the classification process. A series of morphological procedures were employed to ensure that the end product is both accurate and cartographically pleasing. No accuracy assessment was conducted, but the dataset was subjected to manual review and correction.University of Vermont Spatial Analysis LaboratoryThis dataset consists of City of Seattle Council District areas as they existed in the first comparison year (2016) which cover the following tree canopy categories:Existing tree canopy percentPossible tree canopy - vegetation percentRelative percent changeAbsolute percent changeFor more information, please see the 2021 Tree Canopy Assessment.
This data layer references data from a high-resolution tree canopy change-detection layer for Seattle, Washington. Tree canopy change was mapped by using remotely sensed data from two time periods (2016 and 2021). Tree canopy was assigned to three classes: 1) no change, 2) gain, and 3) loss. No change represents tree canopy that remained the same from one time period to the next. Gain represents tree canopy that increased or was newly added, from one time period to the next. Loss represents the tree canopy that was removed from one time period to the next. Mapping was carried out using an approach that integrated automated feature extraction with manual edits. Care was taken to ensure that changes to the tree canopy were due to actual change in the land cover as opposed to differences in the remotely sensed data stemming from lighting conditions or image parallax. Direct comparison was possible because land-cover maps from both time periods were created using object-based image analysis (OBIA) and included similar source datasets (LiDAR-derived surface models, multispectral imagery, and thematic GIS inputs). OBIA systems work by grouping pixels into meaningful objects based on their spectral and spatial properties, while taking into account boundaries imposed by existing vector datasets. Within the OBIA environment a rule-based expert system was designed to effectively mimic the process of manual image analysis by incorporating the elements of image interpretation (color/tone, texture, pattern, location, size, and shape) into the classification process. A series of morphological procedures were employed to ensure that the end product is both accurate and cartographically pleasing. No accuracy assessment was conducted, but the dataset was subjected to manual review and correction.University of Vermont Spatial Analysis LaboratoryThis dataset consists of City of Seattle Public Schools areas which cover the following tree canopy categories:Existing tree canopy percentPossible tree canopy - vegetation percentRelative percent changeAbsolute percent changeFor more information, please see the 2021 Tree Canopy Assessment.
Geospatial data about Seattle City Council Districts. Export to CAD, GIS, PDF, CSV and access via API.