Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Seattle Hispanic or Latino population. It includes the distribution of the Hispanic or Latino population, of Seattle, by their ancestries, as identified by the Census Bureau. The dataset can be utilized to understand the origin of the Hispanic or Latino population of Seattle.
Key observations
Among the Hispanic population in Seattle, regardless of the race, the largest group is of Mexican origin, with a population of 35,380 (58.25% of the total Hispanic population).
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Origin for Hispanic or Latino population include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Seattle Population by Race & Ethnicity. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Seattle by race. It includes the population of Seattle across racial categories (excluding ethnicity) as identified by the Census Bureau. The dataset can be utilized to understand the population distribution of Seattle across relevant racial categories.
Key observations
The percent distribution of Seattle population by race (across all racial categories recognized by the U.S. Census Bureau): 61.84% are white, 6.60% are Black or African American, 0.57% are American Indian and Alaska Native, 17.17% are Asian, 0.26% are Native Hawaiian and other Pacific Islander, 3.03% are some other race and 10.54% are multiracial.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Racial categories include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Seattle Population by Race & Ethnicity. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the median household income across different racial categories in Seattle. It portrays the median household income of the head of household across racial categories (excluding ethnicity) as identified by the Census Bureau. The dataset can be utilized to gain insights into economic disparities and trends and explore the variations in median houshold income for diverse racial categories.
Key observations
Based on our analysis of the distribution of Seattle population by race & ethnicity, the population is predominantly White. This particular racial category constitutes the majority, accounting for 61.84% of the total residents in Seattle. Notably, the median household income for White households is $130,622. Interestingly, despite the White population being the most populous, it is worth noting that Asian households actually reports the highest median household income, with a median income of $133,340. This reveals that, while Whites may be the most numerous in Seattle, Asian households experience greater economic prosperity in terms of median household income.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Racial categories include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Seattle median household income by race. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Non-Hispanic population of Seattle by race. It includes the distribution of the Non-Hispanic population of Seattle across various race categories as identified by the Census Bureau. The dataset can be utilized to understand the Non-Hispanic population distribution of Seattle across relevant racial categories.
Key observations
Of the Non-Hispanic population in Seattle, the largest racial group is White alone with a population of 444,080 (65.24% of the total Non-Hispanic population).
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Racial categories include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Seattle Population by Race & Ethnicity. You can refer the same here
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Population Estimate, Total, Hispanic or Latino, Some Other Race Alone (5-year estimate) in King County, WA (B03002018E053033) from 2009 to 2023 about King County, WA; Seattle; WA; latino; hispanic; estimate; persons; 5-year; population; and USA.
Table from the American Community Survey (ACS) 5-year series on race and ethnicity related topics for City of Seattle Council Districts, Comprehensive Plan Growth Areas and Community Reporting Areas. Table includes B03002 Hispanic or Latino Origin by Race, B02008-B02013 Race Alone or in Combination with One or More Other. Data is pulled from block group tables for the most recent ACS vintage and summarized to the neighborhoods based on block group assignment.Table created for and used in the Neighborhood Profiles application.Vintages: 2023ACS Table(s): B03002, B02008, B02009, B02010, B02011, B02012, B02013Data downloaded from: Census Bureau's Explore Census Data The United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2020 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.
Tabular data that powers basic monitoring dashboards for the total population, housing and jobs for the City of Seattle. Each record represents the totals for each year since 2000 (and 1995) through the most recently available data. Includes the change from the previous year.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Population Estimate, Total, Hispanic or Latino, Two or More Races, Two Races Including Some Other Race (5-year estimate) in Pierce County, WA (B03002020E053053) from 2009 to 2023 about Pierce County, WA; Seattle; WA; latino; hispanic; estimate; persons; 5-year; population; and USA.
DescriptionClick a census tract on the map to view the details. Click "Legend" above to explore other demographic layers.The Racial and Social Equity Index combines information on race, ethnicity, and related demographics with data on socioeconomic and health disadvantages to identify where priority populations make up relatively large proportions of neighborhood residents. The Composite Index includes sub-indices of: Race, English Language Learners, and Origins Index ranks census tracts by an index of three measures weighted as follows: Persons of color (weight: 1.0) English language learner (weight: 0.5) Foreign born (weight: 0.5)Socioeconomic Disadvantage Index ranks census tracts by an index of two equally weighted measures: Income below 200% of poverty level grad Educational attainment less than a bachelor’s degreeHealth Disadvantage Index ranks census tracts by an index of seven equally weighted measures: No leisure-time physical activity Diagnosed diabetes Obesity Mental health not good AsthmaLow life expectancy at birth DisabilityThe index does not reflect population densities, nor does it show variation within census tracts which can be important considerations at a local level.Produced by City of Seattle Office of Planning & Community Development. For more information on the indices, including guidance for use, contact Diana Canzoneri (diana.canzoneri@seattle.gov).Get the data for this map from SeattleGeoDataSources: 2011-2015 Five-Year American Community SurveyEstimates, U.S. Census Bureau; estimates from the Centers for Disease Control’ Behavioral Risk Factor Surveillance System (BRFSS) published in the “The 500 Cities Project,” Washington State Department of Health’s Washington Tracking Network (WTN), and estimates form the Public Health – Seattle & King County (based on the Community Health Assessment Tool).Language is for population age 5 and older. Educational attainment is for the population age 25 and over.Life expectancy is life expectancy at birth. Other health measures based on percentages of the adult population.
https://www.washington-demographics.com/terms_and_conditionshttps://www.washington-demographics.com/terms_and_conditions
A dataset listing Washington counties by population for 2024.
Data from: American Community Survey, 5-year SeriesKing County, Washington census tracts with nonoverlapping vintages of the 5-year American Community Survey (ACS) estimates starting in 2010 from the U.S. Census Bureau's demographic and housing estimates (DP05). Also includes the most recent release annually with the vintage identified in the "ACS Vintage" field.The census tract boundaries match the vintage of the ACS data (currently 2010 and 2020) so please note the geographic changes between the decades. Tracts have been coded as being within the City of Seattle as well as assigned to neighborhood groups called "Community Reporting Areas". These areas were created after the 2000 census to provide geographically consistent neighborhoods through time for reporting U.S. Census Bureau data. This is not an attempt to identify neighborhood boundaries as defined by neighborhoods themselves.Vintages: 2010, 2015, 2020, 2021, 2022<span style='font-family:inherit
ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
License information was derived automatically
!!PLEASE NOTE!! When downloading the data, please select "File Geodatabase" to preserve long field names. Shapefile will truncate field names to 10 characters.Version: CurrentThe Racial and Social Equity Index combines information on race, ethnicity, and related demographics with data on socioeconomic and health disadvantages to identify where priority populations make up relatively large proportions of neighborhood residents. Click here for a User Guide.See the layer in action in the Racial and Social Equity ViewerClick here for an 11x17 printable pdf version of the map.The Composite Index includes sub-indices of: Race, English Language Learners, and Origins Index ranks census tracts by an index of three measures weighted as follows: Persons of color (weight: 1.0) English language learner (weight: 0.5) Foreign born (weight: 0.5)Socioeconomic Disadvantage Index ranks census tracts by an index of two equally weighted measures:Income below 200% of poverty level Educational attainment less than a bachelor’s degreeHealth Disadvantage Index ranks census tracts by an index of seven equally weighted measures:No leisure-time physical activityDiagnosed diabetes ObesityMental health not good AsthmaLow life expectancy at birthDisabilityThe index does not reflect population densities, nor does it show variation within census tracts which can be important considerations at a local level.Sources are as indicated below.Produced by City of Seattle Office of Planning & Community Development. For more information on the indices, including guidance for use, contact Diana Canzoneri (diana.canzoneri@seattle.gov).Sources: 2017-2021 Five-Year American Community Survey Estimates, U.S. Census Bureau; 2020 Decennial Census, U.S. Census Bureau; estimates from the Centers for Disease Control’ Behavioral Risk Factor Surveillance System (BRFSS) published in the “The 500 Cities Project,”; Washington State Department of Health’s Washington Tracking Network (WTN);, and estimates from the Public Health – Seattle & King County (based on the Community Health Assessment Tool).Language is for population age 5 and older. Educational attainment is for the population age 25 and over.Life expectancy is life expectancy at birth.Other health measures based on percentages of the adult population.
ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
License information was derived automatically
File Geodatabase with population, household, housing, job estimates and forecasts to support planning. See the data in action - click here.
Annual totals for population, housing units and households since 2010 for 2010 census block groups in the City of Seattle as reported by the Washington State Office of Financial Management Small Area Estimates Program (SAEP). Includes calculation of change.
These estimates are meant to provide a consistent set of small area population and housing data for statewide applications. SAEP estimates are generated for census areas and other areas of statewide significance.
While these estimates are not the official estimate for revenue distribution, they are controlled to the jurisdiction totals and reflect the most timely and spatially refined estimates available.
The SAEP estimates use different methods than similar estimates from the U.S. Census Bureau and therefore will be different from the various Census Bureau programs such as the American Community Survey and the Population Estimates Program. Please use caution when combining information from different sources.
Annual totals for population by race for 2010 and 2016 by 2010 census tracts in the City of Seattle as reported by the Washington State Office of Financial Management Small Area Demographics Estimates Program (SADE). Includes calculation of change.
These estimates are meant to provide a consistent set of small area population and housing data for statewide applications. SADE estimates are generated for census areas and other areas of statewide significance.
While these estimates are not the official estimate for revenue distribution, they are controlled to the jurisdiction totals and reflect the most timely and spatially refined estimates available.
The SADE estimates use different methods than similar estimates from the U.S. Census Bureau and therefore will be different from the various Census Bureau programs such as the American Community Survey and the Population Estimates Program. Please use caution when combining information from different sources.
Annual Quarterly Census of Employment and Wages (QCEW) covered employment reported by the Washington State Employment Security Department and reported for City of Seattle 2010 census tracts by the Puget Sound Regional Council.
Published by the Washington State Employment Security Department, Quarterly Ce
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Population Estimate, Total, Hispanic or Latino, Two or More Races (5-year estimate) in Snohomish County, WA (B03002019E053061) from 2009 to 2023 about Snohomish County, WA; Seattle; WA; latino; hispanic; estimate; persons; 5-year; population; and USA.
Table from the American Community Survey (ACS) B01001A-I sex by age by race - data is grouped into three age group categories for each race, under 18, 18-64 and 65 and older. These are multiple, nonoverlapping vintages of the 5-year ACS estimates of population and housing attributes starting in 2010 shown by the corresponding census tract vintage. Also includes the most recent release annually.Data on total number of people by each race alone and in combination by each census tract has been transposed to support dashboard visualizations.King County, Washington census tracts with nonoverlapping vintages of the 5-year American Community Survey (ACS) estimates starting in 2010. Vintage identified in the "ACS Vintage" field.The census tract boundaries match the vintage of the ACS data (currently 2010 and 2020) so please note the geographic changes between the decades. Tracts have been coded as being within the City of Seattle as well as assigned to neighborhood groups called "Community Reporting Areas". These areas were created after the 2000 census to provide geographically consistent neighborhoods through time for reporting U.S. Census Bureau data. This is not an attempt to identify neighborhood boundaries as defined by neighborhoods themselves.Vintages: 2010, 2015, 2020, 2021, <a href='https://www.census.gov/programs-surveys/acs/news/data-releases/2022/release.html#5yr' style='font-famil
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Seattle by gender, including both male and female populations. This dataset can be utilized to understand the population distribution of Seattle across both sexes and to determine which sex constitutes the majority.
Key observations
There is a slight majority of male population, with 51.02% of total population being male. Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis. No further analysis is done on the data reported from the Census Bureau.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Seattle Population by Race & Ethnicity. You can refer the same here
Table from the American Community Survey (ACS) 5-year series on race and ethnicity related topics for City of Seattle Council Districts, Comprehensive Plan Growth Areas and Community Reporting Areas. Table includes B03002 Hispanic or Latino Origin by Race, B02008-B02013 Race Alone or in Combination with One or More. Data is pulled from block group tables for the most recent ACS vintage and summarized to the neighborhoods based on block group assignment.Table created for and used in the Neighborhood Profiles application.Vintages: 2023ACS Table(s): B03002, B02008, B02009, B02010, B02011, B02012, B02013Data downloaded from: Census Bureau's Explore Census Data The United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2020 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.
https://www.icpsr.umich.edu/web/ICPSR/studies/28701/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/28701/terms
The objective of the Seattle Neighborhoods and Crime Survey (SNCS) was to test multilevel theories of neighborhood social organization and criminal violence. It was funded by the National Science Foundation (SES-0004324), and the National Consortium on Violence Research (SBR-9513040). Using the concept of differential neighborhood organization, the investigators posited that neighborhood crime is a function of informal social control against crime and informal organization in favor of crime. Informal neighborhood control against crime consists of neighborhood attachment, social capital, and collective efficacy. The study tested the hypothesis that individual social ties are explained by a rational choice model, which in turn produces neighborhood social capital that can be used to achieve collective goals. It also tested the hypothesis that neighborhoods rich in social capital had greater collective efficacy, which in turn, helped produce safe neighborhoods. Organization in favor of crime consists of violent codes of the street. The study tested the hypothesis that residents from disadvantaged neighborhoods tend to distrust police and other agents of conventional institutions, and consequently are more likely to participate in street culture, in which violence is a way of obtaining street credibility and status, as well as resolving disputes. The project has also examined dimensions of neighboring, and the causes and consequences of fear of crime. The study used a telephone survey of households within all 123 census tracts in the city of Seattle, WA, conducted in 2002-2003. The sampling frame was designed by investigators at the University of Washington, with three objectives in mind: (a) to gain a random sample of households within each of 123 census tracts; (b) to obtain a disproportionate number of racial and ethnic minorities using an ethnic oversample; and (c) to obtain a replication sample of Terrance Miethe's 1990 victimization survey in 100 Seattle neighborhoods [Testing Theories of Criminality and Victimization in Seattle, 1960-1990]. Specific samples were drawn by Genesys, a sampling firm in Philadelphia, PA, using a constantly-updated compilation of white pages. Telephone interviews were conducted by the Social and Behavioral Research Institute at California State University, San Marcos, using computer-assisted telephone interviewing (CATI) technology. Respondents were asked about household demographics, such as race, gender, residential mobility, age distribution of the household, and income, their perceptions and assessments of their neighborhoods (including safety, disorder, and crime), neighbors, and relations with police. A variety of questions about neighboring were asked, including social capital (intergenerational closure, reciprocated exchange, and participation in neighborhood associations), attachment to their neighborhood, and collective efficacy (child-centered social control). Respondents were asked about routine activities including taking steps to protect their homes, spending time in bars and nightclubs, and leaving their home unattended. Questions about fear of crime included personal fear as well as altruistic fear for other members of the household, and questions about racial attitudes included residential preferences by race composition of the neighborhood. A victimization inventory modeled after the National Crime Victimization Survey was used for burglary, vandalism, stolen property, violence, and robbery. Demographic information includes age, race, sex, education, martial status, household income, whether respondent was a student, employment status, religious affiliation, approximate value of home, monthly rent including utilities, residence history in the last five years, whether respondent was born in the Unites States, and number of people currently living in the respondent's household.
ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
License information was derived automatically
!!PLEASE NOTE!! When downloading the data, please select "File Geodatabase" to preserve long field names. Shapefile will truncate field names to 10 characters.This version of the Racial and Social Equity Index indexes all tracts in the remainder of King County against tracts in the city of Seattle. This index should only be used in direct consultation with the Office of Planning and Community Development, and is intended to be of use for comparing tracts in the remainder of King County within the context of percentiles set by tracts within the city of Seattle.Version: CurrentThe Racial and Social Equity Index combines information on race, ethnicity, and related demographics with data on socioeconomic and health disadvantages to identify where priority populations make up relatively large proportions of neighborhood residents. Click here for a User Guide.See the City of Seattle RSE Index in action in the Racial and Social Equity ViewerThe Composite Index includes sub-indices of: Race, English Language Learners, and Origins Index ranks census tracts by an index of three measures weighted as follows: Persons of color (weight: 1.0) English language learner (weight: 0.5) Foreign born (weight: 0.5)Socioeconomic Disadvantage Index ranks census tracts by an index of two equally weighted measures: Income below 200% of poverty level Educational attainment less than a bachelor’s degreeHealth Disadvantage Index ranks census tracts by an index of seven equally weighted measures: No leisure-time physical activity Diagnosed diabetes Obesity Mental health not good AsthmaLow life expectancy at birth DisabilityThe index does not reflect population densities, nor does it show variation within census tracts which can be important considerations at a local level.Sources are as indicated below.Produced by City of Seattle Office of Planning & Community Development. For more information on the indices, including guidance for use, contact Diana Canzoneri (diana.canzoneri@seattle.gov).Sources: 2017-2021 Five-Year American Community Survey Estimates, U.S. Census Bureau; 2020 Decennial Census, U.S. Census Bureau; estimates from the Centers for Disease Control’ Behavioral Risk Factor Surveillance System (BRFSS) published in the “The 500 Cities Project,”; Washington State Department of Health’s Washington Tracking Network (WTN);, and estimates from the Public Health – Seattle & King County (based on the Community Health Assessment Tool).Language is for population age 5 and older. Educational attainment is for the population age 25 and over.Life expectancy is life expectancy at birth.Other health measures based on percentages of the adult population.
https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
Background Rural U.S. communities are at risk from COVID-19 due to advanced age and limited access to acute care. Recognizing this, the Vashon Medical Reserve Corps (VMRC) in King County, Washington, implemented an all-volunteer, community-based COVID-19 response program. This program integrated public engagement, SARS-CoV-2 testing, contact tracing, vaccination, and material community support, and was associated with the lowest cumulative COVID-19 case rate in King County. This study aimed to investigate the contributions of demographics, geography and public health interventions to Vashon’s low COVID-19 rates. Methods This observational cross-sectional study compares cumulative COVID-19 rates and success of public health interventions from February 2020 through November 2021 for Vashon Island with King County (including metropolitan Seattle) and Whidbey Island, located ~50 km north of Vashon. To evaluate the role of demography, we developed multiple linear regression models of COVID-19 rates using metrics of age, race/ethnicity, wealth and educational attainment across 77 King County zip codes. To investigate the role of remote geography we expanded the regression models to include North, Central and South Whidbey, similarly remote island communities with varying demographic features. To evaluate the effectiveness of VMRC’s community-based public health measures, we directly compared Vashon’s success of vaccination and contact tracing with that of King County and South Whidbey, the Whidbey community most similar to Vashon. Results Vashon’s cumulative COVID-19 case rate was 29% that of King County overall (22.2 vs 76.8 cases/K). A multiple linear regression model based on King County demographics found educational attainment to be a major correlate of COVID-19 rates, and Vashon’s cumulative case rate was just 38% of predicted (p<.05), so demographics alone do not explain Vashon’s low COVID-19 case rate. Inclusion of Whidbey communities in the model identified a major effect of remote geography (-49 cases/K, p<.001), such that observed COVID-19 rates for all remote communities fell within the model’s 95% prediction interval. VMRC’s vaccination effort was highly effective, reaching a vaccination rate of 1500 doses/K four months before South Whidbey and King County and maintaining a cumulative vaccination rate 200 doses/K higher throughout the latter half of 2021 (p<.001). Including vaccination rates in the model reduced the effect of remote geography to -41 cases/K (p<.001). VMRC case investigation was also highly effective, interviewing 96% of referred cases in an average of 1.7 days compared with 69% in 3.7 days for Washington Department of Health investigating South Whidbey cases and 80% in 3.4 days for Public Health–Seattle & King County (both p<0.001). VMRC’s public health interventions were associated with a 30% lower case rate (p<0.001) and 55% lower hospitalization rate (p=0.056) than South Whidbey. Conclusion While the overall magnitude of the pre-Omicron COVID-19 pandemic in rural and urban U.S. communities was similar, we show that island communities in the Puget Sound region were substantially protected from COVID-19 by their geography. We further show that a volunteer community-based COVID-19 response program was highly effective in the Vashon community, augmenting the protective effect of geography. We suggest that Medical Reserve Corps should be an important element of future pandemic planning. Methods The study period extended from the pandemic onset in February 2020 through November 2021. Daily COVID-19 cases, hospitalizations, deaths and test numbers for King County as a whole and by zip code were downloaded from the King County COVID-19 dashboard (Feb 22, 2022 update). Population data for King County and Vashon are from the April 2020 US Census. Zip code level population data are the average of two zip code tabulation area estimates from the WA Office of Financial Management and Cubit (a commercial data vendor providing access to US Census information). The Asset Limited, Income Constrained, and Employed (ALICE) metric, a measure of the working poor, was obtained from United Way.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Seattle Hispanic or Latino population. It includes the distribution of the Hispanic or Latino population, of Seattle, by their ancestries, as identified by the Census Bureau. The dataset can be utilized to understand the origin of the Hispanic or Latino population of Seattle.
Key observations
Among the Hispanic population in Seattle, regardless of the race, the largest group is of Mexican origin, with a population of 35,380 (58.25% of the total Hispanic population).
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Origin for Hispanic or Latino population include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Seattle Population by Race & Ethnicity. You can refer the same here