Abstract
Background: Adolescent girls in Kenya are disproportionately affected by early and unintended pregnancies, unsafe abortion and HIV infection. The In Their Hands (ITH) programme in Kenya aims to increase adolescents' use of high-quality sexual and reproductive health (SRH) services through targeted interventions. ITH Programme aims to promote use of contraception and testing for sexually transmitted infections (STIs) including HIV or pregnancy, for sexually active adolescent girls, 2) provide information, products and services on the adolescent girl's terms; and 3) promote communities support for girls and boys to access SRH services.
Objectives: The objectives of the evaluation are to assess: a) to what extent and how the new Adolescent Reproductive Health (ARH) partnership model and integrated system of delivery is working to meet its intended objectives and the needs of adolescents; b) adolescent user experiences across key quality dimensions and outcomes; c) how ITH programme has influenced adolescent voice, decision-making autonomy, power dynamics and provider accountability; d) how community support for adolescent reproductive and sexual health initiatives has changed as a result of this programme.
Methodology ITH programme is being implemented in two phases, a formative planning and experimentation in the first year from April 2017 to March 2018, and a national roll out and implementation from April 2018 to March 2020. This second phase is informed by an Annual Programme Review and thorough benchmarking and assessment which informed critical changes to performance and capacity so that ITH is fit for scale. It is expected that ITH will cover approximately 250,000 adolescent girls aged 15-19 in Kenya by April 2020. The programme is implemented by a consortium of Marie Stopes Kenya (MSK), Well Told Story, and Triggerise. ITH's key implementation strategies seek to increase adolescent motivation for service use, create a user-defined ecosystem and platform to provide girls with a network of accessible subsidized and discreet SRH services; and launch and sustain a national discourse campaign around adolescent sexuality and rights. The 3-year study will employ a mixed-methods approach with multiple data sources including secondary data, and qualitative and quantitative primary data with various stakeholders to explore their perceptions and attitudes towards adolescents SRH services. Quantitative data analysis will be done using STATA to provide descriptive statistics and statistical associations / correlations on key variables. All qualitative data will be analyzed using NVIVO software.
Study Duration: 36 months - between 2018 and 2020.
Homabay,Kakamega,Nakuru and Nairobi counties
Private health facilities that provide T-safe services under the In Their Hands(ITH) Program.
1.Adolescent girls aged 15-19 who enrolled on the T-safe platform and received services and those who enrolled but did not receive services from the ITH facilities. 2.Service providers incharge of provision of T-safe services in the ITH facilities. 3.Mobilisers incharge of adolescent girls aged 15-19 recruitment into the T-safe program.
Qualitative Sampling
IDI participants were selected purposively from ITH intervention areas and facilities located in the four ITH intervention counties; Homa Bay, Nakuru, Kakamega and Nairobi respectively which were selected for the midline survey. Study participants were identified from selected intervention facilities. We interviewed one service provider of adolescent friendly ITH services per facility. Additionally, we conducted IDI's with adolescent girls' who were enrolled and using/had used the ITH platform to access reproductive health services or enrolled but may not have accessed the services for other reasons.
Sample coverage We successfully conducted a total of 122 In-depth Interviews with 54 adolescents enrolled on the T-Safe platform, including those who received services and those who were enrolled but did not receive services, 39 IDIS with service providers and 29 IDIs with mobilizers. The distribution per county included 51 IDI's in Nairobi City County (24 with adolescent girls, 17 with service providers and 10 with mobilisers), 15 IDI's in Nakuru County (2 with adolescent girls,8 with service providers and 5 with mobilisers), 34 IDI's in Homa Bay County (18 with adolescent girls,8 with service providers and 8 with mobilisers) and 22 IDI's in Kakamega County (10 with adolescent girls,6 with service providers and another 6 with mobilisers.)
N/A
Face-to-face [f2f]
The midline evaluation included qualitative in-depth interviews with adolescent T-Safe users, adolescents enrolled in the platform but did not use the services, providers and mobilizers to assess the adolescent user experience and quality of services as well as provider accountability under the T-Safe program. Generally,the aim of the qualitative study was to assess adolescents' T-Safe users experience across quality dimensions as well as provider's experiences and accountability. The dimensions assessed include adolescent's journey with the platforms, experience with the platform, perceptions of quality of services and how the ITH platforms changed provider behavior and accountability.
Adolescent in-depth interview included:Adolescent journey,Barriers to adolescents access to SRH services,Community attitudes towards adolescent use of contraceptives,Decision making,Factors influencing decision to visit a clinic,Motivating factors for girls to join ITH,Notable changes since the introduction of ITH,Parental support ,and Perceptions about T-Safe.
Service providers in-depth interview included;Personal and professional background,Provider's experience with ITH/T-safe platform,Notable changes/influences since the introduction of ITH/T-safe,Influence/Impact on the preference of adolescent service users and health care providers as a result of the program,Impact/influence of ITH on quality of care,Facilitators and barriers for adolescents to access SRH services,Mechanisms to address the barriers,Challenges related to the facility,Feedback about facility from adolescents,Types of support needed to improve SRH services provided to adolescents Scenarios of different clients accessing SRH services,and Free node.
Mobilisers in-depth interview included;Mobilizer responsibilities and designation,Job description,Motivation for joining ITH,Personal and professional background,Training,Mobilizer roles in ITH,Mobilization process ,Experience with ITH platform,Key messages shared with adolescent about ITH/ Tsafe during enrollment,Motivating factors for adolescents to join ITH/Tsafe,Community's attitude towards ITH/Tsafe,Challenges faced by mobilizers when mobilizing adolescents for Tsafe,Adolescents view regarding platform,Addressing the challenges ,andFree node
Qualitative interviews were audio-recorded and the audio recordings were transmitted to APHRC study team by uploading the audios to google drive which was only accessible to the team. Related interview notes, participant's description forms and Informed consent forms were transported to APHRC offices in Nairobi at the end of data collection where the data transcription and coding was conducted. Audio recordings from qualitative interviews were transcribed and saved in MS Word format. The transcripts were stored electronically in password protected computers and were only accessible to the evaluation team working on the project. A qualitative software analysis program (NVIVO) was used to assist in coding and analyzing the data. A “thematic analysis” approach was used to organize and analyze the data, and to assist in the development of a codebook and coding scheme. Data was analyzed by first reading the full IDI transcripts, becoming familiar with the data and noting the themes and concepts that emerged. A thematic framework was developed from the identified themes and sub-themes and this was then used to create codes and code the raw data.
N/A
N/A
https://search.gesis.org/research_data/datasearch-httpwww-da-ra-deoaip--oaioai-da-ra-de450973https://search.gesis.org/research_data/datasearch-httpwww-da-ra-deoaip--oaioai-da-ra-de450973
Abstract (en): The National Center for Early Development and Learning (NCEDL) combined the data of two major studies in order to understand variations among state-funded pre-kindergarten (pre-k) programs and in turn, how these variations relate to child outcomes at the end of pre-k and in kindergarten. The Multi-State Study of Pre-Kindergarten and the State-Wide Early Education Programs (SWEEP) Study provide detailed information on pre-kindergarten teachers, children, and classrooms in 11 states. By combining data from both studies, information is available from 721 classrooms and 2,982 pre-kindergarten children in these 11 states. Pre-kindergarten data collection for the Multi-State Study of Pre-Kindergarten took place during the 2001-2002 school year in six states: California, Georgia, Illinois, Kentucky, New York, and Ohio. These states were selected from among states that had committed significant resources to pre-k initiatives. States were selected to maximize diversity with regard to geography, program settings (public school or community setting), program intensity (full-day vs. part-day), and educational requirements for teachers. In each state, a stratified random sample of 40 centers/schools was selected from the list of all the school/centers or programs (both contractors and subcontractors) provided to the researchers by each state's department of education. In total, 238 sites participated in the fall and two additional sites joined the study in the spring. Participating teachers helped the data collectors recruit children into the study by sending recruitment packets home with all children enrolled in the classroom. On the first day of data collection, the data collectors determined which of the children were eligible to participate. Eligible children were those who (1) would be old enough for kindergarten in the fall of 2002, (2) did not have an Individualized Education Plan, according to the teacher, and (3) spoke English or Spanish well enough to understand simple instructions, according to the teacher. Pre-kindergarten data collection for the SWEEP Study took place during the 2003-2004 school year in five states: Massachusetts, New Jersey, Texas, Washington, and Wisconsin. These states were selected to complement the states already in the Multi-State Study of Pre-K by including programs with significantly different funding models or modes of service delivery. In each of the five states, 100 randomly selected state-funded pre-kindergarten sites were recruited for participation in the study from a list of all sites provided by the state. In total, 465 sites participated in the fall. Two sites declined to continue participation in the spring, resulting in 463 sites participating in the spring. Participating teachers helped the data collectors recruit children into the study by sending recruitment packets home with all children enrolled in the classroom. On the first day of data collection, the data collectors determined which of the children were eligible to participate. Eligible children were those who (1) would be old enough for kindergarten in the fall of 2004, (2) did not have an Individualized Education Plan, according to the teacher, and (3) spoke English or Spanish well enough to understand simple instructions, according to the teacher. Demographic information collected across both studies includes race, teacher gender, child gender, family income, mother's education level, and teacher education level. The researchers also created a variable for both the child-level data and the class-level data which allows secondary users to subset cases according to either the Multi-State or SWEEP study. ICPSR data undergo a confidentiality review and are altered when necessary to limit the risk of disclosure. ICPSR also routinely creates ready-to-go data files along with setups in the major statistical software formats as well as standard codebooks to accompany the data. In addition to these procedures, ICPSR performed the following processing steps for this data collection: Performed recodes and/or calculated derived variables.. Response Rates: Multi-State: Of the 40 sites per state, 78 percent of eligible sites agreed to participate (fall of pre-k, n = 238). For fall of pre-k (n = 238), 94 percent of the one classroom per site selected agreed to participate. For fall (n = 940) and spring (n = 960) of pre-k, 61 percent of the parents of eligible children consented.; SWEEP: Of the 10...
The 1991 Indonesia Demographic and Health Survey (IDHS) is a nationally representative survey of ever-married women age 15-49. It was conducted between May and July 1991. The survey was designed to provide information on levels and trends of fertility, infant and child mortality, family planning and maternal and child health. The IDHS was carried out as collaboration between the Central Bureau of Statistics, the National Family Planning Coordinating Board, and the Ministry of Health. The IDHS is follow-on to the National Indonesia Contraceptive Prevalence Survey conducted in 1987.
The DHS program has four general objectives: - To provide participating countries with data and analysis useful for informed policy choices; - To expand the international population and health database; - To advance survey methodology; and - To help develop in participating countries the technical skills and resources necessary to conduct demographic and health surveys.
In 1987 the National Indonesia Contraceptive Prevalence Survey (NICPS) was conducted in 20 of the 27 provinces in Indonesia, as part of Phase I of the DHS program. This survey did not include questions related to health since the Central Bureau of Statistics (CBS) had collected that information in the 1987 National Socioeconomic Household Survey (SUSENAS). The 1991 Indonesia Demographic and Health Survey (IDHS) was conducted in all 27 provinces of Indonesia as part of Phase II of the DHS program. The IDHS received financial assistance from several sources.
The 1991 IDHS was specifically designed to meet the following objectives: - To provide data concerning fertility, family planning, and maternal and child health that can be used by program managers, policymakers, and researchers to evaluate and improve existing programs; - To measure changes in fertility and contraceptive prevalence rates and at the same time study factors which affect the change, such as marriage patterns, urban/rural residence, education, breastfeeding habits, and the availability of contraception; - To measure the development and achievements of programs related to health policy, particularly those concerning the maternal and child health development program implemented through public health clinics in Indonesia.
National
Sample survey data [ssd]
Indonesia is divided into 27 provinces. For the implementation of its family planning program, the National Family Planning Coordinating Board (BKKBN) has divided these provinces into three regions as follows:
The 1990 Population Census of Indonesia shows that Java-Bali contains about 62 percent of the national population, while Outer Java-Bali I contains 27 percent and Outer Java-Bali II contains 11 percent. The sample for the Indonesia DHS survey was designed to produce reliable estimates of contraceptive prevalence and several other major survey variables for each of the 27 provinces and for urban and rural areas of the three regions.
In order to accomplish this goal, approximately 1500 to 2000 households were selected in each of the provinces in Java-Bali, 1000 households in each of the ten provinces in Outer Java-Bali I, and 500 households in each of the 11 provinces in Outer Java-Bali II for a total of 28,000 households. With an average of 0.8 eligible women (ever-married women age 15-49) per selected household, the 28,000 households were expected to yield approximately 23,000 individual interviews.
Note: See detailed description of sample design in APPENDIX A of the survey report.
Face-to-face [f2f]
The DHS model "A" questionnaire and manuals were modified to meet the requirements of measuring family planning and health program attainment, and were translated into Bahasa Indonesia.
The first stage of data editing was done by the field editors who checked the completed questionnaires for completeness and accuracy. Field supervisors also checked the questionnaires. They were then sent to the central office in Jakarta where they were edited again and open-ended questions were coded. The data were processed using 11 microcomputers and ISSA (Integrated System for Survey Analysis).
Data entry and editing were initiated almost immediately after the beginning of fieldwork. Simple range and skip errors were corrected at the data entry stage. Secondary machine editing of the data was initiated as soon as sufficient questionnaires had been entered. The objective of the secondary editing was to detect and correct, if possible, inconsistencies in the data. All of the data were entered and edited by September 1991. A brief report containing preliminary survey results was published in November 1991.
Of 28,141 households sampled, 27,109 were eligible to be interviewed (excluding those that were absent, vacant, or destroyed), and of these, 26,858 or 99 percent of eligible households were successfully interviewed. In the interviewed households, 23,470 eligible women were found and complete interviews were obtained with 98 percent of these women.
Note: See summarized response rates by place of residence in Table 1.2 of the survey report.
The results from sample surveys are affected by two types of errors, non-sampling error and sampling error. Non-sampling error is due to mistakes made in carrying out field activities, such as failure to locate and interview the correct household, errors in the way the questions are asked, misunderstanding on the part of either the interviewer or the respondent, data entry errors, etc. Although efforts were made during the design and implementation of the IDHS to minimize this type of error, non-sampling errors are impossible to avoid and difficult to evaluate analytically.
Sampling errors, on the other hand, can be measured statistically. The sample of women selected in the IDHS is only one of many samples that could have been selected from the same population, using the same design and expected size. Each one would have yielded results that differed somewhat from the actual sample selected. The sampling error is a measure of the variability between all possible samples; although it is not known exactly, it can be estimated from the survey results. Sampling error is usually measured in terms of standard error of a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which one can reasonably be assured that, apart from non-sampling errors, the true value of the variable for the whole population falls. For example, for any given statistic calculated from a sample survey, the value of that same statistic as measured in 95 percent of all possible samples with the same design (and expected size) will fall within a range of plus or minus two times the standard error of that statistic.
If the sample of women had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the IDHS sample design depended on stratification, stages and clusters. Consequently, it was necessary to utilize more complex formulas. The computer package CLUSTERS, developed by the International Statistical Institute for the World Fertility Survey, was used to assist in computing the sampling errors with the proper statistical methodology.
Note: See detailed estimate of sampling error calculation in APPENDIX B of the survey report.
Data Quality Tables - Household age distribution - Age distribution of eligible and interviewed women - Completeness of reporting - Births by calendar year since birth - Reporting of age at death in days - Reporting of age at death in months
Note: See detailed tables in APPENDIX C of the survey report.
The aim of this survey was to chart how the universities in Finland have organised the depositing of digital research data and to what extent the data are reused by the scientific community after the original research has been completed. The respondents were professors of human sciences, social sciences and behavioural sciences in Finnish universities, and representatives of some research institutes. Opinions were also queried on the OECD guidelines and principles on open access to research data from public funding. First, the respondents were asked whether there were any guidelines or regulations concerning the depositing of digital research data in their departments, what happened to research data after the completion of the original research, and to what extent the data were reused. Further questions covered how often the data from completed research projects were reused in secondary research projects or for theses. The respondents also estimated what proportion of the data collected in their departments/institutes were reusable at the time of the survey, and why research data were not being reused in their own field of research. Views were also investigated on whether confidentiality or research ethics issues, or problems related to copyright or information technology formed barriers to data reuse. Opinions on the OECD Open Access guidelines on research data were queried. The respondents were asked whether they had earlier knowledge of the guidelines, and to what extent its principles could be implemented in their own disciplines. Some questions pertained to the advantages and disadvantages of open access to research data. The advantages mentioned included reducing duplicate data collection and more effective use of data resources, whereas the disadvantages mentioned included, for example, risks connected to data protection and misuse of data. The respondents also suggested ways of implementing the Open Access guidelines and gave their opinions on how binding the recommendations should be, to what extent various bodies should be involved in formulating the guidelines, and how the archiving and dissemination of digital research data should be organised. Finally, the respondents estimated how the researchers in their field would react to enhancing open access to research data, and also gave their opinion on open access to the data they themselves have collected. Background variables included the respondent's gender, university, and research field.
Since 1968, OCR has collected civil rights data related to students' access and barriers to educational opportunity from early childhood through grade 12. These data are collected from all public schools and districts, as well as long-term secure juvenile justice facilities, charter schools, alternative schools, and special education schools that focus primarily on serving the educational needs of students with disabilities under IDEA or section 504 of the Rehabilitation Act. The CRDC collects information about student enrollment; access to courses, programs and school staff; and school climate factors, such as bullying, harassment and student discipline. Most data collected by the CRDC are disaggregated by race, ethnicity, sex, disability, and English Learners. Originally known as the Elementary and Secondary School Civil Rights Survey, OCR began by collecting data every year from 1968 to 1974 from a sample of school districts and their schools. Over time, the schedule and approach to data collection has changed. Since the 2011-12 collection, the CRDC has been administered every two years to all public school districts and schools in the 50 states and Washington, D.C., and OCR added the Commonwealth of Puerto Rico for the 2017-18 CRDC. Due to the COVID-19 pandemic that resulted in school closures nationwide, OCR postponed the 2019-20 CRDC and instead collected data from the 2020-21 school year.
The primary objective of the 2017 Indonesia Dmographic and Health Survey (IDHS) is to provide up-to-date estimates of basic demographic and health indicators. The IDHS provides a comprehensive overview of population and maternal and child health issues in Indonesia. More specifically, the IDHS was designed to: - provide data on fertility, family planning, maternal and child health, and awareness of HIV/AIDS and sexually transmitted infections (STIs) to help program managers, policy makers, and researchers to evaluate and improve existing programs; - measure trends in fertility and contraceptive prevalence rates, and analyze factors that affect such changes, such as residence, education, breastfeeding practices, and knowledge, use, and availability of contraceptive methods; - evaluate the achievement of goals previously set by national health programs, with special focus on maternal and child health; - assess married men’s knowledge of utilization of health services for their family’s health and participation in the health care of their families; - participate in creating an international database to allow cross-country comparisons in the areas of fertility, family planning, and health.
National coverage
The survey covered all de jure household members (usual residents), all women age 15-49 years resident in the household, and all men age 15-54 years resident in the household.
Sample survey data [ssd]
The 2017 IDHS sample covered 1,970 census blocks in urban and rural areas and was expected to obtain responses from 49,250 households. The sampled households were expected to identify about 59,100 women age 15-49 and 24,625 never-married men age 15-24 eligible for individual interview. Eight households were selected in each selected census block to yield 14,193 married men age 15-54 to be interviewed with the Married Man's Questionnaire. The sample frame of the 2017 IDHS is the Master Sample of Census Blocks from the 2010 Population Census. The frame for the household sample selection is the updated list of ordinary households in the selected census blocks. This list does not include institutional households, such as orphanages, police/military barracks, and prisons, or special households (boarding houses with a minimum of 10 people).
The sampling design of the 2017 IDHS used two-stage stratified sampling: Stage 1: Several census blocks were selected with systematic sampling proportional to size, where size is the number of households listed in the 2010 Population Census. In the implicit stratification, the census blocks were stratified by urban and rural areas and ordered by wealth index category.
Stage 2: In each selected census block, 25 ordinary households were selected with systematic sampling from the updated household listing. Eight households were selected systematically to obtain a sample of married men.
For further details on sample design, see Appendix B of the final report.
Face-to-face [f2f]
The 2017 IDHS used four questionnaires: the Household Questionnaire, Woman’s Questionnaire, Married Man’s Questionnaire, and Never Married Man’s Questionnaire. Because of the change in survey coverage from ever-married women age 15-49 in the 2007 IDHS to all women age 15-49, the Woman’s Questionnaire had questions added for never married women age 15-24. These questions were part of the 2007 Indonesia Young Adult Reproductive Survey Questionnaire. The Household Questionnaire and the Woman’s Questionnaire are largely based on standard DHS phase 7 questionnaires (2015 version). The model questionnaires were adapted for use in Indonesia. Not all questions in the DHS model were included in the IDHS. Response categories were modified to reflect the local situation.
All completed questionnaires, along with the control forms, were returned to the BPS central office in Jakarta for data processing. The questionnaires were logged and edited, and all open-ended questions were coded. Responses were entered in the computer twice for verification, and they were corrected for computer-identified errors. Data processing activities were carried out by a team of 34 editors, 112 data entry operators, 33 compare officers, 19 secondary data editors, and 2 data entry supervisors. The questionnaires were entered twice and the entries were compared to detect and correct keying errors. A computer package program called Census and Survey Processing System (CSPro), which was specifically designed to process DHS-type survey data, was used in the processing of the 2017 IDHS.
Of the 49,261 eligible households, 48,216 households were found by the interviewer teams. Among these households, 47,963 households were successfully interviewed, a response rate of almost 100%.
In the interviewed households, 50,730 women were identified as eligible for individual interview and, from these, completed interviews were conducted with 49,627 women, yielding a response rate of 98%. From the selected household sample of married men, 10,440 married men were identified as eligible for interview, of which 10,009 were successfully interviewed, yielding a response rate of 96%. The lower response rate for men was due to the more frequent and longer absence of men from the household. In general, response rates in rural areas were higher than those in urban areas.
The estimates from a sample survey are affected by two types of errors: (1) nonsampling errors and (2) sampling errors. Nonsampling errors result from mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 2017 Indonesia Demographic and Health Survey (2017 IDHS) to minimize this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.
Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 2017 IDHS is only one of many samples that could have been selected from the same population, using the same design and identical size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling error is a measure of the variability among all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.
A sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95 percent of all possible samples of identical size and design.
If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the 2017 IDHS sample is the result of a multi-stage stratified design, and, consequently, it was necessary to use more complex formulas. The computer software used to calculate sampling errors for the 2017 IDHS is a STATA program. This program used the Taylor linearization method for variance estimation for survey estimates that are means or proportions. The Jackknife repeated replication method is used for variance estimation of more complex statistics such as fertility and mortality rates.
A more detailed description of estimates of sampling errors are presented in Appendix C of the survey final report.
Data Quality Tables - Household age distribution - Age distribution of eligible and interviewed women - Age distribution of eligible and interviewed men - Completeness of reporting - Births by calendar year - Reporting of age at death in days - Reporting of age at death in months
See details of the data quality tables in Appendix D of the survey final report.
The NHS Business Services Authority (NHSBSA) publishes Secondary Care Medicines Data on behalf of NHS England (NHSE). This dataset provides 'Provisional' Secondary Care Medicines data for all NHS Acute, Teaching, Specialist, Mental Health, and Community Trusts in England. It provides information on pharmacy stock control, reflecting processed medicines data. RX Info is responsible for refreshing the Provisional data at the close of each financial year to include backtracking adjustments. The data is 'Finalised' to provide validated and complete figures for each reporting period, incorporating any updates and corrections throughout the year. The Finalised dataset serves as the definitive record for each month and year, offering the most accurate information on medicines issued. While we do not analyse changes, users can compare the finalised data with provisional data to identify any discrepancies. Key Components of the Data Quantities of Medicines Issued: Details the total quantities of medicines stock control via NHS Secondary Care services. Indicative Costs: Actual costs cannot be displayed in the dataset as NHS Hospital pricing contracts and NICE Patient Access Schemes are confidential. The indicative cost of medicines is derived from current medicines pricing data held in NHSBSA data systems (Common Drug Reference and dm+d), calculated to VMP level. Indicative costs are calculated using: Community pharmacy reimbursement prices for generic medicines. List prices for branded medicines. Care should be taken when interpreting and analysing this indicative cost as it does not reflect the net actual cost of NHS Trusts, which will differ due to the application of confidential discounts, rebates, or procurement agreements paid by hospitals when purchasing medicines. Standardisation with SNOMED CT and dm+d: SNOMED CT (Systematised Nomenclature of Medicine - Clinical Terms) is used to enhance the dataset’s compatibility with electronic health record systems and clinical decision support tools. SNOMED CT is a globally recognised coding system that provides precise definitions for clinical terms, ensuring interoperability across healthcare systems. Trust-Level Data: Data is broken down by individual NHS Trusts, enabling regional comparisons, benchmarking, and targeted analysis of specific Trusts. Medicine Identification: Medicines in the dataset are identified using Virtual Medicinal Product (VMP) codes from the Dictionary of Medicines and Devices (dm+d): VMP_PRODUCT_NAME: The name of the Virtual Medicinal Product (VMP) as defined by the dm+d, which includes key details about the product. For example: Paracetamol 500mg tablets. VMP_SNOMED_CODE: The code for the Virtual Medicinal Product (VMP), providing a unique identifier for each product. For example: 42109611000001109 represents Paracetamol 500mg tablets. You can access the finalised files in our Finalised Secondary Care Medicines Data (SCMD) with indicative price dataset. Dataset Details Service Overview Information about our NHSBSA Prescriptions Data service can be found here - Prescription data | NHSBSA The NHS Business Services Authority (NHSBSA) publishes this dataset, provided by RX Info, which contains information about pharmacy stock control in NHS Secondary Care settings across England on behalf of NHS England. It includes data from NHS Trusts and is in a standardised dm+d format (Dictionary of medicines and devices (dm+d) | NHSBSA). For further context about the Secondary Care Medicines Data, you can explore the following resources: Secondary Care Medicines Data Release Guidance v0.5 (Word: 78.3KB) RX Info: RX Info is the provider of the data related to pharmacy stock control medicines issued in NHS Secondary Care settings, which is made available by NHSBSA. Visit RX Info's website for more details. Data Source The data is sourced from NHS Trusts' pharmacy stock control systems which capture detailed records of medicines issued, including quantities. The data is provided to NHSBSA by RX Info, a data provider that supplies records on medicines issued in NHS Secondary Care settings. Data quality controls are in place to exclude transactions flagged as outliers, non-standardised items and zero activity. No personal or patient-identifiable information is included, ensuring compliance with data protection regulations. Rx-Info will provide a complete annual refresh of the data two months after the close of a financial year, planned for the end May, which will then be the fixed data set accounting for backtracking. The data for the finalised view is provided to NHSBSA. Data Collection Data is from NHS England sites only and provided under the agreement entered into by Trusts and Rx-Info (Define) facilitated by NHS England. The data owners and data controllers are the respective NHS Trusts. Time Periods Publication frequency: Data is uploaded on a monthly basis and is published retrospectively with a two-month delay. For example, January data is published in March. Historical Data: Data is available from April 2021 onwards. Geography NHS Trusts in England. Statistical Classification This is not an official statistic. A related official statistic can be found in our Prescribing Costs in Hospitals and the Community publication, which includes Secondary Care Medicines data with actual cost, broken down by British National Formulary (BNF) Section. Caveats Information:
The primary objective of the 2012 Indonesia Demographic and Health Survey (IDHS) is to provide policymakers and program managers with national- and provincial-level data on representative samples of all women age 15-49 and currently-married men age 15-54.
The 2012 IDHS was specifically designed to meet the following objectives: • Provide data on fertility, family planning, maternal and child health, adult mortality (including maternal mortality), and awareness of AIDS/STIs to program managers, policymakers, and researchers to help them evaluate and improve existing programs; • Measure trends in fertility and contraceptive prevalence rates, and analyze factors that affect such changes, such as marital status and patterns, residence, education, breastfeeding habits, and knowledge, use, and availability of contraception; • Evaluate the achievement of goals previously set by national health programs, with special focus on maternal and child health; • Assess married men’s knowledge of utilization of health services for their family’s health, as well as participation in the health care of their families; • Participate in creating an international database that allows cross-country comparisons that can be used by the program managers, policymakers, and researchers in the areas of family planning, fertility, and health in general
National coverage
Sample survey data [ssd]
Indonesia is divided into 33 provinces. Each province is subdivided into districts (regency in areas mostly rural and municipality in urban areas). Districts are subdivided into subdistricts, and each subdistrict is divided into villages. The entire village is classified as urban or rural.
The 2012 IDHS sample is aimed at providing reliable estimates of key characteristics for women age 15-49 and currently-married men age 15-54 in Indonesia as a whole, in urban and rural areas, and in each of the 33 provinces included in the survey. To achieve this objective, a total of 1,840 census blocks (CBs)-874 in urban areas and 966 in rural areas-were selected from the list of CBs in the selected primary sampling units formed during the 2010 population census.
Because the sample was designed to provide reliable indicators for each province, the number of CBs in each province was not allocated in proportion to the population of the province or its urban-rural classification. Therefore, a final weighing adjustment procedure was done to obtain estimates for all domains. A minimum of 43 CBs per province was imposed in the 2012 IDHS design.
Refer to Appendix B in the final report for details of sample design and implementation.
Face-to-face [f2f]
The 2012 IDHS used four questionnaires: the Household Questionnaire, the Woman’s Questionnaire, the Currently Married Man’s Questionnaire, and the Never-Married Man’s Questionnaire. Because of the change in survey coverage from ever-married women age 15-49 in the 2007 IDHS to all women age 15-49 in the 2012 IDHS, the Woman’s Questionnaire now has questions for never-married women age 15-24. These questions were part of the 2007 Indonesia Young Adult Reproductive Survey questionnaire.
The Household and Woman’s Questionnaires are largely based on standard DHS phase VI questionnaires (March 2011 version). The model questionnaires were adapted for use in Indonesia. Not all questions in the DHS model were adopted in the IDHS. In addition, the response categories were modified to reflect the local situation.
The Household Questionnaire was used to list all the usual members and visitors who spent the previous night in the selected households. Basic information collected on each person listed includes age, sex, education, marital status, education, and relationship to the head of the household. Information on characteristics of the housing unit, such as the source of drinking water, type of toilet facilities, construction materials used for the floor, roof, and outer walls of the house, and ownership of various durable goods were also recorded in the Household Questionnaire. These items reflect the household’s socioeconomic status and are used to calculate the household wealth index. The main purpose of the Household Questionnaire was to identify women and men who were eligible for an individual interview.
The Woman’s Questionnaire was used to collect information from all women age 15-49. These women were asked questions on the following topics: • Background characteristics (marital status, education, media exposure, etc.) • Reproductive history and fertility preferences • Knowledge and use of family planning methods • Antenatal, delivery, and postnatal care • Breastfeeding and infant and young children feeding practices • Childhood mortality • Vaccinations and childhood illnesses • Marriage and sexual activity • Fertility preferences • Woman’s work and husband’s background characteristics • Awareness and behavior regarding HIV-AIDS and other sexually transmitted infections (STIs) • Sibling mortality, including maternal mortality • Other health issues
Questions asked to never-married women age 15-24 addressed the following: • Additional background characteristics • Knowledge of the human reproduction system • Attitudes toward marriage and children • Role of family, school, the community, and exposure to mass media • Use of tobacco, alcohol, and drugs • Dating and sexual activity
The Man’s Questionnaire was administered to all currently married men age 15-54 living in every third household in the 2012 IDHS sample. This questionnaire includes much of the same information included in the Woman’s Questionnaire, but is shorter because it did not contain questions on reproductive history or maternal and child health. Instead, men were asked about their knowledge of and participation in health-careseeking practices for their children.
The questionnaire for never-married men age 15-24 includes the same questions asked to nevermarried women age 15-24.
All completed questionnaires, along with the control forms, were returned to the BPS central office in Jakarta for data processing. The questionnaires were logged and edited, and all open-ended questions were coded. Responses were entered in the computer twice for verification, and they were corrected for computeridentified errors. Data processing activities were carried out by a team of 58 data entry operators, 42 data editors, 14 secondary data editors, and 14 data entry supervisors. A computer package program called Census and Survey Processing System (CSPro), which was specifically designed to process DHS-type survey data, was used in the processing of the 2012 IDHS.
The response rates for both the household and individual interviews in the 2012 IDHS are high. A total of 46,024 households were selected in the sample, of which 44,302 were occupied. Of these households, 43,852 were successfully interviewed, yielding a household response rate of 99 percent.
Refer to Table 1.2 in the final report for more detailed summarized results of the of the 2012 IDHS fieldwork for both the household and individual interviews, by urban-rural residence.
The estimates from a sample survey are affected by two types of errors: (1) nonsampling errors, and (2) sampling errors. Nonsampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 2012 Indonesia Demographic and Health Survey (2012 IDHS) to minimize this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.
Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 2012 IDHS is only one of many samples that could have been selected from the same population, using the same design and identical size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling error is a measure of the variability between all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.
A sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95 percent of all possible samples of identical size and design.
If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the 2012 IDHS sample is the result of a multi-stage stratified design, and, consequently, it was necessary to use more complex formulae. The computer software used to calculate sampling errors for the 2012 IDHS is a SAS program. This program used the Taylor linearization method
Text-based data collected from Statistics Canada was used to create a union list of born-digital products from the Canadian Census of Population, starting with the 1961 Census. This union list indicates where the census files are located in Canada (for example, the University of Toronto Data Library) and what they contain. The data is stored in a database and accessible through an online search engine .
Trust-Level Data: Data is broken down by individual NHS Trusts, enabling regional comparisons, benchmarking, and targeted analysis of specific Trusts. Medicine Identification: Medicines in the dataset are identified using Virtual Medicinal Product (VMP) codes from the Dictionary of Medicines and Devices (dm+d): VMP_PRODUCT_NAME: The name of the Virtual Medicinal Product (VMP) as defined by the dm+d, which includes key details about the product. For example: Paracetamol 500mg tablets. VMP_SNOMED_CODE: The code for the Virtual Medicinal Product (VMP), providing a unique identifier for each product. For example: 42109611000001109 represents Paracetamol 500mg tablets. By making this data publicly available, the NHSBSA aims to enhance transparency, accountability, and the effective use of NHS resources. Overview of Service Information about our NHSBSA Prescriptions Data service can be found here - Prescription data | NHSBSA
The Service Delivery Indicators (SDI) are a set of health and education indicators that examine the effort and ability of staff and the availability of key inputs and resources that contribute to a functioning school or health facility. The indicators are standardized, allowing comparison between and within countries over time.
The Health SDIs include healthcare provider effort, knowledge and ability, and the availability of key inputs (for example, basic equipment, medicines and infrastructure, such as toilets and electricity). The indicators provide a snapshot of the health facility and assess the availability of key resources for providing high quality care.
The Kenya SDI Health survey team visited a sample of 3,098 health facilities across Kenya between March and July 2018. The 2018 Kenya SDI is the largest to date. The survey team collected rosters covering 24,098 workers for absenteeism and assessed 4,499 health workers for competence using patient case simulation.
National
Health facilities and healthcare providers
All health facilities providing primary-level care
Sample survey data [ssd]
The sampling strategy for SDI surveys is designed towards attaining indicators that are accurate and representative at the national level, as this allows for proper cross-country (i.e. international benchmarking) and across time comparisons, when applicable. In addition, other levels of representativeness are sought to allow for further disaggregation (rural/urban areas, public/private facilities, subregions, etc.) during the analysis stage.
The sampling strategy for SDI surveys follows a multistage sampling approach. The main units of analysis are facilities (schools and health centers) and providers (health and education workers: teachers, doctors, nurses, facility managers, etc.). The multi-stage sampling approach makes sampling procedures more practical by dividing the selection of large populations of sampling units in a step-by-step fashion. After defining the sampling frame and categorizing it by stratum, a first stage selection of sampling units is carried out independently within each stratum. Often, the primary sampling units (PSU) for this stage are cluster locations (e.g. districts, communities, counties, neighborhoods, etc.) which are randomly drawn within each stratum with a probability proportional to the size (PPS) of the cluster (measured by the location’s number of facilities, providers or pupils). Once locations are selected, a second stage takes place by randomly selecting facilities within location (either with equal probability or with PPS) as secondary sampling units. At a third stage, a fixed number of health and education workers and pupils are randomly selected within facilities to provide information for the different questionnaire modules.
Detailed information about the specific sampling process is available in the associated SDI Country Report included as part of the documentation that accompany these datasets.
Face-to-face [f2f]
The SDI Health Survey Questionnaire consists of four modules, plus weights:
Module 1: General Information - Administered to the health facility manager to collect information on equipment, medicines, infrastructure and other facets of the health facility.
Module 2: Provider Absence - A roster of healthcare providers is collected and absence measured.
Module 3: Clinical Vignettes – A selection of providers are given clinical vignettes to measure knowledge of common medical conditions.
Module 4: Public expenditure tracking - Information on facility finances
Weights: Weights for facilities, absentee-related analyses and clinical vignette analyses.
Quality control was performed in Stata.
The GHS is an annual household survey which measures the living circumstances of South African households. The GHS collects data on education, health, and social development, housing, access to services and facilities, food security, and agriculture.
The General Household Survey has national coverage.
Households and individuals
The survey covers all de jure household members (usual residents) of households in the nine provinces of South Africa, and residents in workers' hostels. The survey does not cover collective living quarters such as student hostels, old age homes, hospitals, prisons, and military barracks.
Sample survey data
From 2015 the General Household Survey (GHS) uses a Master Sample (MS) frame developed in 2013 as a general-purpose sampling frame to be used for all Stats SA household-based surveys. This MS has design requirements that are reasonably compatible with the GHS. The 2013 Master Sample is based on information collected during the 2011 Census conducted by Stats SA. In preparation for Census 2011, the country was divided into 103 576 enumeration areas (EAs). The census EAs, together with the auxiliary information for the EAs, were used as the frame units or building blocks for the formation of primary sampling units (PSUs) for the Master Sample, since they covered the entire country, and had other information that is crucial for stratification and creation of PSUs. There are 3 324 primary sampling units (PSUs) in the Master Sample, with an expected sample of approximately 33 000 dwelling units (DUs). The number of PSUs in the current Master Sample (3 324) reflect an 8,0% increase in the size of the Master Sample compared to the previous (2008) Master Sample (which had 3 080 PSUs). The larger Master Sample of PSUs was selected to improve the precision (smaller coefficients of variation, known as CVs) of the GHS estimates. The Master Sample is designed to be representative at provincial level and within provinces at metro/non-metro levels. Within the metros, the sample is further distributed by geographical type. The three geography types are Urban, Tribal and Farms. This implies, for example, that within a metropolitan area, the sample is representative of the different geography types that may exist within that metro.
The sample for the GHS is based on a stratified two-stage design with probability proportional to size (PPS) sampling of PSUs in the first stage, and sampling of dwelling units (DUs) with systematic sampling in the second stage.After allocating the sample to the provinces, the sample was further stratified by geography (primary stratification), and by population attributes using Census 2011 data (secondary stratification).
Computer Assisted Personal Interview
Data was collected with a household questionnaire and a questionnaire administered to a household member to elicit information on household members.
Since 2019, the questionnaire for the GHS series changed and the variables were also renamed. For correspondence between old names (GHS pre-2019) and new name (GHS post-2019), see the document ghs-2019-variables-renamed.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Modality-agnostic files were copied over and the CHANGES
file was updated.
A comprehensive clinical, MRI, and MEG collection characterizing healthy research volunteers collected at the National Institute of Mental Health (NIMH) Intramural Research Program (IRP) in Bethesda, Maryland using medical and mental health assessments, diagnostic and dimensional measures of mental health, cognitive and neuropsychological functioning, structural and functional magnetic resonance imaging (MRI), along with diffusion tensor imaging (DTI), and a comprehensive magnetoencephalography battery (MEG).
In addition, blood samples are currently banked for future genetic analysis. All data collected in this protocol are broadly shared in the OpenNeuro repository, in the Brain Imaging Data Structure (BIDS) format. In addition, blood samples of healthy volunteers are banked for future analyses. All data collected in this protocol are broadly shared here, in the Brain Imaging Data Structure (BIDS) format. In addition, task paradigms and basic pre-processing scripts are shared on GitHub. This dataset is unique in its depth of characterization of a healthy population in terms of brain health and will contribute to a wide array of secondary investigations of non-clinical and clinical research questions.
This dataset is licensed under the Creative Commons Zero (CC0) v1.0 License.
Inclusion criteria for the study require that participants are adults at or over 18 years of age in good health with the ability to read, speak, understand, and provide consent in English. All participants provided electronic informed consent for online screening and written informed consent for all other procedures. Exclusion criteria include:
Study participants are recruited through direct mailings, bulletin boards and listservs, outreach exhibits, print advertisements, and electronic media.
All potential volunteers first visit the study website (https://nimhresearchvolunteer.ctss.nih.gov), check a box indicating consent, and complete preliminary self-report screening questionnaires. The study website is HIPAA compliant and therefore does not collect PII ; instead, participants are instructed to contact the study team to provide their identity and contact information. The questionnaires include demographics, clinical history including medications, disability status (WHODAS 2.0), mental health symptoms (modified DSM-5 Self-Rated Level 1 Cross-Cutting Symptom Measure), substance use survey (DSM-5 Level 2), alcohol use (AUDIT), handedness (Edinburgh Handedness Inventory), and perceived health ratings. At the conclusion of the questionnaires, participants are again prompted to send an email to the study team. Survey results, supplemented by NIH medical records review (if present), are reviewed by the study team, who determine if the participant is likely eligible for the protocol. These participants are then scheduled for an in-person assessment. Follow-up phone screenings were also used to determine if participants were eligible for in-person screening.
At this visit, participants undergo a comprehensive clinical evaluation to determine final eligibility to be included as a healthy research volunteer. The mental health evaluation consists of a psychiatric diagnostic interview (Structured Clinical Interview for DSM-5 Disorders (SCID-5), along with self-report surveys of mood (Beck Depression Inventory-II (BD-II) and anxiety (Beck Anxiety Inventory, BAI) symptoms. An intelligence quotient (IQ) estimation is determined with the Kaufman Brief Intelligence Test, Second Edition (KBIT-2). The KBIT-2 is a brief (20-30 minute) assessment of intellectual functioning administered by a trained examiner. There are three subtests, including verbal knowledge, riddles, and matrices.
Medical evaluation includes medical history elicitation and systematic review of systems. Biological and physiological measures include vital signs (blood pressure, pulse), as well as weight, height, and BMI. Blood and urine samples are taken and a complete blood count, acute care panel, hepatic panel, thyroid stimulating hormone, viral markers (HCV, HBV, HIV), C-reactive protein, creatine kinase, urine drug screen and urine pregnancy tests are performed. In addition, blood samples that can be used for future genomic analysis, development of lymphoblastic cell lines or other biomarker measures are collected and banked with the NIMH Repository and Genomics Resource (Infinity BiologiX). The Family Interview for Genetic Studies (FIGS) was later added to the assessment in order to provide better pedigree information; the Adverse Childhood Events (ACEs) survey was also added to better characterize potential risk factors for psychopathology. The entirety of the in-person assessment not only collects information relevant for eligibility determination, but it also provides a comprehensive set of standardized clinical measures of volunteer health that can be used for secondary research.
Participants are given the option to consent for a magnetic resonance imaging (MRI) scan, which can serve as a baseline clinical scan to determine normative brain structure, and also as a research scan with the addition of functional sequences (resting state and diffusion tensor imaging). The MR protocol used was initially based on the ADNI-3 basic protocol, but was later modified to include portions of the ABCD protocol in the following manner:
At the time of the MRI scan, volunteers are administered a subset of tasks from the NIH Toolbox Cognition Battery. The four tasks include:
An optional MEG study was added to the protocol approximately one year after the study was initiated, thus there are relatively fewer MEG recordings in comparison to the MRI dataset. MEG studies are performed on a 275 channel CTF MEG system (CTF MEG, Coquiltam BC, Canada). The position of the head was localized at the beginning and end of each recording using three fiducial coils. These coils were placed 1.5 cm above the nasion, and at each ear, 1.5 cm from the tragus on a line between the tragus and the outer canthus of the eye. For 48 participants (as of 2/1/2022), photographs were taken of the three coils and used to mark the points on the T1 weighted structural MRI scan for co-registration. For the remainder of the participants (n=16 as of 2/1/2022), a Brainsight neuronavigation system (Rogue Research, Montréal, Québec, Canada) was used to coregister the MRI and fiducial localizer coils in realtime prior to MEG data acquisition.
Online and In-person behavioral and clinical measures, along with the corresponding phenotype file name, sorted first by measurement location and then by file name.
Location | Measure | File Name |
---|---|---|
Online | Alcohol Use Disorders Identification Test (AUDIT) | audit |
Demographics | demographics | |
DSM-5 Level 2 Substance Use - Adult | drug_use | |
Edinburgh Handedness Inventory (EHI) | ehi | |
Health History Form | health_history_questions | |
Perceived Health Rating - self | health_rating | |
DSM-5 Self-Rated Level 1 Cross-Cutting Symptoms Measure – Adult (modified) | mental_health_questions | |
World Health Organization Disability Assessment Schedule |
Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
This document contains text excerpts captured from the literature as secondary data to develop the qualitative system dynamics model as well as two example coding tables. Table 1 shows the final list of research works selected for model development through a systematic paper selection procedure as described in chapter 3 of the thesis. Table 2 shows the initial causal links created based on the identified casual relationships. Table 3 shows an intermediate merging step (3rd iteration), where causal links are combined into more general links. For a detailed explanation of the model development process refer to chapter 3 of the thesis.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
For the evaluation of a MAR/R process, not only process-, material- and demonstrator-specific correlations and data must be combined. In addition to secondary data (e.g. databases, publications, etc.), primary data (e.g. process times, volume flows, etc.) must also be collected for the specific application.
The attached table shows the primary data to be collected for the cradle-to-gate process depending on the process phases and steps. This data is used as support for ecological as well as economic process and component evaluations.
Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
Raw gaze, interview and other data from 50 secondary school students (grade 10 - 12) solving statical graph tasks: estimating or comparing the mean from histograms, case-value plots, (stacked) dotplots and horizontal histograms. It contains some processed data. Furthermore, it contains all relevant information needed to reproduce or replicate this data collection process, for example, the design of the data collection, html-files with the webpages that were used, letters to participants, sizes and screen shots of AOIs, heatmaps and static gazeplots. Also: transcripts, legends, overview of tasks. (Note, these data are not processed for a specific article)
The multi-country Study on Global Ageing and Adult Health (SAGE) is run by the World Health Organization's Multi-Country Studies unit in the Health Systems and Innovation Cluster. SAGE is part of the unit's Longitudinal Study Programme which is compiling longitudinal data on the health and well-being of adult populations, and the ageing process, through primary data collection and secondary data analysis. SAGE baseline data (Wave 0, 2002/3) was collected as part of WHO's World Health Survey http://www.who.int/healthinfo/survey/en/index.html (WHS). SAGE Wave 2 (2014/15) provides a comprehensive data set on the health and well-being of adults in six low and middle-income countries: China, Ghana, India, Mexico, Russian Federation and South Africa.
Objectives: To obtain reliable, valid and comparable health, health-related and well-being data over a range of key domains for adult and older adult populations in nationally representative samples To examine patterns and dynamics of age-related changes in health and well-being using longitudinal follow-up of a cohort as they age, and to investigate socio-economic consequences of these health changes To supplement and cross-validate self-reported measures of health and the anchoring vignette approach to improving comparability of self-reported measures, through measured performance tests for selected health domains To collect health examination and biomarker data that improves reliability of morbidity and risk factor data and to objectively monitor the effect of interventions
Additional Objectives: To generate large cohorts of older adult populations and comparison cohorts of younger populations for following-up intermediate outcomes, monitoring trends, examining transitions and life events, and addressing relationships between determinants and health, well-being and health-related outcomes To develop a mechanism to link survey data to demographic surveillance site data To build linkages with other national and multi-country ageing studies To improve the methodologies to enhance the reliability and validity of health outcomes and determinants data To provide a public-access information base to engage all stakeholders, including national policy makers and health systems planners, in planning and decision-making processes about the health and well-being of older adults
Methods: SAGE's first full round of data collection included both follow-up and new respondents in most participating countries. The goal of the sampling design was to obtain a nationally representative cohort of persons aged 50 years and older, with a smaller cohort of persons aged 18 to 49 for comparison purposes. In the older households, all persons aged 50+ years (for example, spouses and siblings) were invited to participate. Proxy respondents were identified for respondents who were unable to respond for themselves. Standardized SAGE survey instruments were used in all countries consisting of five main parts: 1) household questionnaire; 2) individual questionnaire; 3) proxy questionnaire; 4) verbal autopsy questionnaire; and, 5) appendices including showcards. A VAQ was completed for deaths in the household over the last 24 months. The procedures for including country-specific adaptations to the standardized questionnaire and translations into local languages from English follow those developed by and used for the World Health Survey.
Content: - Household questionnaire 0000 Coversheet 0100 Sampling Information 0200 Geocoding and GPS Information 0300 Recontact Information 0350 Contact Record 0400 Household Roster 0450 Kish Tables and Household Consent 0500 Housing 0600 Household and Family Support Networks and Transfers 0700 Assets and Household Income 0800 Household Expenditures 0900 Interviewer Observations
Verbal Autopsy questionnaire Section 1: Information on the Deceased and Date/Place of Death Section 1A7: Vital Registration and Certification Section 2: Information on the Respondent Section 3A: Medical History Associated with Final Illness Section 3B: General Signs and Symptoms Associated with Final Illness Section 3E: History of Injuries/Accidents Section 3G: Health Service Utilization Section 4: Background Section 5A: Interviewer Observations
Individual questionnaire 1000 Socio-Demographic Characteristics 1500 Work History and Benefits 2000 Health State Descriptions 2500 Anthropometrics, Performance Tests and Biomarkers 3000 Risk Factors and Preventive Health Behaviours 4000 Chronic Conditions and Health Services Coverage 5000 Health Care Utilisation 6000 Social Networks 7000 Subjective Well-Being and Quality of Life (WHOQoL-8 and Day Reconstruction Method) 8000 Impact of Caregiving 9000 Interviewer Assessment
Proxy Questionnaire Section1 Respondent Characteristics and IQ CODE Section2 Health State Descriptions Section4 Chronic Conditions and Health Services Coverage Section5 Health Care Utilisation
National coverage
households and individuals
The household section of the survey covered all households in 31 of the 32 federal states in Mexico. Colima was excluded. Institutionalised populations are excluded. The individual section covered all persons aged 18 years and older residing within individual households. As the focus of SAGE is older adults, a much larger sample of respondents aged 50 years and older was selected with a smaller comparative sample of respondents aged 18-49 years.
Sample survey data [ssd]
In Mexico strata were defined by locality (metropolitan, urban, rural). All 211 PSUs selected for wave 1 were included in the wave 2 sample. A sub-sample of 211 PSUs was selected from the 797 WHS PSUs for the wave 1 sample. The Basic Geo-Statistical Areas (AGEB) defined by the National Institute of Statistics (INEGI) constitutes a PSU. PSUs were selected probability proportional to three factors: a) (WHS/SAGE Wave 0 50plus): number of WHS/SAGE Wave 0 50-plus interviewed at the PSU, b) (State Population): population of the state to which the PSU belongs, c) (WHS/SAGE Wave 0 PSU at county): number of PSUs selected from the county to which the PSU belongs for the WHS/SAGE Wave 0 The first and third factors were included to reduce geographic dispersion. Factor two affords states with larger populations a greater chance of selection.
All WHS/SAGE Wave 0 individuals aged 50 years or older in the selected rural or urban PSUs and a random sample 90% of individuals aged 50 years or older in metropolitan PSUs who had been interviewed for the WHS/SAGE Wave 0 were included in the SAGE Wave 1 ''primary'' sample. The remaining 10% of WHS/SAGE Wave 0 individuals aged 50 years or older in metropolitan areas were then allocated as a ''replacement'' sample for individuals who could not be contacted or did not consent to participate in SAGE Wave 1. A systematic sample of 1000 WHS/SAGE Wave 0 individuals aged 18-49 across all selected PSUs was selected as the ''primary'' sample and 500 as a ''replacement'' sample.
This selection process resulted in a sample which had an over-representation of individuals from metropolitan strata; therefore, it was decided to increase the number of individuals aged 50 years or older from rural and urban strata. This was achieved by including individuals who had not been part of WHS/SAGE Wave 0 (which became a ''supplementary'' sample), although the household in which they lived included an individual from WHS/SAGE Wave 0. All individuals aged 50 or over were included from rural and urban ''18-49 households'' (that is, where an individual aged 18-49 was included in WHS/SAGE Wave 0) as part of the ''primary supplementary'' sample. A systematic random sample of individuals aged 50 years or older was then obtained from urban and rural households where an individual had already been selected as part of the 50 years and older or 18-49 samples. These individuals then formed part of the ''primary supplementary'' sample and the remainder (that is, those not systematically selected) were allocated to the ''replacement supplementary'' sample. Thus, all individuals aged 50 years or older who lived in households in urban and rural PSUs obtained for SAGE Wave 1 were selected as either a primary or replacement participant. A final ''replacement'' sample for the 50 and over age group was obtained from a systematic sample of all individuals aged 50 or over from households which included the individuals already selected for either the 50 and over or 18-49. This sampling strategy also provided participants who had not been included in WHS/SAGE Wave 0, but lived in a household where an individual had been part of WHS/SAGE Wave 0 (that is, the ''supplementary'' sample), in addition to follow-up of individuals who had been included in the WHS/SAGE Wave 0 sample.
Strata: Locality = 3 PSU: AGEBs = 211 SSU: Households = 6549 surveyed TSU: Individual = 6342 surveyed
Face-to-face [f2f], CAPI
The questionnaires were based on the SAGE Wave 1 Questionnaires with some modification and new additions, except for verbal autopsy. SAGE Wave 2 used the 2012 version of the WHO Verbal Autopsy Questionnare. SAGE Wave 1 used an adapted version of the Sample Vital Registration iwth Verbal Autopsy (SAVVY) questionnaire. A Household questionnaire was administered to all households eligible for the study. A Verbal Autopsy questionnaire was administered to 50 plus households only. In follow-up 50 plus household if the death occured since the last wave of the study and in a new 50 plus household if the death occurred in the
Purpose: The multi-country Study on Global Ageing and Adult Health (SAGE) is run by the World Health Organization's Multi-Country Studies unit in the Innovation, Information, Evidence and Research Cluster. SAGE is part of the unit's Longitudinal Study Programme which is compiling longitudinal data on the health and well-being of adult populations, and the ageing process, through primary data collection and secondary data analysis. INDEPTH SAGE Wave 1 (2006/7) provides data on the health and well-being of adults in: Ghana, India and South Africa.
Objectives: To obtain reliable, valid and comparable health, health-related and well-being data over a range of key domains for adult and older adult populations in nationally representative samples To examine patterns and dynamics of age-related changes in health and well-being using longitudinal follow-up of a cohort as they age, and to investigate socio-economic consequences of these health changes To supplement and cross-validate self-reported measures of health and the anchoring vignette approach to improving comparability of self-reported measures, through measured performance tests for selected health domains To collect health examination and biomarker data that improves reliability of morbidity and risk factor data and to objectively monitor the effect of interventions
Additional Objectives: To generate large cohorts of older adult populations and comparison cohorts of younger populations for following-up intermediate outcomes, monitoring trends, examining transitions and life events, and addressing relationships between determinants and health, well-being and health-related outcomes To develop a mechanism to link survey data to demographic surveillance site data To build linkages with other national and multi-country ageing studies To improve the methodologies to enhance the reliability and validity of health outcomes and determinants data To provide a public-access information base to engage all stakeholders, including national policy makers and health systems planners, in planning and decision-making processes about the health and well-being of older adults
Methods: INDEPTH SAGE's first full round of data collection included persons aged 50 years and older in the health and demographic surveillance sites. All persons aged 50+ years (for example, spouses and siblings) were invited to participate. Standardized SAGE survey instruments were used in all countries consisting of two main parts: 1) household questionnaire; 2) individual questionnaire. The procedures for including country-specific adaptations to the standardized questionnaire and translations into local languages from English follow those developed by and used for the World Health Survey.
Content - Household questionnaire 0000 Coversheet 0100 Sampling Information 0200 Geocoding and GPS Information 0300 Recontact Information 0350 Contact Record 0400 Household Roster 0450 Kish Tables and Household Consent 0500 Housing 0600 Household and Family Support Networks and Transfers 0700 Assets and Household Income 0800 Household Expenditures 0900 Interviewer Observations
Rural subdistrict Mpumalanga Province
household and individuals
Agincourt Health and Demographic Surveillance Site fifty plus population
Sample survey data [ssd]
Simple random sample of 575 persons 50 years and older with an oversample of women from the 2005 HDSS census.
Face-to-face [f2f]
The questionnaires were based on the WHS Model Questionnaire with some modification and many new additions. A household questionnaire was administered to all households eligible for the study. An Individual questionnaire was administered to eligible respondents identified from the household roster. The questionnaires were developed in English and were piloted as part of the SAGE pretest. All documents were translated into Shangaan.
Data editing took place at a number of stages including: (1) office editing and coding (2) during data entry (3) structural checking of the CSPro files (4) range and consistency secondary edits in Stata
86% of participants accepted to participate, 10% were not found and 4% refused to participate.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
In the table shown here, a number of different test samples and one demonstrator of a bicycle steering rack (as an example of a cradle-to-gate study) were recorded. The data originates from primary as well as secondary data collection (e.g. ecoinvent database).
The concept of victimisation surveys (also known as International Crime Victim Survey (ICVS)) is well established in South Africa (SA) and internationally. Until recently the United Nations Interregional Crime and Justice Research Institute (UNICRI) coordinated and sometimes conducted the ICVS in developing countries. During the past two decades a number of surveys related to crime, crime victims and users of services provided by the safety and security cluster departments have been conducted by various service providers in South Africa. Besides these surveys, three national VOCS have been conducted. The first of these was the Victims of Crime Survey conducted in 1998 by Statistics South Africa. This survey was based on the ICVS questionnaire developed by UNICRI, with adjustments made for local conditions. The Institute for Security Studies (ISS) was responsible for conducting subsequent versions of the VOCS, the National Victimes of Crime Survey 2003 and the Victim Survey 2007.
Starting with the Victims of Crime Survey 2011, Statistics SA plans to conduct the VOCS annually. The ‘new’ Victims of Crime Survey (VOCS) series is a countrywide household-based survey and examines three aspects of crime:
• The nature, extent and patterns of crime in South Africa, from the victim’s perspective; • Victim risk and victim proneness, so as to inform the development of crime prevention and public education programmes; • People’s perceptions of services provided by the police and the courts as components of the criminal justice system.
The VOCS 2011 is comparable to the VOCS 1998, VOCS 2003 and VOCS 2007 in cases where the questions remained largely unchanged. However, it is important to note that the sample size for the VOCS 2011 is much bigger than any of the preceding surveys, and the data should be considered more reliable than the earlier surveys especially at lower levels of disaggregation.
The survey had national coverage
The units of analysis in the study were individuals and households
The target population of the survey consisted of all private households in all nine provinces of South Africa and residents in workers' hostels. The survey did not cover other collective living quarters such as students' hostels, old-age homes, hospitals, prisons and military barracks.
Sample survey data [ssd]
The sample design for the VOCS 2011 was based on a master sample (MS) originally designed as the sampling frame for the Quarterly Labour Force Survey (QLFS). The MS is based on information collected during the 2001 Population Census conducted by Stats SA. The MS has been developed as a general-purpose household survey frame that can be used by all household-based surveys, irrespective of the sample size requirement of the survey. The VOCS 2011, like all other household-based surveys, uses a MS of primary sampling units (PSUs) which comprises census enumeration areas (EAs) that are drawn from across the country.
The sample for the VOCS 2011 used a stratified two-stage design with probability proportional to size (PPS) sampling of PSUs in the first stage, and sampling of dwelling units (DUs) with systematic sampling in the second stage. The sample was designed to be representative at provincial level. A self-weighting design at provincial level was used and MS stratification was divided into two levels. Primary stratification was defined by metropolitan and non-metropolitan geographic area type. During secondary stratification, the Census 2001 data were summarised at PSU level. The following variables were used for secondary stratification: household size, education, occupancy status, gender, industry and income. A randomised probability proportional to size (RPPS) systematic sample of PSUs was drawn in each stratum, with the measure of size being the number of households in the PSU. The sample size of 3 080 PSUs was selected. In each selected PSU a systematic sample of dwelling units was drawn. The number of DUs selected per PSU varies from PSU to PSU and depends on the inverse sampling ratios (ISR) of each PSU. The sample size for the VOCS 2011 is 29 754 dwelling units.
Face-to-face [f2f]
The VOCS 2011 questionnaire was based on the questionnaires used in the International Crime Victim Survey (ICVS) and previous VOCSs conducted by the Institute for Security Studies (ISS) and Statistics SA. The questions are covered in 27 sections and deal with the following topics:
Flap Demographic information (name, sex, age, population group, etc.) Section 1 Household-specific characteristics (education, economic activities and household income sources Section 2 Beliefs about crime Section 3 Individual and community response to crime Section 4 Victim support and other interventions Section 5 Citizen interaction or community cohesion Section 6 Perception of the police service Section 7 Perception of the courts Section 8 Perception of correctional services Section 9 Corruption experienced by the respondent Section 10 Experience of household crime (screening table) Section 11 Theft of car experienced by a household member(s) in the previous 12 months Section 12 Housebreaking or burglary when no one was at home in the previous 12 months Section 13 Theft of livestock, poultry and other animals in the previous 12 months Section 14 Theft of crops planted by the household in the previous 12 months Section 15 Murder experienced by a household member(s) in the past 12 months Section 16 Theft out of a motor vehicle experienced by a household member(s) in the previous 12 months Section 17 Deliberate damaging/burning or destruction of dwelling experienced by a household member(s) in the previous 12 months Section 18 Motor vehicle vandalism or deliberate damage of a motor vehicle experienced by a household member(s) in the previous 12 months Section 19 Home robbery (including robbery often around or inside the household’s dwelling) experienced by a household member(s) in the previous 12 months
Sections 20–27 of this questionnaire required that an individual be randomly selected from the household to respond to questions classified as individual crimes. The methodology used was to select a person 16 years or older, whose birthday was the first to follow the survey date. These sections collected data on:
Section 20 Experiences of individual crimes (screening table) in the past 5 years and in the previous 12 months Section 21 Theft of bicycle experienced in the previous 12 months Section 22 Theft of motorbike or scooter experienced in the past 12 months Section 23 Car hijacking (including attempted hijacking) experienced in the previous 12 months Section 24 Robbery (including street robberies and other non-residential robberies, excluding car or truck hijackings, and home robberies) experienced in the previous 12 months Section 25 Assault experienced in the previous 12 months Section 26 Sexual offences (including rape) experienced in the previous 12 months Section 27 Consumer fraud experienced by the individual experienced in the previous 12 months All sections Comprehensive coverage of all aspects of domestic tourism and expenditure
The final data files correspond to sections of the questionnaireas follows:
Person: Data from Flap and Section 1 (excluding Section 1.6 and 1.7) Household: Data from Section 1.7 and Section 10-19 Section 20-27: Data from Section 20-27
The VOCS 2011 is comparable to the previous VOCSs in that several questions have remained unchanged over time. Where possible, it was generally indicated in the report. However, it must be noted that the VOCS 2011 sample size was more than double of the previous surveys. The current survey can thus provide more accurate estimates than the previous surveys, for example at provincial level and for domain variables, such as gender and race. Caution should be exercised when running cross tabulation of different crimes by province and other variables as in most cases the reported cases were too few for this type of analysis.
Capture was undertaken on Epi-Info. A process of double capture was undertaken in order to eliminate capture error.
Abstract
Background: Adolescent girls in Kenya are disproportionately affected by early and unintended pregnancies, unsafe abortion and HIV infection. The In Their Hands (ITH) programme in Kenya aims to increase adolescents' use of high-quality sexual and reproductive health (SRH) services through targeted interventions. ITH Programme aims to promote use of contraception and testing for sexually transmitted infections (STIs) including HIV or pregnancy, for sexually active adolescent girls, 2) provide information, products and services on the adolescent girl's terms; and 3) promote communities support for girls and boys to access SRH services.
Objectives: The objectives of the evaluation are to assess: a) to what extent and how the new Adolescent Reproductive Health (ARH) partnership model and integrated system of delivery is working to meet its intended objectives and the needs of adolescents; b) adolescent user experiences across key quality dimensions and outcomes; c) how ITH programme has influenced adolescent voice, decision-making autonomy, power dynamics and provider accountability; d) how community support for adolescent reproductive and sexual health initiatives has changed as a result of this programme.
Methodology ITH programme is being implemented in two phases, a formative planning and experimentation in the first year from April 2017 to March 2018, and a national roll out and implementation from April 2018 to March 2020. This second phase is informed by an Annual Programme Review and thorough benchmarking and assessment which informed critical changes to performance and capacity so that ITH is fit for scale. It is expected that ITH will cover approximately 250,000 adolescent girls aged 15-19 in Kenya by April 2020. The programme is implemented by a consortium of Marie Stopes Kenya (MSK), Well Told Story, and Triggerise. ITH's key implementation strategies seek to increase adolescent motivation for service use, create a user-defined ecosystem and platform to provide girls with a network of accessible subsidized and discreet SRH services; and launch and sustain a national discourse campaign around adolescent sexuality and rights. The 3-year study will employ a mixed-methods approach with multiple data sources including secondary data, and qualitative and quantitative primary data with various stakeholders to explore their perceptions and attitudes towards adolescents SRH services. Quantitative data analysis will be done using STATA to provide descriptive statistics and statistical associations / correlations on key variables. All qualitative data will be analyzed using NVIVO software.
Study Duration: 36 months - between 2018 and 2020.
Homabay,Kakamega,Nakuru and Nairobi counties
Private health facilities that provide T-safe services under the In Their Hands(ITH) Program.
1.Adolescent girls aged 15-19 who enrolled on the T-safe platform and received services and those who enrolled but did not receive services from the ITH facilities. 2.Service providers incharge of provision of T-safe services in the ITH facilities. 3.Mobilisers incharge of adolescent girls aged 15-19 recruitment into the T-safe program.
Qualitative Sampling
IDI participants were selected purposively from ITH intervention areas and facilities located in the four ITH intervention counties; Homa Bay, Nakuru, Kakamega and Nairobi respectively which were selected for the midline survey. Study participants were identified from selected intervention facilities. We interviewed one service provider of adolescent friendly ITH services per facility. Additionally, we conducted IDI's with adolescent girls' who were enrolled and using/had used the ITH platform to access reproductive health services or enrolled but may not have accessed the services for other reasons.
Sample coverage We successfully conducted a total of 122 In-depth Interviews with 54 adolescents enrolled on the T-Safe platform, including those who received services and those who were enrolled but did not receive services, 39 IDIS with service providers and 29 IDIs with mobilizers. The distribution per county included 51 IDI's in Nairobi City County (24 with adolescent girls, 17 with service providers and 10 with mobilisers), 15 IDI's in Nakuru County (2 with adolescent girls,8 with service providers and 5 with mobilisers), 34 IDI's in Homa Bay County (18 with adolescent girls,8 with service providers and 8 with mobilisers) and 22 IDI's in Kakamega County (10 with adolescent girls,6 with service providers and another 6 with mobilisers.)
N/A
Face-to-face [f2f]
The midline evaluation included qualitative in-depth interviews with adolescent T-Safe users, adolescents enrolled in the platform but did not use the services, providers and mobilizers to assess the adolescent user experience and quality of services as well as provider accountability under the T-Safe program. Generally,the aim of the qualitative study was to assess adolescents' T-Safe users experience across quality dimensions as well as provider's experiences and accountability. The dimensions assessed include adolescent's journey with the platforms, experience with the platform, perceptions of quality of services and how the ITH platforms changed provider behavior and accountability.
Adolescent in-depth interview included:Adolescent journey,Barriers to adolescents access to SRH services,Community attitudes towards adolescent use of contraceptives,Decision making,Factors influencing decision to visit a clinic,Motivating factors for girls to join ITH,Notable changes since the introduction of ITH,Parental support ,and Perceptions about T-Safe.
Service providers in-depth interview included;Personal and professional background,Provider's experience with ITH/T-safe platform,Notable changes/influences since the introduction of ITH/T-safe,Influence/Impact on the preference of adolescent service users and health care providers as a result of the program,Impact/influence of ITH on quality of care,Facilitators and barriers for adolescents to access SRH services,Mechanisms to address the barriers,Challenges related to the facility,Feedback about facility from adolescents,Types of support needed to improve SRH services provided to adolescents Scenarios of different clients accessing SRH services,and Free node.
Mobilisers in-depth interview included;Mobilizer responsibilities and designation,Job description,Motivation for joining ITH,Personal and professional background,Training,Mobilizer roles in ITH,Mobilization process ,Experience with ITH platform,Key messages shared with adolescent about ITH/ Tsafe during enrollment,Motivating factors for adolescents to join ITH/Tsafe,Community's attitude towards ITH/Tsafe,Challenges faced by mobilizers when mobilizing adolescents for Tsafe,Adolescents view regarding platform,Addressing the challenges ,andFree node
Qualitative interviews were audio-recorded and the audio recordings were transmitted to APHRC study team by uploading the audios to google drive which was only accessible to the team. Related interview notes, participant's description forms and Informed consent forms were transported to APHRC offices in Nairobi at the end of data collection where the data transcription and coding was conducted. Audio recordings from qualitative interviews were transcribed and saved in MS Word format. The transcripts were stored electronically in password protected computers and were only accessible to the evaluation team working on the project. A qualitative software analysis program (NVIVO) was used to assist in coding and analyzing the data. A “thematic analysis” approach was used to organize and analyze the data, and to assist in the development of a codebook and coding scheme. Data was analyzed by first reading the full IDI transcripts, becoming familiar with the data and noting the themes and concepts that emerged. A thematic framework was developed from the identified themes and sub-themes and this was then used to create codes and code the raw data.
N/A
N/A