Abstract
Background: Adolescent girls in Kenya are disproportionately affected by early and unintended pregnancies, unsafe abortion and HIV infection. The In Their Hands (ITH) programme in Kenya aims to increase adolescents' use of high-quality sexual and reproductive health (SRH) services through targeted interventions. ITH Programme aims to promote use of contraception and testing for sexually transmitted infections (STIs) including HIV or pregnancy, for sexually active adolescent girls, 2) provide information, products and services on the adolescent girl's terms; and 3) promote communities support for girls and boys to access SRH services.
Objectives: The objectives of the evaluation are to assess: a) to what extent and how the new Adolescent Reproductive Health (ARH) partnership model and integrated system of delivery is working to meet its intended objectives and the needs of adolescents; b) adolescent user experiences across key quality dimensions and outcomes; c) how ITH programme has influenced adolescent voice, decision-making autonomy, power dynamics and provider accountability; d) how community support for adolescent reproductive and sexual health initiatives has changed as a result of this programme.
Methodology ITH programme is being implemented in two phases, a formative planning and experimentation in the first year from April 2017 to March 2018, and a national roll out and implementation from April 2018 to March 2020. This second phase is informed by an Annual Programme Review and thorough benchmarking and assessment which informed critical changes to performance and capacity so that ITH is fit for scale. It is expected that ITH will cover approximately 250,000 adolescent girls aged 15-19 in Kenya by April 2020. The programme is implemented by a consortium of Marie Stopes Kenya (MSK), Well Told Story, and Triggerise. ITH's key implementation strategies seek to increase adolescent motivation for service use, create a user-defined ecosystem and platform to provide girls with a network of accessible subsidized and discreet SRH services; and launch and sustain a national discourse campaign around adolescent sexuality and rights. The 3-year study will employ a mixed-methods approach with multiple data sources including secondary data, and qualitative and quantitative primary data with various stakeholders to explore their perceptions and attitudes towards adolescents SRH services. Quantitative data analysis will be done using STATA to provide descriptive statistics and statistical associations / correlations on key variables. All qualitative data will be analyzed using NVIVO software.
Study Duration: 36 months - between 2018 and 2020.
Homabay,Kakamega,Nakuru and Nairobi counties
Private health facilities that provide T-safe services under the In Their Hands(ITH) Program.
1.Adolescent girls aged 15-19 who enrolled on the T-safe platform and received services and those who enrolled but did not receive services from the ITH facilities. 2.Service providers incharge of provision of T-safe services in the ITH facilities. 3.Mobilisers incharge of adolescent girls aged 15-19 recruitment into the T-safe program.
Qualitative Sampling
IDI participants were selected purposively from ITH intervention areas and facilities located in the four ITH intervention counties; Homa Bay, Nakuru, Kakamega and Nairobi respectively which were selected for the midline survey. Study participants were identified from selected intervention facilities. We interviewed one service provider of adolescent friendly ITH services per facility. Additionally, we conducted IDI's with adolescent girls' who were enrolled and using/had used the ITH platform to access reproductive health services or enrolled but may not have accessed the services for other reasons.
Sample coverage We successfully conducted a total of 122 In-depth Interviews with 54 adolescents enrolled on the T-Safe platform, including those who received services and those who were enrolled but did not receive services, 39 IDIS with service providers and 29 IDIs with mobilizers. The distribution per county included 51 IDI's in Nairobi City County (24 with adolescent girls, 17 with service providers and 10 with mobilisers), 15 IDI's in Nakuru County (2 with adolescent girls,8 with service providers and 5 with mobilisers), 34 IDI's in Homa Bay County (18 with adolescent girls,8 with service providers and 8 with mobilisers) and 22 IDI's in Kakamega County (10 with adolescent girls,6 with service providers and another 6 with mobilisers.)
N/A
Face-to-face [f2f]
The midline evaluation included qualitative in-depth interviews with adolescent T-Safe users, adolescents enrolled in the platform but did not use the services, providers and mobilizers to assess the adolescent user experience and quality of services as well as provider accountability under the T-Safe program. Generally,the aim of the qualitative study was to assess adolescents' T-Safe users experience across quality dimensions as well as provider's experiences and accountability. The dimensions assessed include adolescent's journey with the platforms, experience with the platform, perceptions of quality of services and how the ITH platforms changed provider behavior and accountability.
Adolescent in-depth interview included:Adolescent journey,Barriers to adolescents access to SRH services,Community attitudes towards adolescent use of contraceptives,Decision making,Factors influencing decision to visit a clinic,Motivating factors for girls to join ITH,Notable changes since the introduction of ITH,Parental support ,and Perceptions about T-Safe.
Service providers in-depth interview included;Personal and professional background,Provider's experience with ITH/T-safe platform,Notable changes/influences since the introduction of ITH/T-safe,Influence/Impact on the preference of adolescent service users and health care providers as a result of the program,Impact/influence of ITH on quality of care,Facilitators and barriers for adolescents to access SRH services,Mechanisms to address the barriers,Challenges related to the facility,Feedback about facility from adolescents,Types of support needed to improve SRH services provided to adolescents Scenarios of different clients accessing SRH services,and Free node.
Mobilisers in-depth interview included;Mobilizer responsibilities and designation,Job description,Motivation for joining ITH,Personal and professional background,Training,Mobilizer roles in ITH,Mobilization process ,Experience with ITH platform,Key messages shared with adolescent about ITH/ Tsafe during enrollment,Motivating factors for adolescents to join ITH/Tsafe,Community's attitude towards ITH/Tsafe,Challenges faced by mobilizers when mobilizing adolescents for Tsafe,Adolescents view regarding platform,Addressing the challenges ,andFree node
Qualitative interviews were audio-recorded and the audio recordings were transmitted to APHRC study team by uploading the audios to google drive which was only accessible to the team. Related interview notes, participant's description forms and Informed consent forms were transported to APHRC offices in Nairobi at the end of data collection where the data transcription and coding was conducted. Audio recordings from qualitative interviews were transcribed and saved in MS Word format. The transcripts were stored electronically in password protected computers and were only accessible to the evaluation team working on the project. A qualitative software analysis program (NVIVO) was used to assist in coding and analyzing the data. A “thematic analysis” approach was used to organize and analyze the data, and to assist in the development of a codebook and coding scheme. Data was analyzed by first reading the full IDI transcripts, becoming familiar with the data and noting the themes and concepts that emerged. A thematic framework was developed from the identified themes and sub-themes and this was then used to create codes and code the raw data.
N/A
N/A
The research team collected data from statewide datasets on 268 stalking cases including a population of 108 police identified stalking cases across Rhode Island between 2001 and 2005 with a sample of 160 researcher identified stalking incidents (incidents that met statutory criteria for stalking but were cited by police for other domestic violence offenses) during the same period. The secondary data used for this study came from the Rhode Island Supreme Court Domestic Violence Training and Monitoring Unit's (DVU) statewide database of domestic violence incidents reported to Rhode Island law enforcement. Prior criminal history data were obtained from records of all court cases entered into the automated Rhode Island court file, CourtConnect. The data contain a total of 121 variables including suspect characteristics, victim characteristics, incident characteristics, police response characteristics, and prosecutor response characteristics.
https://search.gesis.org/research_data/datasearch-httpwww-da-ra-deoaip--oaioai-da-ra-de450973https://search.gesis.org/research_data/datasearch-httpwww-da-ra-deoaip--oaioai-da-ra-de450973
Abstract (en): The National Center for Early Development and Learning (NCEDL) combined the data of two major studies in order to understand variations among state-funded pre-kindergarten (pre-k) programs and in turn, how these variations relate to child outcomes at the end of pre-k and in kindergarten. The Multi-State Study of Pre-Kindergarten and the State-Wide Early Education Programs (SWEEP) Study provide detailed information on pre-kindergarten teachers, children, and classrooms in 11 states. By combining data from both studies, information is available from 721 classrooms and 2,982 pre-kindergarten children in these 11 states. Pre-kindergarten data collection for the Multi-State Study of Pre-Kindergarten took place during the 2001-2002 school year in six states: California, Georgia, Illinois, Kentucky, New York, and Ohio. These states were selected from among states that had committed significant resources to pre-k initiatives. States were selected to maximize diversity with regard to geography, program settings (public school or community setting), program intensity (full-day vs. part-day), and educational requirements for teachers. In each state, a stratified random sample of 40 centers/schools was selected from the list of all the school/centers or programs (both contractors and subcontractors) provided to the researchers by each state's department of education. In total, 238 sites participated in the fall and two additional sites joined the study in the spring. Participating teachers helped the data collectors recruit children into the study by sending recruitment packets home with all children enrolled in the classroom. On the first day of data collection, the data collectors determined which of the children were eligible to participate. Eligible children were those who (1) would be old enough for kindergarten in the fall of 2002, (2) did not have an Individualized Education Plan, according to the teacher, and (3) spoke English or Spanish well enough to understand simple instructions, according to the teacher. Pre-kindergarten data collection for the SWEEP Study took place during the 2003-2004 school year in five states: Massachusetts, New Jersey, Texas, Washington, and Wisconsin. These states were selected to complement the states already in the Multi-State Study of Pre-K by including programs with significantly different funding models or modes of service delivery. In each of the five states, 100 randomly selected state-funded pre-kindergarten sites were recruited for participation in the study from a list of all sites provided by the state. In total, 465 sites participated in the fall. Two sites declined to continue participation in the spring, resulting in 463 sites participating in the spring. Participating teachers helped the data collectors recruit children into the study by sending recruitment packets home with all children enrolled in the classroom. On the first day of data collection, the data collectors determined which of the children were eligible to participate. Eligible children were those who (1) would be old enough for kindergarten in the fall of 2004, (2) did not have an Individualized Education Plan, according to the teacher, and (3) spoke English or Spanish well enough to understand simple instructions, according to the teacher. Demographic information collected across both studies includes race, teacher gender, child gender, family income, mother's education level, and teacher education level. The researchers also created a variable for both the child-level data and the class-level data which allows secondary users to subset cases according to either the Multi-State or SWEEP study. ICPSR data undergo a confidentiality review and are altered when necessary to limit the risk of disclosure. ICPSR also routinely creates ready-to-go data files along with setups in the major statistical software formats as well as standard codebooks to accompany the data. In addition to these procedures, ICPSR performed the following processing steps for this data collection: Performed recodes and/or calculated derived variables.. Response Rates: Multi-State: Of the 40 sites per state, 78 percent of eligible sites agreed to participate (fall of pre-k, n = 238). For fall of pre-k (n = 238), 94 percent of the one classroom per site selected agreed to participate. For fall (n = 940) and spring (n = 960) of pre-k, 61 percent of the parents of eligible children consented.; SWEEP: Of the 10...
According to a 2021 survey, organizations worldwide anticipate a move towards cloud based data storage as part of their business continuity and disaster recovery plans. While around a third of respondents reported using cloud disaster recovery as a service (DRaaS) solutions in 2022, over half anticipate to be doing so by 2023. This is matched with an anticipated decline in the hosting of secondary data on-site.
The 2010 NEDS is similar to the 2004 Nigeria DHS EdData Survey (NDES) in that it was designed to provide information on education for children age 4–16, focusing on factors influencing household decisions about children’s schooling. The survey gathers information on adult educational attainment, children’s characteristics and rates of school attendance, absenteeism among primary school pupils and secondary school students, household expenditures on schooling and other contributions to schooling, and parents’/guardians’ perceptions of schooling, among other topics.The 2010 NEDS was linked to the 2008 Nigeria Demographic and Health Survey (NDHS) in order to collect additional education data on a subset of the households (those with children age 2–14) surveyed in the 2008 Nigeria DHS survey. The 2008 NDHS, for which data collection was carried out from June to October 2008, was the fourth DHS conducted in Nigeria (previous surveys were implemented in 1990, 1999, and 2003).
The goal of the 2010 NEDS was to follow up with a subset of approximately 30,000 households from the 2008 NDHS survey. However, the 2008 NDHS sample shows that of the 34,070 households interviewed, only 20,823 had eligible children age 2–14. To make statistically significant observations at the State level, 1,700 children per State and the Federal Capital Territory (FCT) were needed. It was estimated that an additional 7,300 households would be required to meet the total number of eligible children needed. To bring the sample size up to the required target, additional households were screened and added to the overall sample. However, these households did not have the NDHS questionnaire administered. Thus, the two surveys were statistically linked to create some data used to produce the results presented in this report, but for some households, data were imputed or not included.
National
Households Individuals
Sample survey data [ssd]
The eligible households for the 2010 NEDS are the same as those households in the 2008 NDHS sample for which interviews were completed and in which there is at least one child age 2-14, inclusive. In the 2008 NDHS, 34,070 households were successfully interviewed, and the goal here was to perform a follow-up NEDS on a subset of approximately 30,000 households. However, records from the 2008 NDHS sample showed that only 20,823 had children age 4-16. Therefore, to bring the sample size up to the required number of children, additional households were screened from the NDHS clusters.
The first step was to use the NDHS data to determine eligibility based on the presence of a child age 2-14. Second, based on a series of precision and power calculations, RTI determined that the final sample size should yield approximately 790 households per State to allow statistical significance for reporting at the State level, resulting in a total completed sample size of 790 × 37 = 29,230. This calculation was driven by desired estimates of precision, analytic goals, and available resources. To achieve the target number of households with completed interviews, we increased the final number of desired interviews to accommodate expected attrition factors such as unlocatable addresses, eligibility issues, and non-response or refusal. Third, to reach the target sample size, we selected additional samples from households that had been listed by NDHS but had not been sampled and visited for interviews. The final number of households with completed interviews was 26,934 slightly lower than the original target, but sufficient to yield interview data for 71,567 children, well above the targeted number of 1,700 children per State.
Face-to-face [f2f]
The four questionnaires used in the 2004 Nigeria DHS EdData Survey (NDES)— 1. Household Questionnaire 2. Parent/Guardian Questionnaire 3. Eligible Child Questionnaire 4. Independent Child Questionnaire—formed the basis for the 2010 NEDS questionnaires. These are all available in Appendix D of the survey report available under External Resources.
More than 90 percent of the questionnaires remained the same; for cases where there was a clear justification or a need for a change in item formulation or a specific requirement for additional items, these were updated accordingly. A one day workshop was convened with the NEDS Implementation Team and the NDES Advisory Committee to review the instruments and identify any needed revisions, additions, or deletions. Efforts were made to collect data to ease integration of the 2010 NEDS data into the FMOE’s national education management information system. Instrument issues that were identified as being problematic in the 2004 NDES as well as items identified as potentially confusing or difficult were proposed for revision. Issues that USAID, DFID, FMOE, and other stakeholders identified as being essential but not included in the 2004 NDES questionnaires were proposed for incorporation into the 2010 NEDS instruments, with USAID serving as the final arbiter regarding questionnaire revisions and content.
General revisions accepted into the questionnaires included the following: - A separation of all questions related to secondary education into junior secondary and senior secondary to reflect the UBE policy - Administration of school-based questions for children identified as attending pre-school - Inclusion of questions on disabilities of children and parents - Additional questions on Islamic schooling - Revision to the literacy question administration to assess English literacy for children attending school - Some additional questions on delivery of UBE under the financial questions section
Upon completion of revisions to the English-language questionnaires, the instruments were translated and adapted by local translators into three languages—Hausa, Igbo, and Yoruba—and then back-translated into English to ensure accuracy of the translation. After the questionnaires were finalized, training materials used in the 2004 NDES and developed by Macro International, which included training guides, data collection manuals, and field observation materials, were reviewed. The materials were updated to reflect changes in the questionnaires. In addition, the procedures as described in the manuals and guides were carefully reviewed. Adjustments were made, where needed, based on experience on large-scale survey and lessons learned from the 2004 NDES and the 2008 NDHS, to ensure the highest quality data capture.
Data processing for the 2010 NEDS occurred concurrently with data collection. Completed questionnaires were retrieved by the field coordinators/trainers and delivered to NPC in standard envelops, labeled with the sample identification, team, and State name. The shipment also contained a written summary of any issues detected during the data collection process. The questionnaire administrators logged the receipt of the questionnaires, acknowledged the list of issues, and acted upon them if required. The editors performed an initial check on the questionnaires, performed any coding of open-ended questions (with possible assistance from the data entry operators), and left them available to be assigned to the data entry operators. The data entry operators entered the data into the system, with the support of the editors for erroneous or unclear data.
Experienced data entry personnel were recruited from those who have performed data entry activities for NPC on previous studies. The data entry teams composed a data entry coordinator, supervisor and operators. Data entry coordinators oversaw the entire data entry process from programming and training to final data cleaning, made assignments, tracked progress, and ensured the quality and timeliness of the data entry process. Data entry supervisors were on hand at all times to ensure that proper procedures were followed and to help editors resolve any uncovered inconsistencies. The supervisors controlled incoming questionnaires, assigned batches of questionnaires to the data entry operators, and managed their progress. Approximately 30 clerks were recruited and trained as data entry operators to enter all completed questionnaires and to perform the secondary entry for data verification. Editors worked with the data entry operators to review information flagged as “erroneous” or “dubious” in the data entry process and provided follow up and resolution for those anomalies.
The data entry program developed for the 2004 NDES was revised to reflect the revisions in the 2010 NEDS questionnaire. The electronic data entry and reporting system ensured internal consistency and inconsistency checks.
A very high overall response rate of 97.9 percent was achieved with interviews completed in 26,934 households out of a total of 27,512 occupied households from the original sample of 28,624 households. The response rates did not vary significantly by urban–rural (98.5 percent versus 97.6 percent, respectively). The response rates for parent/guardians and children were even higher, and the rate for independent children was slightly lower than the overall sample rate, 97.4 percent. In all these cases, the urban/rural differences were negligible.
Estimates derived from a sample survey are affected by two types of errors: (1) non-sampling errors and (2) sampling errors. Non-sampling errors are the results of mistakes made in implementing data collection and data processing, such as
The 1991 Indonesia Demographic and Health Survey (IDHS) is a nationally representative survey of ever-married women age 15-49. It was conducted between May and July 1991. The survey was designed to provide information on levels and trends of fertility, infant and child mortality, family planning and maternal and child health. The IDHS was carried out as collaboration between the Central Bureau of Statistics, the National Family Planning Coordinating Board, and the Ministry of Health. The IDHS is follow-on to the National Indonesia Contraceptive Prevalence Survey conducted in 1987.
The DHS program has four general objectives: - To provide participating countries with data and analysis useful for informed policy choices; - To expand the international population and health database; - To advance survey methodology; and - To help develop in participating countries the technical skills and resources necessary to conduct demographic and health surveys.
In 1987 the National Indonesia Contraceptive Prevalence Survey (NICPS) was conducted in 20 of the 27 provinces in Indonesia, as part of Phase I of the DHS program. This survey did not include questions related to health since the Central Bureau of Statistics (CBS) had collected that information in the 1987 National Socioeconomic Household Survey (SUSENAS). The 1991 Indonesia Demographic and Health Survey (IDHS) was conducted in all 27 provinces of Indonesia as part of Phase II of the DHS program. The IDHS received financial assistance from several sources.
The 1991 IDHS was specifically designed to meet the following objectives: - To provide data concerning fertility, family planning, and maternal and child health that can be used by program managers, policymakers, and researchers to evaluate and improve existing programs; - To measure changes in fertility and contraceptive prevalence rates and at the same time study factors which affect the change, such as marriage patterns, urban/rural residence, education, breastfeeding habits, and the availability of contraception; - To measure the development and achievements of programs related to health policy, particularly those concerning the maternal and child health development program implemented through public health clinics in Indonesia.
National
Sample survey data [ssd]
Indonesia is divided into 27 provinces. For the implementation of its family planning program, the National Family Planning Coordinating Board (BKKBN) has divided these provinces into three regions as follows:
The 1990 Population Census of Indonesia shows that Java-Bali contains about 62 percent of the national population, while Outer Java-Bali I contains 27 percent and Outer Java-Bali II contains 11 percent. The sample for the Indonesia DHS survey was designed to produce reliable estimates of contraceptive prevalence and several other major survey variables for each of the 27 provinces and for urban and rural areas of the three regions.
In order to accomplish this goal, approximately 1500 to 2000 households were selected in each of the provinces in Java-Bali, 1000 households in each of the ten provinces in Outer Java-Bali I, and 500 households in each of the 11 provinces in Outer Java-Bali II for a total of 28,000 households. With an average of 0.8 eligible women (ever-married women age 15-49) per selected household, the 28,000 households were expected to yield approximately 23,000 individual interviews.
Note: See detailed description of sample design in APPENDIX A of the survey report.
Face-to-face [f2f]
The DHS model "A" questionnaire and manuals were modified to meet the requirements of measuring family planning and health program attainment, and were translated into Bahasa Indonesia.
The first stage of data editing was done by the field editors who checked the completed questionnaires for completeness and accuracy. Field supervisors also checked the questionnaires. They were then sent to the central office in Jakarta where they were edited again and open-ended questions were coded. The data were processed using 11 microcomputers and ISSA (Integrated System for Survey Analysis).
Data entry and editing were initiated almost immediately after the beginning of fieldwork. Simple range and skip errors were corrected at the data entry stage. Secondary machine editing of the data was initiated as soon as sufficient questionnaires had been entered. The objective of the secondary editing was to detect and correct, if possible, inconsistencies in the data. All of the data were entered and edited by September 1991. A brief report containing preliminary survey results was published in November 1991.
Of 28,141 households sampled, 27,109 were eligible to be interviewed (excluding those that were absent, vacant, or destroyed), and of these, 26,858 or 99 percent of eligible households were successfully interviewed. In the interviewed households, 23,470 eligible women were found and complete interviews were obtained with 98 percent of these women.
Note: See summarized response rates by place of residence in Table 1.2 of the survey report.
The results from sample surveys are affected by two types of errors, non-sampling error and sampling error. Non-sampling error is due to mistakes made in carrying out field activities, such as failure to locate and interview the correct household, errors in the way the questions are asked, misunderstanding on the part of either the interviewer or the respondent, data entry errors, etc. Although efforts were made during the design and implementation of the IDHS to minimize this type of error, non-sampling errors are impossible to avoid and difficult to evaluate analytically.
Sampling errors, on the other hand, can be measured statistically. The sample of women selected in the IDHS is only one of many samples that could have been selected from the same population, using the same design and expected size. Each one would have yielded results that differed somewhat from the actual sample selected. The sampling error is a measure of the variability between all possible samples; although it is not known exactly, it can be estimated from the survey results. Sampling error is usually measured in terms of standard error of a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which one can reasonably be assured that, apart from non-sampling errors, the true value of the variable for the whole population falls. For example, for any given statistic calculated from a sample survey, the value of that same statistic as measured in 95 percent of all possible samples with the same design (and expected size) will fall within a range of plus or minus two times the standard error of that statistic.
If the sample of women had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the IDHS sample design depended on stratification, stages and clusters. Consequently, it was necessary to utilize more complex formulas. The computer package CLUSTERS, developed by the International Statistical Institute for the World Fertility Survey, was used to assist in computing the sampling errors with the proper statistical methodology.
Note: See detailed estimate of sampling error calculation in APPENDIX B of the survey report.
Data Quality Tables - Household age distribution - Age distribution of eligible and interviewed women - Completeness of reporting - Births by calendar year since birth - Reporting of age at death in days - Reporting of age at death in months
Note: See detailed tables in APPENDIX C of the survey report.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Risk factors for opioid use disorder (weighted).
This table contains some of the science results from the Nuclear Spectroscopic Telescope Array (NuSTAR) Serendipitous Survey. The catalog incorporates data taken during the first 40 months of NuSTAR operation, which provide ~20 Ms of effective exposure time over 331 fields, with an areal coverage of 13 deg2. The primary catalog (available as the HEASARC NUSTARSSC table) contains 498 sources (the abstract of the reference paper states that there are 497 sources) detected in total over the 3-24 keV energy range. There are 276 sources with spectroscopic redshifts and classifications, largely resulting from the authors' extensive campaign of ground-based spectroscopic follow-up. The authors characterize the overall sample in terms of the X-ray, optical, and infrared source properties. The sample is primarily composed of active galactic nuclei (AGN), detected over a large range in redshift from z = 0.002 to 3.4 (median redshift z of 0.56), but also includes 16 spectroscopically confirmed Galactic sources. There is a large range in X-ray flux, from log (f_3-24_keV) ~ -14 to -11 (in units of erg s-1 cm-2), and in rest-frame 10-40 keV luminosity, from log (L10-40keV) ~ 39 to 46 (in units of erg s-1), with a median of 44.1. Approximately 79% of the NuSTAR sources have lower-energy (<10 keV) X-ray counterparts from XMM-Newton, Chandra, and Swift XRT observations. The mid-infrared (MIR) analysis, using WISE all-sky survey data, shows that MIR AGN color selections miss a large fraction of the NuSTAR-selected AGN population, from ~15% at the highest luminosities (LX > 1044 erg s-1) to ~80% at the lowest luminosities (LX < 1043 erg s-1). The authors' optical spectroscopic analysis finds that the observed fraction of optically obscured AGN (i.e., the type 2 fraction) is FType2 = 53 (+14, -15) per cent, for a well-defined subset of the 8-24 keV selected sample. This is higher, albeit at a low significance level, than the type 2 fraction measured for redshift- and luminosity-matched AGNs selected by < 10 keV X-ray missions. This table contains the Secondary NuSTAR Serendipitous Source Catalog of 64 sources found using wavdetect to search for significant emission peaks in the FPMA and FPMB data separately (see Section 2.1.1 of Alexander et al. 2013, ApJ, 773, 125) and in the combined A+B data. These sources are listed in Table 7 of the reference paper. This method was developed alongside the primary one (Section 2.3 of the reference paper) in order to investigate the optimum source detection methodologies for NuSTAR and to identify sources in regions of the NuSTAR coverage that are automatically excluded in the primary source detection. The authors emphasize that these secondary sources are not used in any of the science analyses presented in their paper. Nevertheless, these secondary sources are robust NuSTAR detections, some of which will be incorporated in future NuSTAR studies, and for many of them (35 out of the 43 sources with spectroscopic identifications) the authors have obtained new spectroscopic redshifts and classifications through their follow-up program. The X-ray photometric parameters for 4 sources are left blank as in these cases the A+B data prohibit reliable photometric constraints. Additional information on these Secondary Catalog sources that the authors obtained using optical spectroscopy is available in Table 8 of the reference paper (q.v.). This table does NOT contain the the 498 sources in the Primary NuSTAR Serendipitous Source Catalog that were found using the source detection procedure described in Section 2.3 of the reference paper, and that are listed in Table 5 (op. cit.). This table was created by the HEASARC in July 2017 based on the machine-readable version of Table 7 from the reference paper, the Secondary NuSTAR Serendipitous Source Catalog, that was obtained from the ApJ web site. This is a service provided by NASA HEASARC .
Open Government Licence 2.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/2/
License information was derived automatically
Trust-Level Data: Data is broken down by individual NHS Trusts, enabling regional comparisons, benchmarking, and targeted analysis of specific Trusts. Medicine Identification: Medicines in the dataset are identified using Virtual Medicinal Product (VMP) codes from the Dictionary of Medicines and Devices (dm+d): VMP_PRODUCT_NAME: The name of the Virtual Medicinal Product (VMP) as defined by the dm+d, which includes key details about the product. For example: Paracetamol 500mg tablets. VMP_SNOMED_CODE: The code for the Virtual Medicinal Product (VMP), providing a unique identifier for each product. For example: 42109611000001109 represents Paracetamol 500mg tablets. By making this data publicly available, the NHSBSA aims to enhance transparency, accountability, and the effective use of NHS resources. Overview of Service Information about our NHSBSA Prescriptions Data service can be found here - Prescription data | NHSBSA
The primary objective of the 2012 Indonesia Demographic and Health Survey (IDHS) is to provide policymakers and program managers with national- and provincial-level data on representative samples of all women age 15-49 and currently-married men age 15-54.
The 2012 IDHS was specifically designed to meet the following objectives: • Provide data on fertility, family planning, maternal and child health, adult mortality (including maternal mortality), and awareness of AIDS/STIs to program managers, policymakers, and researchers to help them evaluate and improve existing programs; • Measure trends in fertility and contraceptive prevalence rates, and analyze factors that affect such changes, such as marital status and patterns, residence, education, breastfeeding habits, and knowledge, use, and availability of contraception; • Evaluate the achievement of goals previously set by national health programs, with special focus on maternal and child health; • Assess married men’s knowledge of utilization of health services for their family’s health, as well as participation in the health care of their families; • Participate in creating an international database that allows cross-country comparisons that can be used by the program managers, policymakers, and researchers in the areas of family planning, fertility, and health in general
National coverage
Sample survey data [ssd]
Indonesia is divided into 33 provinces. Each province is subdivided into districts (regency in areas mostly rural and municipality in urban areas). Districts are subdivided into subdistricts, and each subdistrict is divided into villages. The entire village is classified as urban or rural.
The 2012 IDHS sample is aimed at providing reliable estimates of key characteristics for women age 15-49 and currently-married men age 15-54 in Indonesia as a whole, in urban and rural areas, and in each of the 33 provinces included in the survey. To achieve this objective, a total of 1,840 census blocks (CBs)-874 in urban areas and 966 in rural areas-were selected from the list of CBs in the selected primary sampling units formed during the 2010 population census.
Because the sample was designed to provide reliable indicators for each province, the number of CBs in each province was not allocated in proportion to the population of the province or its urban-rural classification. Therefore, a final weighing adjustment procedure was done to obtain estimates for all domains. A minimum of 43 CBs per province was imposed in the 2012 IDHS design.
Refer to Appendix B in the final report for details of sample design and implementation.
Face-to-face [f2f]
The 2012 IDHS used four questionnaires: the Household Questionnaire, the Woman’s Questionnaire, the Currently Married Man’s Questionnaire, and the Never-Married Man’s Questionnaire. Because of the change in survey coverage from ever-married women age 15-49 in the 2007 IDHS to all women age 15-49 in the 2012 IDHS, the Woman’s Questionnaire now has questions for never-married women age 15-24. These questions were part of the 2007 Indonesia Young Adult Reproductive Survey questionnaire.
The Household and Woman’s Questionnaires are largely based on standard DHS phase VI questionnaires (March 2011 version). The model questionnaires were adapted for use in Indonesia. Not all questions in the DHS model were adopted in the IDHS. In addition, the response categories were modified to reflect the local situation.
The Household Questionnaire was used to list all the usual members and visitors who spent the previous night in the selected households. Basic information collected on each person listed includes age, sex, education, marital status, education, and relationship to the head of the household. Information on characteristics of the housing unit, such as the source of drinking water, type of toilet facilities, construction materials used for the floor, roof, and outer walls of the house, and ownership of various durable goods were also recorded in the Household Questionnaire. These items reflect the household’s socioeconomic status and are used to calculate the household wealth index. The main purpose of the Household Questionnaire was to identify women and men who were eligible for an individual interview.
The Woman’s Questionnaire was used to collect information from all women age 15-49. These women were asked questions on the following topics: • Background characteristics (marital status, education, media exposure, etc.) • Reproductive history and fertility preferences • Knowledge and use of family planning methods • Antenatal, delivery, and postnatal care • Breastfeeding and infant and young children feeding practices • Childhood mortality • Vaccinations and childhood illnesses • Marriage and sexual activity • Fertility preferences • Woman’s work and husband’s background characteristics • Awareness and behavior regarding HIV-AIDS and other sexually transmitted infections (STIs) • Sibling mortality, including maternal mortality • Other health issues
Questions asked to never-married women age 15-24 addressed the following: • Additional background characteristics • Knowledge of the human reproduction system • Attitudes toward marriage and children • Role of family, school, the community, and exposure to mass media • Use of tobacco, alcohol, and drugs • Dating and sexual activity
The Man’s Questionnaire was administered to all currently married men age 15-54 living in every third household in the 2012 IDHS sample. This questionnaire includes much of the same information included in the Woman’s Questionnaire, but is shorter because it did not contain questions on reproductive history or maternal and child health. Instead, men were asked about their knowledge of and participation in health-careseeking practices for their children.
The questionnaire for never-married men age 15-24 includes the same questions asked to nevermarried women age 15-24.
All completed questionnaires, along with the control forms, were returned to the BPS central office in Jakarta for data processing. The questionnaires were logged and edited, and all open-ended questions were coded. Responses were entered in the computer twice for verification, and they were corrected for computeridentified errors. Data processing activities were carried out by a team of 58 data entry operators, 42 data editors, 14 secondary data editors, and 14 data entry supervisors. A computer package program called Census and Survey Processing System (CSPro), which was specifically designed to process DHS-type survey data, was used in the processing of the 2012 IDHS.
The response rates for both the household and individual interviews in the 2012 IDHS are high. A total of 46,024 households were selected in the sample, of which 44,302 were occupied. Of these households, 43,852 were successfully interviewed, yielding a household response rate of 99 percent.
Refer to Table 1.2 in the final report for more detailed summarized results of the of the 2012 IDHS fieldwork for both the household and individual interviews, by urban-rural residence.
The estimates from a sample survey are affected by two types of errors: (1) nonsampling errors, and (2) sampling errors. Nonsampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 2012 Indonesia Demographic and Health Survey (2012 IDHS) to minimize this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.
Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 2012 IDHS is only one of many samples that could have been selected from the same population, using the same design and identical size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling error is a measure of the variability between all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.
A sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95 percent of all possible samples of identical size and design.
If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the 2012 IDHS sample is the result of a multi-stage stratified design, and, consequently, it was necessary to use more complex formulae. The computer software used to calculate sampling errors for the 2012 IDHS is a SAS program. This program used the Taylor linearization method
The 2022 Nepal Demographic and Health Survey (NDHS) is the sixth survey of its kind implemented in the country as part of the worldwide Demographic and Health Surveys (DHS) Program. It was implemented by New ERA under the aegis of the Ministry of Health and Population (MoHP) of the Government of Nepal with the objective of providing reliable, accurate, and up-to-date data for the country.
The primary objective of the 2022 NDHS is to provide up-to-date estimates of basic demographic and health indicators. Specifically, the 2022 NDHS collected information on fertility, marriage, family planning, breastfeeding practices, nutrition, food insecurity, maternal and child health, childhood mortality, awareness and behavior regarding HIV/AIDS and other sexually transmitted infections (STIs), women’s empowerment, domestic violence, fistula, mental health, accident and injury, disability, and other healthrelated issues such as smoking, knowledge of tuberculosis, and prevalence of hypertension.
The information collected through the 2022 NDHS is intended to assist policymakers and program managers in evaluating and designing programs and strategies for improving the health of Nepal’s population. The survey also provides indicators relevant to the Sustainable Development Goals (SDGs) for Nepal.
National coverage
The survey covered all de jure household members (usual residents), all women aged 15-49, men ageed 15-49, and all children aged 0-4 resident in the household.
Sample survey data [ssd]
The sampling frame used for the 2022 NDHS is an updated version of the frame from the 2011 Nepal Population and Housing Census (NPHC) provided by the National Statistical Office. The 2022 NDHS considered wards from the 2011 census as sub-wards, the smallest administrative unit for the survey. The census frame includes a complete list of Nepal’s 36,020 sub-wards. Each sub-ward has a residence type (urban or rural), and the measure of size is the number of households.
In September 2015, Nepal’s Constituent Assembly declared changes in the administrative units and reclassified urban and rural areas in the country. Nepal is divided into seven provinces: Koshi Province, Madhesh Province, Bagmati Province, Gandaki Province, Lumbini Province, Karnali Province, and Sudurpashchim Province. Provinces are divided into districts, districts into municipalities, and municipalities into wards. Nepal has 77 districts comprising a total of 753 (local-level) municipalities. Of the municipalities, 293 are urban and 460 are rural.
Originally, the 2011 NPHC included 58 urban municipalities. This number increased to 217 as of 2015. On March 10, 2017, structural changes were made in the classification system for urban (Nagarpalika) and rural (Gaonpalika) locations. Nepal currently has 293 Nagarpalika, with 65% of the population living in these urban areas. The 2022 NDHS used this updated urban-rural classification system. The survey sample is a stratified sample selected in two stages. Stratification was achieved by dividing each of the seven provinces into urban and rural areas that together formed the sampling stratum for that province. A total of 14 sampling strata were created in this way. Implicit stratification with proportional allocation was achieved at each of the lower administrative levels by sorting the sampling frame within each sampling stratum before sample selection, according to administrative units at the different levels, and by using a probability-proportional-to-size selection at the first stage of sampling. In the first stage of sampling, 476 primary sampling units (PSUs) were selected with probability proportional to PSU size and with independent selection in each sampling stratum within the sample allocation. Among the 476 PSUs, 248 were from urban areas and 228 from rural areas. A household listing operation was carried out in all of the selected PSUs before the main survey. The resulting list of households served as the sampling frame for the selection of sample households in the second stage. Thirty households were selected from each cluster, for a total sample size of 14,280 households. Of these households, 7,440 were in urban areas and 6,840 were in rural areas. Some of the selected sub-wards were found to be overly large during the household listing operation. Selected sub-wards with an estimated number of households greater than 300 were segmented. Only one segment was selected for the survey with probability proportional to segment size.
For further details on sample design, see APPENDIX A of the final report.
Computer Assisted Personal Interview [capi]
Four questionnaires were used in the 2022 NDHS: the Household Questionnaire, the Woman’s Questionnaire, the Man’s Questionnaire, and the Biomarker Questionnaire. The questionnaires, based on The DHS Program’s model questionnaires, were adapted to reflect the population and health issues relevant to Nepal. In addition, a self-administered Fieldworker Questionnaire collected information about the survey’s fieldworkers.
Input was solicited from various stakeholders representing government ministries and agencies, nongovernmental organizations, and international donors. After all questionnaires were finalized in English, they were translated into Nepali, Maithili, and Bhojpuri. The Household, Woman’s, and Man’s Questionnaires were programmed into tablet computers to facilitate computer-assisted personal interviewing (CAPI) for data collection purposes, with the capability to choose any of the three languages for each questionnaire. The Biomarker Questionnaire was completed on paper during data collection and then entered in the CAPI system.
Data capture for the 2022 NDHS was carried out with Microsoft Surface Go 2 tablets running Windows 10.1. Software was prepared for the survey using CSPro. The processing of the 2022 NDHS data began shortly after the fieldwork started. When data collection was completed in each cluster, the electronic data files were transferred via the Internet File Streaming System (IFSS) to the New ERA central office in Kathmandu. The data files were registered and checked for inconsistencies, incompleteness, and outliers. Errors and inconsistencies were immediately communicated to the field teams for review so that problems would be mitigated going forward. Secondary editing, carried out in the central office at New ERA, involved resolving inconsistencies and coding the open-ended questions. The New ERA senior data processor coordinated the exercise at the central office. The NDHS core team members assisted with the secondary editing. The paper Biomarker Questionnaires were compared with the electronic data file to check for any inconsistencies in data entry. The pictures of vaccination cards that were captured during data collection were verified with the data entered. Data processing and editing were carried out using the CSPro software package. The concurrent data collection and processing offered a distinct advantage because it maximized the likelihood of the data being error-free and accurate. Timely generation of field check tables allowed for effective monitoring. The secondary editing of the data was completed by July 2022, and the final cleaning of the data set was completed by the end of August.
A total of 14,243 households were selected for the sample, of which 13,833 were found to be occupied. Of the occupied households, 13,786 were successfully interviewed, yielding a response rate of more than 99%. In the interviewed households, 15,238 women age 15-49 were identified as eligible for individual interviews. Interviews were completed with 14,845 women, yielding a response rate of 97%. In the subsample of households selected for the men’s survey, 5,185 men age 15-49 were identified as eligible for individual interviews and 4,913 were successfully interviewed, yielding a response rate of 95%.
The estimates from a sample survey are affected by two types of errors: nonsampling errors and sampling errors. Nonsampling errors result from mistakes made in implementing data collection and in data processing, such as failing to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and entering the data incorrectly. Although numerous efforts were made during the implementation of the 2022 Nepal Demographic and Health Survey (2022 NDHS) to minimize this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.
Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 2022 NDHS is only one of many samples that could have been selected from the same population, using the same design and expected sample size. Each of these samples would yield results that differ somewhat from the results of the selected sample. Sampling errors are a measure of the variability among all possible samples. Although the exact degree of variability is unknown, it can be estimated from the survey results.
Sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, and so on), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the
This study explores the geography of the Colorado opt-out movement amongst secondary students, drawing upon social movements theory. We utilize the Colorado Measures of Academic Success (CMAS) as a measure of opt-out behavior in Colorado between 2016 – 2019. We also examine school-level demographic data. We first applied ordinary least squares regression and then utilize multi-scale geographically weighted regression (MGWR) to examine the relationships between school-level demographics and opting out behavior for 11th grade standardized assessments in Colorado. This analysis demonstrates the importance of geography in enacting social networks surrounding the opt-out movement in the state of Colorado. This study offers insight into opting out in the unique context of youth activism in Colorado, with a specific focus on geographical analysis.
The Service Delivery Indicators (SDI) are a set of health and education indicators that examine the effort and ability of staff and the availability of key inputs and resources that contribute to a functioning school or health facility. The indicators are standardized, allowing comparison between and within countries over time.
The Health SDIs include healthcare provider effort, knowledge and ability, and the availability of key inputs (for example, basic equipment, medicines and infrastructure, such as toilets and electricity). The indicators provide a snapshot of the health facility and assess the availability of key resources for providing high quality care.
The Kenya SDI Health survey team visited a sample of 3,098 health facilities across Kenya between March and July 2018. The 2018 Kenya SDI is the largest to date. The survey team collected rosters covering 24,098 workers for absenteeism and assessed 4,499 health workers for competence using patient case simulation.
National
Health facilities and healthcare providers
All health facilities providing primary-level care
Sample survey data [ssd]
The sampling strategy for SDI surveys is designed towards attaining indicators that are accurate and representative at the national level, as this allows for proper cross-country (i.e. international benchmarking) and across time comparisons, when applicable. In addition, other levels of representativeness are sought to allow for further disaggregation (rural/urban areas, public/private facilities, subregions, etc.) during the analysis stage.
The sampling strategy for SDI surveys follows a multistage sampling approach. The main units of analysis are facilities (schools and health centers) and providers (health and education workers: teachers, doctors, nurses, facility managers, etc.). The multi-stage sampling approach makes sampling procedures more practical by dividing the selection of large populations of sampling units in a step-by-step fashion. After defining the sampling frame and categorizing it by stratum, a first stage selection of sampling units is carried out independently within each stratum. Often, the primary sampling units (PSU) for this stage are cluster locations (e.g. districts, communities, counties, neighborhoods, etc.) which are randomly drawn within each stratum with a probability proportional to the size (PPS) of the cluster (measured by the location’s number of facilities, providers or pupils). Once locations are selected, a second stage takes place by randomly selecting facilities within location (either with equal probability or with PPS) as secondary sampling units. At a third stage, a fixed number of health and education workers and pupils are randomly selected within facilities to provide information for the different questionnaire modules.
Detailed information about the specific sampling process is available in the associated SDI Country Report included as part of the documentation that accompany these datasets.
Face-to-face [f2f]
The SDI Health Survey Questionnaire consists of four modules, plus weights:
Module 1: General Information - Administered to the health facility manager to collect information on equipment, medicines, infrastructure and other facets of the health facility.
Module 2: Provider Absence - A roster of healthcare providers is collected and absence measured.
Module 3: Clinical Vignettes – A selection of providers are given clinical vignettes to measure knowledge of common medical conditions.
Module 4: Public expenditure tracking - Information on facility finances
Weights: Weights for facilities, absentee-related analyses and clinical vignette analyses.
Quality control was performed in Stata.
Text-based data collected from Statistics Canada was used to create a union list of born-digital products from the Canadian Census of Population, starting with the 1961 Census. This union list indicates where the census files are located in Canada (for example, the University of Toronto Data Library) and what they contain. The data is stored in a database and accessible through an online search engine .
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Objectives: To evaluate the adequacy of reporting of protocols for randomised trials on diseases of the digestive system registered in ClinicalTrials.gov and the consistency between primary outcomes, secondary outcomes and sample size specified in ClinicalTrials.gov and published trials. Design: Randomised phase III trials on adult patients with gastrointestinal diseases registered before January 2009 in ClinicalTrials.gov were eligible for inclusion. From ClinicalTrials.gov all data elements in the database required by the International Committee of Medical Journal Editors (ICMJE) member journals were extracted. The subsequent publications for registered trials were identified. For published trials, data concerning publication date, primary and secondary endpoint, sample size, and whether the journal adhered to ICMJE principles were extracted. Differences between primary and secondary outcomes, sample size and sample size calculations data in ClinicalTrials.gov and in the published paper were registered. Results: 105 trials were evaluated. Sixty-six trials (63%) were published. Thirty-one percent of trials were registered incorrectly after their completion date. Several data elements of the required ICMJE data list were not filled in, with lacking data in 22% and 11% of cases concerning the primary outcome measure and sample size. In 26% of the published papers data of sample size calculations were missing and discrepancies between sample size reporting in ClinicalTrials.gov and published trials existed. Conclusion: The quality of registration of randomised controlled trials still needs improvement.
http://dcat-ap.ch/vocabulary/licenses/terms_openhttp://dcat-ap.ch/vocabulary/licenses/terms_open
Use ETH Library's RESTful API "Resource Information Bus (RIB)" to access the library's resources, e.g. primary literature about Thomas Mann, dynamically.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Factors associated with adequate content of postnatal care for the newborn in sub-Saharan Africa countries (n = 105904).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
DESCRIPTIONThis repository contains analysis scripts (with outputs), figures from the manuscript, and supplementary files the HIV Pain (HIP) Intervention Study. All analysis scripts (and their outputs -- /outputs subdirectory) are found in HIP-study.zip, while PDF copies of the analysis outputs that are cited in the manuscript as supplementary material are found in the relevant supplement-*.pdf file.Note: Participant consent did not provide for the publication of their data, and hence neither the original nor cleaned data have been made available. However, we do not wish to bar access to the data unnecessarily and we will judge requests to access the data on a case-by-case basis. Examples of potential use cases include independent assessments of our analyses, and secondary data analyses. Please contact Peter Kamerman (peter.kamerman@gmail.com), Dr Tory Madden (torymadden@gmail.com, or open an issue on the GitHub repo (https://github.com/kamermanpr/HIP-study/issues).BIBLIOGRAPHIC INFORMATIONRepository citationKamerman PR, Madden VJ, Parker R, Devan D, Cameron S, Jackson K, Reardon C, Wadley A. Analysis scripts and supplementary files: Barriers to implementing clinical trials on non-pharmacological treatments in developing countries – lessons learnt from addressing pain in HIV. DOI: 10.6084/m9.figshare.7654637.Manuscript citationParker R, Madden VJ, Devan D, Cameron S, Jackson K, Kamerman P, Reardon C, Wadley A. Barriers to implementing clinical trials on non-pharmacological treatments in developing countries – lessons learnt from addressing pain in HIV. Pain Reports [submitted 2019-01-31]Manuscript abstractintroduction: Pain affects over half of people living with HIV/AIDS (LWHA) and pharmacological treatment has limited efficacy. Preliminary evidence supports non-pharmacological interventions. We previously piloted a multimodal intervention in amaXhosa women LWHA and chronic pain in South Africa with improvements seen in all outcomes, in both intervention and control groups. Methods: A multicentre, single-blind randomised controlled trial with 160 participants recruited was conducted to determine whether the multimodal peer-led intervention reduced pain in different populations of both male and female South Africans LWHA. Participants were followed up at Weeks 4, 8, 12, 24 and 48 to evaluate effects on the primary outcome of pain, and on depression, self-efficacy and health-related quality of life. Results: We were unable to assess the efficacy of the intervention due to a 58% loss to follow up (LTFU). Secondary analysis of the LTFU found that sociocultural factors were not predictive of LTFU. Depression, however, did associate with LTFU, with greater severity of depressive symptoms predicting LTFU at week 8 (p=0.01). Discussion: We were unable to evaluate the effectiveness of the intervention due to the high LTFU and the risk of retention bias. The different sociocultural context in South Africa may warrant a different approach to interventions for pain in HIV compared to resource-rich countries, including a concurrent strategy to address barriers to health care service delivery. We suggest that assessment of pain and depression need to occur simultaneously in those with pain in HIV. We suggest investigation of the effect of social inclusion on pain and depression. USING DOCKER TO RUN THE HIP-STUDY ANALYSIS SCRIPTSThese instructions are for running the analysis on your local machine.You need to have Docker installed on your computer. To do so, go to docker.com (https://www.docker.com/community-edition#/download) and follow the instructions for downloading and installing Docker for your operating system. Once Docker has been installed, follow the steps below, noting that Docker commands are entered in a terminal window (Linux and OSX/macOS) or command prompt window (Windows). Windows users also may wish to install GNU Make (http://gnuwin32.sourceforge.net/downlinks/make.php) (required for the make
method of running the scripts) and Git (https://gitforwindows.org/) version control software (not essential).Download the latest imageEnter: docker pull kamermanpr/docker-hip-study:v2.0.0Run the containerEnter: docker run -d -p 8787:8787 -v :/home/rstudio --name threshold -e USER=hip -e PASSWORD=study kamermanpr/docker-hip-study:v2.0.0Where refers to the path to the HIP-study directory on your computer, which you either cloned from GitHub (https://github.com/kamermanpr/HIP-study.git), git clone https://github.com/kamermanpr/HIP-study
, or downloaded and extracted from figshare (https://doi.org/10.6084/m9.figshare.7654637).Login to RStudio Server- Open a web browser window and navigate to: localhost:8787
- Use the following login credentials: - Username: hip - Password: study Prepare the HIP-study directoryThe HIP-study directory comes with the outputs for all the analysis scripts in the /outputs directory (html and md formats). However, should you wish to run the scripts yourself, there are several preparatory steps that are required:1. Acquire the data. The data required to run the scripts have not been included in the repo because participants in the studies did not consent to public release of their data. However, the data are available on request from Peter Kamerman (peter.kamerman@gmail.com). Once the data have been obtained, the files should be copied into a subdirectory named /data-original.2. Clean the /outputs directory by entering make clean
in the Terminal tab in RStudio.Run the HIP-study analysis scriptsTo run all the scripts (including the data cleaning scripts), enter make all
in the Terminal tab in RStudio.To run individual RMarkdown scripts (*.Rmd files)1. Generate the cleaned data using one of the following methods: - Enter make data-cleaned/demographics.rds
in the Terminal tab in RStudio. - Enter source('clean-data-script.R')
in the Console tab in RStudio. - Open the clean-data-script.R script through the File tab in RStudio, and then click the 'Source' button on the right of the Script console in RStudio for each script. 2. Run the individual script by: - Entering make outputs/.html
in the Terminal tab in RStudio, OR - Opening the relevant *.Rmd file through the File tab in RStudio, and then clicking the 'knit' button on the left of the Script console in RStudio. Shutting downOnce done, log out of RStudio Server and enter the following into a terminal to stop the Docker container: docker stop hip
. If you then want to remove the container, enter: docker rm threshold
. If you also want to remove the Docker image you downloaded, enter: docker rmi kamermanpr/docker-hip-study:v2.0.0
The 2023 Jordan Population and Family Health Survey (JPFHS) is the eighth Population and Family Health Survey conducted in Jordan, following those conducted in 1990, 1997, 2002, 2007, 2009, 2012, and 2017–18. It was implemented by the Department of Statistics (DoS) at the request of the Ministry of Health (MoH).
The primary objective of the 2023 JPFHS is to provide up-to-date estimates of key demographic and health indicators. Specifically, the 2023 JPFHS: • Collected data at the national level that allowed calculation of key demographic indicators • Explored the direct and indirect factors that determine levels of and trends in fertility and childhood mortality • Measured contraceptive knowledge and practice • Collected data on key aspects of family health, including immunisation coverage among children, prevalence and treatment of diarrhoea and other diseases among children under age 5, and maternity care indicators such as antenatal visits and assistance at delivery • Obtained data on child feeding practices, including breastfeeding, and conducted anthropometric measurements to assess the nutritional status of children under age 5 and women age 15–49 • Conducted haemoglobin testing with eligible children age 6–59 months and women age 15–49 to gather information on the prevalence of anaemia • Collected data on women’s and men’s knowledge and attitudes regarding sexually transmitted infections and HIV/AIDS • Obtained data on women’s experience of emotional, physical, and sexual violence • Gathered data on disability among household members
The information collected through the 2023 JPFHS is intended to assist policymakers and programme managers in evaluating and designing programmes and strategies for improving the health of the country’s population. The survey also provides indicators relevant to the Sustainable Development Goals (SDGs) for Jordan.
National coverage
The survey covered all de jure household members (usual residents), all women aged 15-49, men aged 15-59, and all children aged 0-4 resident in the household.
Sample survey data [ssd]
The sampling frame used for the 2023 JPFHS was the 2015 Jordan Population and Housing Census (JPHC) frame. The survey was designed to produce representative results for the country as a whole, for urban and rural areas separately, for each of the country’s 12 governorates, and for four nationality domains: the Jordanian population, the Syrian population living in refugee camps, the Syrian population living outside of camps, and the population of other nationalities. Each of the 12 governorates is subdivided into districts, each district into subdistricts, each subdistrict into localities, and each locality into areas and subareas. In addition to these administrative units, during the 2015 JPHC each subarea was divided into convenient area units called census blocks. An electronic file of a complete list of all of the census blocks is available from DoS. The list contains census information on households, populations, geographical locations, and socioeconomic characteristics of each block. Based on this list, census blocks were regrouped to form a general statistical unit of moderate size, called a cluster, which is widely used in various surveys as the primary sampling unit (PSU). The sample clusters for the 2023 JPFHS were selected from the frame of cluster units provided by the DoS.
The sample for the 2023 JPFHS was a stratified sample selected in two stages from the 2015 census frame. Stratification was achieved by separating each governorate into urban and rural areas. In addition, the Syrian refugee camps in Zarqa and Mafraq each formed a special sampling stratum. In total, 26 sampling strata were constructed. Samples were selected independently in each sampling stratum, through a twostage selection process, according to the sample allocation. Before the sample selection, the sampling frame was sorted by district and subdistrict within each sampling stratum. By using a probability proportional to size selection at the first stage of sampling, an implicit stratification and proportional allocation were achieved at each of the lower administrative levels.
For further details on sample design, see APPENDIX A of the final report.
Computer Assisted Personal Interview [capi]
Five questionnaires were used for the 2023 JPFHS: (1) the Household Questionnaire, (2) the Woman’s Questionnaire, (3) the Man’s Questionnaire, (4) the Biomarker Questionnaire, and (5) the Fieldworker Questionnaire. The questionnaires, based on The DHS Program’s model questionnaires, were adapted to reflect the population and health issues relevant to Jordan. Input was solicited from various stakeholders representing government ministries and agencies, nongovernmental organisations, and international donors. After all questionnaires were finalised in English, they were translated into Arabic.
All electronic data files for the 2023 JPFHS were transferred via SynCloud to the DoS central office in Amman, where they were stored on a password-protected computer. The data processing operation included secondary editing, which required resolution of computer-identified inconsistencies and coding of open-ended questions. Data editing was accomplished using CSPro software. During the duration of fieldwork, tables were generated to check various data quality parameters, and specific feedback was given to the teams to improve performance. Secondary editing and data processing were initiated in July and completed in September 2023.
A total of 20,054 households were selected for the sample, of which 19,809 were occupied. Of the occupied households, 19,475 were successfully interviewed, yielding a response rate of 98%.
In the interviewed households, 13,020 eligible women age 15–49 were identified for individual interviews; interviews were completed with 12,595 women, yielding a response rate of 97%. In the subsample of households selected for the male survey, 6,506 men age 15–59 were identified as eligible for individual interviews and 5,873 were successfully interviewed, yielding a response rate of 90%.
The estimates from a sample survey are affected by two types of errors: nonsampling errors and sampling errors. Nonsampling errors are the results of mistakes made in implementing data collection and in data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 2023 Jordan Population and Family Health Survey (2023 JPFHS) to minimise this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.
Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 2023 JPFHS is only one of many samples that could have been selected from the same population, using the same design and sample size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability among all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.
Sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95% of all possible samples of identical size and design.
If the sample of respondents had been selected by simple random sampling, it would have been possible to use straightforward formulas for calculating sampling errors. However, the 2023 JPFHS sample was the result of a multistage stratified design, and, consequently, it was necessary to use more complex formulas. Sampling errors are computed using SAS programs developed by ICF. These programs use the Taylor linearisation method to estimate variances for survey estimates that are means, proportions, or ratios. The Jackknife repeated replication method is used for variance estimation of more complex statistics such as fertility and mortality rates.
A more detailed description of estimates of sampling errors are presented in APPENDIX B of the survey report.
Data Quality Tables
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Data set is representative of the 9 institutions (from the 17 polled) that responded to the survey (each individual response is representative of one institution).The depositor provided the data file in XLSX format. DANS added the CSV format of this file to ensure preservation and accessibility.
Abstract
Background: Adolescent girls in Kenya are disproportionately affected by early and unintended pregnancies, unsafe abortion and HIV infection. The In Their Hands (ITH) programme in Kenya aims to increase adolescents' use of high-quality sexual and reproductive health (SRH) services through targeted interventions. ITH Programme aims to promote use of contraception and testing for sexually transmitted infections (STIs) including HIV or pregnancy, for sexually active adolescent girls, 2) provide information, products and services on the adolescent girl's terms; and 3) promote communities support for girls and boys to access SRH services.
Objectives: The objectives of the evaluation are to assess: a) to what extent and how the new Adolescent Reproductive Health (ARH) partnership model and integrated system of delivery is working to meet its intended objectives and the needs of adolescents; b) adolescent user experiences across key quality dimensions and outcomes; c) how ITH programme has influenced adolescent voice, decision-making autonomy, power dynamics and provider accountability; d) how community support for adolescent reproductive and sexual health initiatives has changed as a result of this programme.
Methodology ITH programme is being implemented in two phases, a formative planning and experimentation in the first year from April 2017 to March 2018, and a national roll out and implementation from April 2018 to March 2020. This second phase is informed by an Annual Programme Review and thorough benchmarking and assessment which informed critical changes to performance and capacity so that ITH is fit for scale. It is expected that ITH will cover approximately 250,000 adolescent girls aged 15-19 in Kenya by April 2020. The programme is implemented by a consortium of Marie Stopes Kenya (MSK), Well Told Story, and Triggerise. ITH's key implementation strategies seek to increase adolescent motivation for service use, create a user-defined ecosystem and platform to provide girls with a network of accessible subsidized and discreet SRH services; and launch and sustain a national discourse campaign around adolescent sexuality and rights. The 3-year study will employ a mixed-methods approach with multiple data sources including secondary data, and qualitative and quantitative primary data with various stakeholders to explore their perceptions and attitudes towards adolescents SRH services. Quantitative data analysis will be done using STATA to provide descriptive statistics and statistical associations / correlations on key variables. All qualitative data will be analyzed using NVIVO software.
Study Duration: 36 months - between 2018 and 2020.
Homabay,Kakamega,Nakuru and Nairobi counties
Private health facilities that provide T-safe services under the In Their Hands(ITH) Program.
1.Adolescent girls aged 15-19 who enrolled on the T-safe platform and received services and those who enrolled but did not receive services from the ITH facilities. 2.Service providers incharge of provision of T-safe services in the ITH facilities. 3.Mobilisers incharge of adolescent girls aged 15-19 recruitment into the T-safe program.
Qualitative Sampling
IDI participants were selected purposively from ITH intervention areas and facilities located in the four ITH intervention counties; Homa Bay, Nakuru, Kakamega and Nairobi respectively which were selected for the midline survey. Study participants were identified from selected intervention facilities. We interviewed one service provider of adolescent friendly ITH services per facility. Additionally, we conducted IDI's with adolescent girls' who were enrolled and using/had used the ITH platform to access reproductive health services or enrolled but may not have accessed the services for other reasons.
Sample coverage We successfully conducted a total of 122 In-depth Interviews with 54 adolescents enrolled on the T-Safe platform, including those who received services and those who were enrolled but did not receive services, 39 IDIS with service providers and 29 IDIs with mobilizers. The distribution per county included 51 IDI's in Nairobi City County (24 with adolescent girls, 17 with service providers and 10 with mobilisers), 15 IDI's in Nakuru County (2 with adolescent girls,8 with service providers and 5 with mobilisers), 34 IDI's in Homa Bay County (18 with adolescent girls,8 with service providers and 8 with mobilisers) and 22 IDI's in Kakamega County (10 with adolescent girls,6 with service providers and another 6 with mobilisers.)
N/A
Face-to-face [f2f]
The midline evaluation included qualitative in-depth interviews with adolescent T-Safe users, adolescents enrolled in the platform but did not use the services, providers and mobilizers to assess the adolescent user experience and quality of services as well as provider accountability under the T-Safe program. Generally,the aim of the qualitative study was to assess adolescents' T-Safe users experience across quality dimensions as well as provider's experiences and accountability. The dimensions assessed include adolescent's journey with the platforms, experience with the platform, perceptions of quality of services and how the ITH platforms changed provider behavior and accountability.
Adolescent in-depth interview included:Adolescent journey,Barriers to adolescents access to SRH services,Community attitudes towards adolescent use of contraceptives,Decision making,Factors influencing decision to visit a clinic,Motivating factors for girls to join ITH,Notable changes since the introduction of ITH,Parental support ,and Perceptions about T-Safe.
Service providers in-depth interview included;Personal and professional background,Provider's experience with ITH/T-safe platform,Notable changes/influences since the introduction of ITH/T-safe,Influence/Impact on the preference of adolescent service users and health care providers as a result of the program,Impact/influence of ITH on quality of care,Facilitators and barriers for adolescents to access SRH services,Mechanisms to address the barriers,Challenges related to the facility,Feedback about facility from adolescents,Types of support needed to improve SRH services provided to adolescents Scenarios of different clients accessing SRH services,and Free node.
Mobilisers in-depth interview included;Mobilizer responsibilities and designation,Job description,Motivation for joining ITH,Personal and professional background,Training,Mobilizer roles in ITH,Mobilization process ,Experience with ITH platform,Key messages shared with adolescent about ITH/ Tsafe during enrollment,Motivating factors for adolescents to join ITH/Tsafe,Community's attitude towards ITH/Tsafe,Challenges faced by mobilizers when mobilizing adolescents for Tsafe,Adolescents view regarding platform,Addressing the challenges ,andFree node
Qualitative interviews were audio-recorded and the audio recordings were transmitted to APHRC study team by uploading the audios to google drive which was only accessible to the team. Related interview notes, participant's description forms and Informed consent forms were transported to APHRC offices in Nairobi at the end of data collection where the data transcription and coding was conducted. Audio recordings from qualitative interviews were transcribed and saved in MS Word format. The transcripts were stored electronically in password protected computers and were only accessible to the evaluation team working on the project. A qualitative software analysis program (NVIVO) was used to assist in coding and analyzing the data. A “thematic analysis” approach was used to organize and analyze the data, and to assist in the development of a codebook and coding scheme. Data was analyzed by first reading the full IDI transcripts, becoming familiar with the data and noting the themes and concepts that emerged. A thematic framework was developed from the identified themes and sub-themes and this was then used to create codes and code the raw data.
N/A
N/A