100+ datasets found
  1. Latin America: economic sectors hit by COVID-19, based on GDP share

    • statista.com
    Updated Aug 6, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Latin America: economic sectors hit by COVID-19, based on GDP share [Dataset]. https://www.statista.com/statistics/1115450/latin-america-econmic-sectors-share-gpd-pandemic-impact/
    Explore at:
    Dataset updated
    Aug 6, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2020
    Area covered
    Latin America, LAC
    Description

    According to recent estimates, the most affected sectors by the coronavirus pandemic in Latin America would be wholesale and retail trade as well as services in general, such as tourism, foodservice, transport, and communications. In 2020, this group of most affected sectors was forecasted to represent more than 16 percent of Brazil’s gross domestic product (GDP). Among the countries shown in this graph, Brazil is the nation where sectors moderately affected by the pandemic could represent the highest contribution to GDP (75.8 percent).

    Which Latin American economies were most vulnerable to the pandemic? In 2020, the economic sectors most affected by the coronavirus pandemic - wholesale and retail, hotels and restaurants, transport and services in general - were forecasted to account for 35.5 percent of Panama’s GDP. In addition, the moderately and most affected economic segments were estimated to contribute the most to Panama’s GDP (a combined 97.6 percent) than any other country in this region. A similar scenario was projected in Mexico, where the sectors that would least suffer the pandemic's negative effects would account for only 3.4 percent of GDP.

    Did the pandemic put a stop to economic growth in Latin America? Economic growth changed dramatically after the COVID-19 outbreak. Most of the largest economies in Latin America fell under recession in 2020. Estimates predict a more optimistic scenario for 2021, with countries such as Mexico, Colombia, and Argentina growing their GDP at least five percent.

  2. Chile: opinion on the economic sectors most affected by COVID-19

    • statista.com
    Updated Aug 6, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Chile: opinion on the economic sectors most affected by COVID-19 [Dataset]. https://www.statista.com/statistics/1108076/chile-economic-sectors-affected-coronavirus/
    Explore at:
    Dataset updated
    Aug 6, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Mar 24, 2020 - Mar 26, 2020
    Area covered
    Chile
    Description

    In a survey conducted in Chile at the end of March 2020, nine out of ten company executives thought that the tourism and hospitality sector would be one of the most affected by the coronavirus (COVID-19) pandemic. In turn, respondents' answers showed that the public sector, along with telecommunications and technology, would be likely spared from this crisis' negative effects. According to the same survey, over two thirds of Chilean respondents expected the country's GDP to fall in 2020.

    For further information about the coronavirus (COVID-19) pandemic, please visit our dedicated Facts and Figures page.

  3. Number of employees in the most affected sectors by COVID-19 pandemic in...

    • statista.com
    Updated May 20, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Number of employees in the most affected sectors by COVID-19 pandemic in Poland 2020 [Dataset]. https://www.statista.com/statistics/1109072/poland-employees-in-the-most-affected-sectors-by-covid-19/
    Explore at:
    Dataset updated
    May 20, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Poland
    Description

    The outbreak of coronavirus in Poland will significantly reduce labor demand. According the source, bankruptcies of companies, dismissals of employees, the need to take care of children due to closed educational institutions, and limited possibilities of remote work in some sectors have a direct impact on the labor market during the pandemic. In total, nearly 4.2 million people work in industries strongly exposed to the economic consequences of the lockdown. Of this figure, three million are employed, and just over one million are business owners and co-owners. More than half of the jobs at risk are in the trade.

    For further information about the coronavirus (COVID-19) pandemic, please visit our dedicated Facts and Figures page.

  4. U.S. industries hit hardest due to COVID-19 2019-2021

    • statista.com
    Updated Aug 6, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). U.S. industries hit hardest due to COVID-19 2019-2021 [Dataset]. https://www.statista.com/statistics/1373314/covid-industries-hit-hardest-us/
    Explore at:
    Dataset updated
    Aug 6, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Apr 2019 - Mar 2021
    Area covered
    United States
    Description

    In the wake of COVID-19 and associated lockdowns, businesses in both the oil and gas industry and the recreation industry saw a 20 percent reduction in revenues when comparing the revenues generated between April 2020 to March 2021 with revenues generated between April 2019 to March 2020. The top performing industries during the same time period can be accessed here.

  5. The End of Furlough: Which UK Sectors will be Most Affected?

    • ibisworld.com
    Updated Oct 21, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    IBISWorld (2021). The End of Furlough: Which UK Sectors will be Most Affected? [Dataset]. https://www.ibisworld.com/blog/the-end-of-furlough-which-uk-sectors-will-be-most-affected/
    Explore at:
    Dataset updated
    Oct 21, 2021
    Dataset authored and provided by
    IBISWorld
    Time period covered
    Oct 21, 2021
    Area covered
    United Kingdom
    Description

    With the Coronavirus Job Retention Scheme having drawn to a close on 30 September 2021, we've looked at which regions and sectors were the biggest users of the scheme.

  6. g

    Closing data of the Covid19 Guarantee Line Investment managed by the...

    • gimi9.com
    Updated Jul 16, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Closing data of the Covid19 Guarantee Line Investment managed by the Instituto de Crédito Oficial by sector of activity | gimi9.com [Dataset]. https://gimi9.com/dataset/eu_8c166a2c3dd52364f34327e3969ef5464e8de1a4/
    Explore at:
    Dataset updated
    Jul 16, 2024
    Description

    The Covid19 Investment Line of Guarantees has mobilized financing for companies in all sectors of activity. The sectoral distribution data show that the companies in the sectors most affected by COVID-19 have received the most guaranteed financing, which has enabled them to cover their liquidity needs and maintain their activity. This file shows the closing data of the Covid19 Guarantee line, Investment modality, by sector of activity. It provides information on the number of operations, the number of companies that have requested guarantees, the amount of the guarantee requested and the total amount of financing that these guarantees have made possible, broken down by the different sectors of activity.

  7. n

    Coronavirus (Covid-19) Data in the United States

    • nytimes.com
    • openicpsr.org
    • +2more
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    New York Times, Coronavirus (Covid-19) Data in the United States [Dataset]. https://www.nytimes.com/interactive/2020/us/coronavirus-us-cases.html
    Explore at:
    Dataset provided by
    New York Times
    Description

    The New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.

    Since late January, The Times has tracked cases of coronavirus in real time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.

    We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists and government officials who would like access to the data to better understand the outbreak.

    The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.

  8. Most affected industries by the COVID-19 epidemic in Romania 2020, by GDP...

    • statista.com
    Updated Jan 26, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Most affected industries by the COVID-19 epidemic in Romania 2020, by GDP change [Dataset]. https://www.statista.com/statistics/1119970/romania-industries-affected-by-covid-19-by-gdp-change/
    Explore at:
    Dataset updated
    Jan 26, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Romania
    Description

    The only industries that registered a positive change in the GDP in the 2nd quarter of 2020 compared to the 1st quarter, were health services, and public administration and defense. In contrast, the most affected industry by the coronavirus (COVID-19) pandemic in Romania was tourism and hospitality, followed by culture and arts. However, by the 3rd quarter of 2020, all the industries apart from education, agriculture, and public administration and defense, registered a positive change in GDP.

    For further information about the coronavirus (COVID-19) pandemic, please visit our dedicated Facts and Figures page.

  9. f

    Data_Sheet_1_A resilience analysis of the contraction of the accommodation...

    • frontiersin.figshare.com
    docx
    Updated Jun 21, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cesar Revoredo-Giha; Wisdom Dogbe (2023). Data_Sheet_1_A resilience analysis of the contraction of the accommodation and food service sector on the Scottish food industry.docx [Dataset]. http://doi.org/10.3389/fsufs.2023.1095153.s001
    Explore at:
    docxAvailable download formats
    Dataset updated
    Jun 21, 2023
    Dataset provided by
    Frontiers
    Authors
    Cesar Revoredo-Giha; Wisdom Dogbe
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The Scottish economy, such as the United Kingdom (UK) economy, has been exposed to several adverse shocks over the past 5 years. Examples of these are the effect of the United Kingdom exiting the European Union (Brexit), the effects of the COVID-19 pandemic, and more recently Russia–Ukraine war, which can result in adverse direct and indirect economic losses across various sectors of the economy. These shocks disrupted the food and drink supply chains. The purpose of this article is 3-fold: (1) to explore the degree of resilience of the Scottish food and drink sector, (2) to estimate the effects on interconnected sectors of the economy, and (3) to estimate the economic losses, which is the financial value associated with the reduction in output. This article focuses on the impact that the sudden contraction that the “accommodation and food service activities”, resulting from the pandemic, had on the food and drink sectors. For this analysis, the study relied on the dynamic inoperability input–output model (DIIM), which takes into account the relationships across the different sectors of the Scottish economy over time. The results indicate that the accommodation and food service sector was the most affected by the COVID-19 pandemic lockdown contracting by approximately 60%. The DIIM shows that the disruption to this sector had a cascading effect on the remaining 17 sectors of the economy. The processed and preserved fish, fruits, and vegetable sector is the least resilient, while preserved meat and meat product sector is the most resilient to the final demand disruption in the accommodation and food service sector. The least economically affected sector was the other food product sector, while the other service sector had the highest economic loss. Although the soft drink sector had a slow recovery rate, economic losses were lower compared to the agricultural, fishery, and forestry sectors. From the policy perspective, stakeholders in the accommodation and food service sector should re-examine the sector and develop capacity against future pandemics. In addition, it is important for economic sectors to collaborate either vertically or horizontally by sharing information and risk to reduce the burden of future disruptions. Finally, the most vulnerable sectors of the economy, i.e., other service sectors should form a major part of government policy decision-making when planning against future pandemics.

  10. a

    COVID-19 and the potential impacts on employment data tables

    • hub.arcgis.com
    • opendata-nzta.opendata.arcgis.com
    Updated Aug 26, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Waka Kotahi (2020). COVID-19 and the potential impacts on employment data tables [Dataset]. https://hub.arcgis.com/datasets/9703b6055b7a404582884f33efc4cf69
    Explore at:
    Dataset updated
    Aug 26, 2020
    Dataset authored and provided by
    Waka Kotahi
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This 6MB download is a zip file containing 5 pdf documents and 2 xlsx spreadsheets. Presentation on COVID-19 and the potential impacts on employment

    May 2020Waka Kotahi wants to better understand the potential implications of the COVID-19 downturn on the land transport system, particularly the potential impacts on regional economies and communities.

    To do this, in May 2020 Waka Kotahi commissioned Martin Jenkins and Infometrics to consider the potential impacts of COVID-19 on New Zealand’s economy and demographics, as these are two key drivers of transport demand. In addition to providing a scan of national and international COVID-19 trends, the research involved modelling the economic impacts of three of the Treasury’s COVID-19 scenarios, to a regional scale, to help us understand where the impacts might be greatest.

    Waka Kotahi studied this modelling by comparing the percentage difference in employment forecasts from the Treasury’s three COVID-19 scenarios compared to the business as usual scenario.

    The source tables from the modelling (Tables 1-40), and the percentage difference in employment forecasts (Tables 41-43), are available as spreadsheets.

    Arataki - potential impacts of COVID-19 Final Report

    Employment modelling - interactive dashboard

    The modelling produced employment forecasts for each region and district over three time periods – 2021, 2025 and 2031. In May 2020, the forecasts for 2021 carried greater certainty as they reflected the impacts of current events, such as border restrictions, reduction in international visitors and students etc. The 2025 and 2031 forecasts were less certain because of the potential for significant shifts in the socio-economic situation over the intervening years. While these later forecasts were useful in helping to understand the relative scale and duration of potential COVID-19 related impacts around the country, they needed to be treated with care recognising the higher levels of uncertainty.

    The May 2020 research suggested that the ‘slow recovery scenario’ (Treasury’s scenario 5) was the most likely due to continuing high levels of uncertainty regarding global efforts to manage the pandemic (and the duration and scale of the resulting economic downturn).

    The updates to Arataki V2 were framed around the ‘Slower Recovery Scenario’, as that scenario remained the most closely aligned with the unfolding impacts of COVID-19 in New Zealand and globally at that time.

    Find out more about Arataki, our 10-year plan for the land transport system

    May 2021The May 2021 update to employment modelling used to inform Arataki Version 2 is now available. Employment modelling dashboard - updated 2021Arataki used the May 2020 information to compare how various regions and industries might be impacted by COVID-19. Almost a year later, it is clear that New Zealand fared better than forecast in May 2020.Waka Kotahi therefore commissioned an update to the projections through a high-level review of:the original projections for 2020/21 against performancethe implications of the most recent global (eg International monetary fund world economic Outlook) and national economic forecasts (eg Treasury half year economic and fiscal update)The treasury updated its scenarios in its December half year fiscal and economic update (HYEFU) and these new scenarios have been used for the revised projections.Considerable uncertainty remains about the potential scale and duration of the COVID-19 downturn, for example with regards to the duration of border restrictions, update of immunisation programmes. The updated analysis provides us with additional information regarding which sectors and parts of the country are likely to be most impacted. We continue to monitor the situation and keep up to date with other cross-Government scenario development and COVID-19 related work. The updated modelling has produced employment forecasts for each region and district over three time periods - 2022, 2025, 2031.The 2022 forecasts carry greater certainty as they reflect the impacts of current events. The 2025 and 2031 forecasts are less certain because of the potential for significant shifts over that time.

    Data reuse caveats: as per license.

    Additionally, please read / use this data in conjunction with the Infometrics and Martin Jenkins reports, to understand the uncertainties and assumptions involved in modelling the potential impacts of COVID-19.

    COVID-19’s effect on industry and regional economic outcomes for NZ Transport Agency [PDF 620 KB]

    Data quality statement: while the modelling undertaken is high quality, it represents two point-in-time analyses undertaken during a period of considerable uncertainty. This uncertainty comes from several factors relating to the COVID-19 pandemic, including:

    a lack of clarity about the size of the global downturn and how quickly the international economy might recover differing views about the ability of the New Zealand economy to bounce back from the significant job losses that are occurring and how much of a structural change in the economy is required the possibility of a further wave of COVID-19 cases within New Zealand that might require a return to Alert Levels 3 or 4.

    While high levels of uncertainty remain around the scale of impacts from the pandemic, particularly in coming years, the modelling is useful in indicating the direction of travel and the relative scale of impacts in different parts of the country.

    Data quality caveats: as noted above, there is considerable uncertainty about the potential scale and duration of the COVID-19 downturn. Please treat the specific results of the modelling carefully, particularly in the forecasts to later years (2025, 2031), given the potential for significant shifts in New Zealand's socio-economic situation before then.

    As such, please use the modelling results as a guide to the potential scale of the impacts of the downturn in different locations, rather than as a precise assessment of impacts over the coming decade.

  11. f

    Data from: S1 Dataset -

    • plos.figshare.com
    zip
    Updated Jun 15, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Raghav Gupta; Md. Mahadi Hasan; Syed Zahurul Islam; Tahmina Yasmin; Jasim Uddin (2023). S1 Dataset - [Dataset]. http://doi.org/10.1371/journal.pone.0287342.s002
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jun 15, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Raghav Gupta; Md. Mahadi Hasan; Syed Zahurul Islam; Tahmina Yasmin; Jasim Uddin
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The economic landscape of the United Kingdom has been significantly shaped by the intertwined issues of Brexit, COVID-19, and their interconnected impacts. Despite the country’s robust and diverse economy, the disruptions caused by Brexit and the COVID-19 pandemic have created uncertainty and upheaval for both businesses and individuals. Recognizing the magnitude of these challenges, academic literature has directed its attention toward conducting immediate research in this crucial area. This study sets out to investigate key economic factors that have influenced various sectors of the UK economy and have broader economic implications within the context of Brexit and COVID-19. The factors under scrutiny include the unemployment rate, GDP index, earnings, and trade. To accomplish this, a range of data analysis tools and techniques were employed, including the Box-Jenkins method, neural network modeling, Google Trend analysis, and Twitter-sentiment analysis. The analysis encompassed different periods: pre-Brexit (2011-2016), Brexit (2016-2020), the COVID-19 period, and post-Brexit (2020-2021). The findings of the analysis offer intriguing insights spanning the past decade. For instance, the unemployment rate displayed a downward trend until 2020 but experienced a spike in 2021, persisting for a six-month period. Meanwhile, total earnings per week exhibited a gradual increase over time, and the GDP index demonstrated an upward trajectory until 2020 but declined during the COVID-19 period. Notably, trade experienced the most significant decline following both Brexit and the COVID-19 pandemic. Furthermore, the impact of these events exhibited variations across the UK’s four regions and twelve industries. Wales and Northern Ireland emerged as the regions most affected by Brexit and COVID-19, with industries such as accommodation, construction, and wholesale trade particularly impacted in terms of earnings and employment levels. Conversely, industries such as finance, science, and health demonstrated an increased contribution to the UK’s total GDP in the post-Brexit period, indicating some positive outcomes. It is worth highlighting that the impact of these economic factors was more pronounced on men than on women. Among all the variables analyzed, trade suffered the most severe consequences in the UK. By early 2021, the macroeconomic situation in the country was characterized by a simple dynamic: economic demand rebounded at a faster pace than supply, leading to shortages, bottlenecks, and inflation. The findings of this research carry significant value for the UK government and businesses, empowering them to adapt and innovate based on forecasts to navigate the challenges posed by Brexit and COVID-19. By doing so, they can promote long-term economic growth and effectively address the disruptions caused by these interrelated issues.

  12. COVID-19 Outbreak Data

    • data.ca.gov
    • data.chhs.ca.gov
    • +2more
    csv, zip
    Updated Jun 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Public Health (2025). COVID-19 Outbreak Data [Dataset]. https://data.ca.gov/dataset/covid-19-outbreak-data
    Explore at:
    csv, zipAvailable download formats
    Dataset updated
    Jun 5, 2025
    Dataset authored and provided by
    California Department of Public Healthhttps://www.cdph.ca.gov/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset contains numbers of COVID-19 outbreaks and associated cases, categorized by setting, reported to CDPH since January 1, 2021.

    AB 685 (Chapter 84, Statutes of 2020) and the Cal/OSHA COVID-19 Emergency Temporary Standards (Title 8, Subchapter 7, Sections 3205-3205.4) required non-healthcare employers in California to report workplace COVID-19 outbreaks to their local health department (LHD) between January 1, 2021 – December 31, 2022. Beginning January 1, 2023, non-healthcare employer reporting of COVID-19 outbreaks to local health departments is voluntary, unless a local order is in place. More recent data collected without mandated reporting may therefore be less representative of all outbreaks that have occurred, compared to earlier data collected during mandated reporting. Licensed health facilities continue to be mandated to report outbreaks to LHDs.

    LHDs report confirmed outbreaks to the California Department of Public Health (CDPH) via the California Reportable Disease Information Exchange (CalREDIE), the California Connected (CalCONNECT) system, or other established processes. Data are compiled and categorized by setting by CDPH. Settings are categorized by U.S. Census industry codes. Total outbreaks and cases are included for individual industries as well as for broader industrial sectors.

    The first dataset includes numbers of outbreaks in each setting by month of onset, for outbreaks reported to CDPH since January 1, 2021. This dataset includes some outbreaks with onset prior to January 1 that were reported to CDPH after January 1; these outbreaks are denoted with month of onset “Before Jan 2021.” The second dataset includes cumulative numbers of COVID-19 outbreaks with onset after January 1, 2021, categorized by setting. Due to reporting delays, the reported numbers may not reflect all outbreaks that have occurred as of the reporting date; additional outbreaks may have occurred that have not yet been reported to CDPH.

    While many of these settings are workplaces, cases may have occurred among workers, other community members who visited the setting, or both. Accordingly, these data do not distinguish between outbreaks involving only workers, outbreaks involving only residents or patrons, or outbreaks involving both.

    Several additional data limitations should be kept in mind:

    • Outbreaks are classified as “Insufficient information” for outbreaks where not enough information was available for CDPH to assign an industry code.

    • Some sectors, particularly congregate residential settings, may have increased testing and therefore increased likelihood of outbreak recognition and reporting. As a result, in congregate residential settings, the number of outbreak-associated cases may be more accurate.

    • However, in most settings, outbreak and case counts are likely underestimates. For most cases, it is not possible to identify the source of exposure, as many cases have multiple possible exposures.

    • Because some settings have been at times been closed or open with capacity restrictions, numbers of outbreak reports in those settings do not reflect COVID-19 transmission risk.

    • The number of outbreaks in different settings will depend on the number of different workplaces in each setting. More outbreaks would be expected in settings with many workplaces compared to settings with few workplaces.

  13. Informal employment in most affected sectors by COVID-19 in Vietnam 2019

    • statista.com
    Updated Dec 2, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2020). Informal employment in most affected sectors by COVID-19 in Vietnam 2019 [Dataset]. https://www.statista.com/statistics/1189488/vietnam-informal-employment-in-most-covid-affected-sectors/
    Explore at:
    Dataset updated
    Dec 2, 2020
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2019
    Area covered
    Vietnam
    Description

    Among the five most affected sectors by the COVID-19 pandemic in 2020, the accommodation and food sector had the highest ratio of informal employment in the year before with more than ** percent. The sector of wholesales and retail trade and repair ranked second with almost ** percent of informal employment within the sector. The lowest ratio of informal employment among these five sectors was manufacturing, with **** percent.

  14. e

    COVID-19 Trends in Each Country

    • coronavirus-resources.esri.com
    • hub.arcgis.com
    • +2more
    Updated Mar 28, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Urban Observatory by Esri (2020). COVID-19 Trends in Each Country [Dataset]. https://coronavirus-resources.esri.com/maps/a16bb8b137ba4d8bbe645301b80e5740
    Explore at:
    Dataset updated
    Mar 28, 2020
    Dataset authored and provided by
    Urban Observatory by Esri
    Area covered
    Earth
    Description

    On March 10, 2023, the Johns Hopkins Coronavirus Resource Center ceased its collecting and reporting of global COVID-19 data. For updated cases, deaths, and vaccine data please visit: World Health Organization (WHO)For more information, visit the Johns Hopkins Coronavirus Resource Center.COVID-19 Trends MethodologyOur goal is to analyze and present daily updates in the form of recent trends within countries, states, or counties during the COVID-19 global pandemic. The data we are analyzing is taken directly from the Johns Hopkins University Coronavirus COVID-19 Global Cases Dashboard, though we expect to be one day behind the dashboard’s live feeds to allow for quality assurance of the data.DOI: https://doi.org/10.6084/m9.figshare.125529863/7/2022 - Adjusted the rate of active cases calculation in the U.S. to reflect the rates of serious and severe cases due nearly completely dominant Omicron variant.6/24/2020 - Expanded Case Rates discussion to include fix on 6/23 for calculating active cases.6/22/2020 - Added Executive Summary and Subsequent Outbreaks sectionsRevisions on 6/10/2020 based on updated CDC reporting. This affects the estimate of active cases by revising the average duration of cases with hospital stays downward from 30 days to 25 days. The result shifted 76 U.S. counties out of Epidemic to Spreading trend and no change for national level trends.Methodology update on 6/2/2020: This sets the length of the tail of new cases to 6 to a maximum of 14 days, rather than 21 days as determined by the last 1/3 of cases. This was done to align trends and criteria for them with U.S. CDC guidance. The impact is areas transition into Controlled trend sooner for not bearing the burden of new case 15-21 days earlier.Correction on 6/1/2020Discussion of our assertion of an abundance of caution in assigning trends in rural counties added 5/7/2020. Revisions added on 4/30/2020 are highlighted.Revisions added on 4/23/2020 are highlighted.Executive SummaryCOVID-19 Trends is a methodology for characterizing the current trend for places during the COVID-19 global pandemic. Each day we assign one of five trends: Emergent, Spreading, Epidemic, Controlled, or End Stage to geographic areas to geographic areas based on the number of new cases, the number of active cases, the total population, and an algorithm (described below) that contextualize the most recent fourteen days with the overall COVID-19 case history. Currently we analyze the countries of the world and the U.S. Counties. The purpose is to give policymakers, citizens, and analysts a fact-based data driven sense for the direction each place is currently going. When a place has the initial cases, they are assigned Emergent, and if that place controls the rate of new cases, they can move directly to Controlled, and even to End Stage in a short time. However, if the reporting or measures to curtail spread are not adequate and significant numbers of new cases continue, they are assigned to Spreading, and in cases where the spread is clearly uncontrolled, Epidemic trend.We analyze the data reported by Johns Hopkins University to produce the trends, and we report the rates of cases, spikes of new cases, the number of days since the last reported case, and number of deaths. We also make adjustments to the assignments based on population so rural areas are not assigned trends based solely on case rates, which can be quite high relative to local populations.Two key factors are not consistently known or available and should be taken into consideration with the assigned trend. First is the amount of resources, e.g., hospital beds, physicians, etc.that are currently available in each area. Second is the number of recoveries, which are often not tested or reported. On the latter, we provide a probable number of active cases based on CDC guidance for the typical duration of mild to severe cases.Reasons for undertaking this work in March of 2020:The popular online maps and dashboards show counts of confirmed cases, deaths, and recoveries by country or administrative sub-region. Comparing the counts of one country to another can only provide a basis for comparison during the initial stages of the outbreak when counts were low and the number of local outbreaks in each country was low. By late March 2020, countries with small populations were being left out of the mainstream news because it was not easy to recognize they had high per capita rates of cases (Switzerland, Luxembourg, Iceland, etc.). Additionally, comparing countries that have had confirmed COVID-19 cases for high numbers of days to countries where the outbreak occurred recently is also a poor basis for comparison.The graphs of confirmed cases and daily increases in cases were fit into a standard size rectangle, though the Y-axis for one country had a maximum value of 50, and for another country 100,000, which potentially misled people interpreting the slope of the curve. Such misleading circumstances affected comparing large population countries to small population counties or countries with low numbers of cases to China which had a large count of cases in the early part of the outbreak. These challenges for interpreting and comparing these graphs represent work each reader must do based on their experience and ability. Thus, we felt it would be a service to attempt to automate the thought process experts would use when visually analyzing these graphs, particularly the most recent tail of the graph, and provide readers with an a resulting synthesis to characterize the state of the pandemic in that country, state, or county.The lack of reliable data for confirmed recoveries and therefore active cases. Merely subtracting deaths from total cases to arrive at this figure progressively loses accuracy after two weeks. The reason is 81% of cases recover after experiencing mild symptoms in 10 to 14 days. Severe cases are 14% and last 15-30 days (based on average days with symptoms of 11 when admitted to hospital plus 12 days median stay, and plus of one week to include a full range of severely affected people who recover). Critical cases are 5% and last 31-56 days. Sources:U.S. CDC. April 3, 2020 Interim Clinical Guidance for Management of Patients with Confirmed Coronavirus Disease (COVID-19). Accessed online. Initial older guidance was also obtained online. Additionally, many people who recover may not be tested, and many who are, may not be tracked due to privacy laws. Thus, the formula used to compute an estimate of active cases is: Active Cases = 100% of new cases in past 14 days + 19% from past 15-25 days + 5% from past 26-49 days - total deaths. On 3/17/2022, the U.S. calculation was adjusted to: Active Cases = 100% of new cases in past 14 days + 6% from past 15-25 days + 3% from past 26-49 days - total deaths. Sources: https://www.cdc.gov/mmwr/volumes/71/wr/mm7104e4.htm https://covid.cdc.gov/covid-data-tracker/#variant-proportions If a new variant arrives and appears to cause higher rates of serious cases, we will roll back this adjustment. We’ve never been inside a pandemic with the ability to learn of new cases as they are confirmed anywhere in the world. After reviewing epidemiological and pandemic scientific literature, three needs arose. We need to specify which portions of the pandemic lifecycle this map cover. The World Health Organization (WHO) specifies six phases. The source data for this map begins just after the beginning of Phase 5: human to human spread and encompasses Phase 6: pandemic phase. Phase six is only characterized in terms of pre- and post-peak. However, these two phases are after-the-fact analyses and cannot ascertained during the event. Instead, we describe (below) a series of five trends for Phase 6 of the COVID-19 pandemic.Choosing terms to describe the five trends was informed by the scientific literature, particularly the use of epidemic, which signifies uncontrolled spread. The five trends are: Emergent, Spreading, Epidemic, Controlled, and End Stage. Not every locale will experience all five, but all will experience at least three: emergent, controlled, and end stage.This layer presents the current trends for the COVID-19 pandemic by country (or appropriate level). There are five trends:Emergent: Early stages of outbreak. Spreading: Early stages and depending on an administrative area’s capacity, this may represent a manageable rate of spread. Epidemic: Uncontrolled spread. Controlled: Very low levels of new casesEnd Stage: No New cases These trends can be applied at several levels of administration: Local: Ex., City, District or County – a.k.a. Admin level 2State: Ex., State or Province – a.k.a. Admin level 1National: Country – a.k.a. Admin level 0Recommend that at least 100,000 persons be represented by a unit; granted this may not be possible, and then the case rate per 100,000 will become more important.Key Concepts and Basis for Methodology: 10 Total Cases minimum threshold: Empirically, there must be enough cases to constitute an outbreak. Ideally, this would be 5.0 per 100,000, but not every area has a population of 100,000 or more. Ten, or fewer, cases are also relatively less difficult to track and trace to sources. 21 Days of Cases minimum threshold: Empirically based on COVID-19 and would need to be adjusted for any other event. 21 days is also the minimum threshold for analyzing the “tail” of the new cases curve, providing seven cases as the basis for a likely trend (note that 21 days in the tail is preferred). This is the minimum needed to encompass the onset and duration of a normal case (5-7 days plus 10-14 days). Specifically, a median of 5.1 days incubation time, and 11.2 days for 97.5% of cases to incubate. This is also driven by pressure to understand trends and could easily be adjusted to 28 days. Source

  15. UK Regional Economies Most Heavily Affected by the COVID-19 Pandemic

    • ibisworld.com
    Updated Nov 23, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    IBISWorld (2020). UK Regional Economies Most Heavily Affected by the COVID-19 Pandemic [Dataset]. https://www.ibisworld.com/blog/uk-regional-economies-most-heavily-affected-by-the-covid-19-pandemic/44/1126/
    Explore at:
    Dataset updated
    Nov 23, 2020
    Dataset authored and provided by
    IBISWorld
    Time period covered
    Nov 23, 2020
    Area covered
    United Kingdom
    Description

    IBISWorld has looked at which UK regions have received the most financial support since the outbreak of COVID-19, assessing the reasons why.

  16. COVID-19 Case Surveillance Public Use Data

    • data.cdc.gov
    • paperswithcode.com
    • +5more
    application/rdfxml +5
    Updated Jul 9, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CDC Data, Analytics and Visualization Task Force (2024). COVID-19 Case Surveillance Public Use Data [Dataset]. https://data.cdc.gov/Case-Surveillance/COVID-19-Case-Surveillance-Public-Use-Data/vbim-akqf
    Explore at:
    application/rdfxml, tsv, csv, json, xml, application/rssxmlAvailable download formats
    Dataset updated
    Jul 9, 2024
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Authors
    CDC Data, Analytics and Visualization Task Force
    License

    https://www.usa.gov/government-workshttps://www.usa.gov/government-works

    Description

    Note: Reporting of new COVID-19 Case Surveillance data will be discontinued July 1, 2024, to align with the process of removing SARS-CoV-2 infections (COVID-19 cases) from the list of nationally notifiable diseases. Although these data will continue to be publicly available, the dataset will no longer be updated.

    Authorizations to collect certain public health data expired at the end of the U.S. public health emergency declaration on May 11, 2023. The following jurisdictions discontinued COVID-19 case notifications to CDC: Iowa (11/8/21), Kansas (5/12/23), Kentucky (1/1/24), Louisiana (10/31/23), New Hampshire (5/23/23), and Oklahoma (5/2/23). Please note that these jurisdictions will not routinely send new case data after the dates indicated. As of 7/13/23, case notifications from Oregon will only include pediatric cases resulting in death.

    This case surveillance public use dataset has 12 elements for all COVID-19 cases shared with CDC and includes demographics, any exposure history, disease severity indicators and outcomes, presence of any underlying medical conditions and risk behaviors, and no geographic data.

    CDC has three COVID-19 case surveillance datasets:

    The following apply to all three datasets:

    Overview

    The COVID-19 case surveillance database includes individual-level data reported to U.S. states and autonomous reporting entities, including New York City and the District of Columbia (D.C.), as well as U.S. territories and affiliates. On April 5, 2020, COVID-19 was added to the Nationally Notifiable Condition List and classified as “immediately notifiable, urgent (within 24 hours)” by a Council of State and Territorial Epidemiologists (CSTE) Interim Position Statement (Interim-20-ID-01). CSTE updated the position statement on August 5, 2020, to clarify the interpretation of antigen detection tests and serologic test results within the case classification (Interim-20-ID-02). The statement also recommended that all states and territories enact laws to make COVID-19 reportable in their jurisdiction, and that jurisdictions conducting surveillance should submit case notifications to CDC. COVID-19 case surveillance data are collected by jurisdictions and reported voluntarily to CDC.

    For more information: NNDSS Supports the COVID-19 Response | CDC.

    The deidentified data in the “COVID-19 Case Surveillance Public Use Data” include demographic characteristics, any exposure history, disease severity indicators and outcomes, clinical data, laboratory diagnostic test results, and presence of any underlying medical conditions and risk behaviors. All data elements can be found on the COVID-19 case report form located at www.cdc.gov/coronavirus/2019-ncov/downloads/pui-form.pdf.

    COVID-19 Case Reports

    COVID-19 case reports have been routinely submitted using nationally standardized case reporting forms. On April 5, 2020, CSTE released an Interim Position Statement with national surveillance case definitions for COVID-19 included. Current versions of these case definitions are available here: https://ndc.services.cdc.gov/case-definitions/coronavirus-disease-2019-2021/.

    All cases reported on or after were requested to be shared by public health departments to CDC using the standardized case definitions for laboratory-confirmed or probable cases. On May 5, 2020, the standardized case reporting form was revised. Case reporting using this new form is ongoing among U.S. states and territories.

    Data are Considered Provisional

    • The COVID-19 case surveillance data are dynamic; case reports can be modified at any time by the jurisdictions sharing COVID-19 data with CDC. CDC may update prior cases shared with CDC based on any updated information from jurisdictions. For instance, as new information is gathered about previously reported cases, health departments provide updated data to CDC. As more information and data become available, analyses might find changes in surveillance data and trends during a previously reported time window. Data may also be shared late with CDC due to the volume of COVID-19 cases.
    • Annual finalized data: To create the final NNDSS data used in the annual tables, CDC works carefully with the reporting jurisdictions to reconcile the data received during the year until each state or territorial epidemiologist confirms that the data from their area are correct.
    • Access Addressing Gaps in Public Health Reporting of Race and Ethnicity for COVID-19, a report from the Council of State and Territorial Epidemiologists, to better understand the challenges in completing race and ethnicity data for COVID-19 and recommendations for improvement.

    Data Limitations

    To learn more about the limitations in using case surveillance data, visit FAQ: COVID-19 Data and Surveillance.

    Data Quality Assurance Procedures

    CDC’s Case Surveillance Section routinely performs data quality assurance procedures (i.e., ongoing corrections and logic checks to address data errors). To date, the following data cleaning steps have been implemented:

    • Questions that have been left unanswered (blank) on the case report form are reclassified to a Missing value, if applicable to the question. For example, in the question “Was the individual hospitalized?” where the possible answer choices include “Yes,” “No,” or “Unknown,” the blank value is recoded to Missing because the case report form did not include a response to the question.
    • Logic checks are performed for date data. If an illogical date has been provided, CDC reviews the data with the reporting jurisdiction. For example, if a symptom onset date in the future is reported to CDC, this value is set to null until the reporting jurisdiction updates the date appropriately.
    • Additional data quality processing to recode free text data is ongoing. Data on symptoms, race and ethnicity, and healthcare worker status have been prioritized.

    Data Suppression

    To prevent release of data that could be used to identify people, data cells are suppressed for low frequency (<5) records and indirect identifiers (e.g., date of first positive specimen). Suppression includes rare combinations of demographic characteristics (sex, age group, race/ethnicity). Suppressed values are re-coded to the NA answer option; records with data suppression are never removed.

    For questions, please contact Ask SRRG (eocevent394@cdc.gov).

    Additional COVID-19 Data

    COVID-19 data are available to the public as summary or aggregate count files, including total counts of cases and deaths by state and by county. These

  17. f

    Insights on U.S. Advertising Industry During COVID-19

    • fatposglobal.com
    csv, xml
    Updated Jan 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market View Insight (2025). Insights on U.S. Advertising Industry During COVID-19 [Dataset]. https://www.fatposglobal.com/blog/insights-on-us-advertising-industry-during-covid-19
    Explore at:
    csv, xmlAvailable download formats
    Dataset updated
    Jan 15, 2025
    Dataset authored and provided by
    Market View Insight
    License

    https://fatposglobal.com/privacy-policyhttps://fatposglobal.com/privacy-policy

    Time period covered
    Jan 1, 1950 - Dec 18, 2013
    Dataset funded by
    Market View Insight
    Description

    Measuring COVID-19 and stay home orders given in most of the world, In the US market, the advertising expenses have been cancelled, postponed and in some limited cases improved. Yet the same results do not affect all sectors and businesses. For certain sectors, businesses in the advertisement sector are now showing sparkling bright lights. Nonetheless, several businesses are just switching off their advertisement budgets, at least for now. Many advertising supervi.....

  18. Trends in COVID-19 Cases and Deaths in the United States, by County-level...

    • data.cdc.gov
    • data.virginia.gov
    • +1more
    application/rdfxml +5
    Updated Jun 8, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CDC COVID-19 Response (2023). Trends in COVID-19 Cases and Deaths in the United States, by County-level Population Factors - ARCHIVED [Dataset]. https://data.cdc.gov/dataset/Trends-in-COVID-19-Cases-and-Deaths-in-the-United-/njmz-dpbc
    Explore at:
    application/rdfxml, csv, application/rssxml, xml, tsv, jsonAvailable download formats
    Dataset updated
    Jun 8, 2023
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Authors
    CDC COVID-19 Response
    Area covered
    United States
    Description

    Reporting of Aggregate Case and Death Count data was discontinued on May 11, 2023, with the expiration of the COVID-19 public health emergency declaration. Although these data will continue to be publicly available, this dataset will no longer be updated.

    The surveillance case definition for COVID-19, a nationally notifiable disease, was first described in a position statement from the Council for State and Territorial Epidemiologists, which was later revised. However, there is some variation in how jurisdictions implemented these case definitions. More information on how CDC collects COVID-19 case surveillance data can be found at FAQ: COVID-19 Data and Surveillance.

    Aggregate Data Collection Process Since the beginning of the COVID-19 pandemic, data were reported from state and local health departments through a robust process with the following steps:

    • Aggregate county-level counts were obtained indirectly, via automated overnight web collection, or directly, via a data submission process.
    • If more than one official county data source existed, CDC used a comprehensive data selection process comparing each official county data source to retrieve the highest case and death counts, unless otherwise specified by the state.
    • A CDC data team reviewed counts for congruency prior to integration and set up alerts to monitor for discrepancies in the data.
    • CDC routinely compiled these data and post the finalized information on COVID Data Tracker.
    • County level data were aggregated to obtain state- and territory- specific totals.
    • Counting of cases and deaths is based on date of report and not on the date of symptom onset. CDC calculates rates in these data by using population estimates provided by the US Census Bureau Population Estimates Program (2019 Vintage).
    • COVID-19 aggregate case and death data are organized in a time series that includes cumulative number of cases and deaths as reported by a jurisdiction on a given date. New case and death counts are calculated as the week-to-week change in cumulative counts of cases and deaths reported (i.e., newly reported cases and deaths = cumulative number of cases/deaths reported this week minus the cumulative total reported the prior week.

    This process was collaborative, with CDC and jurisdictions working together to ensure the accuracy of COVID-19 case and death numbers. County counts provided the most up-to-date numbers on cases and deaths by report date. Throughout data collection, CDC retrospectively updated counts to correct known data quality issues.

    Description This archived public use dataset focuses on the cumulative and weekly case and death rates per 100,000 persons within various sociodemographic factors across all states and their counties. All resulting data are expressed as rates calculated as the number of cases or deaths per 100,000 persons in counties meeting various classification criteria using the US Census Bureau Population Estimates Program (2019 Vintage).

    Each county within jurisdictions is classified into multiple categories for each factor. All rates in this dataset are based on classification of counties by the characteristics of their population, not individual-level factors. This applies to each of the available factors observed in this dataset. Specific factors and their corresponding categories are detailed below.

    Population-level factors Each unique population factor is detailed below. Please note that the “Classification” column describes each of the 12 factors in the dataset, including a data dictionary describing what each numeric digit means within each classification. The “Category” column uses numeric digits (2-6, depending on the factor) defined in the “Classification” column.

    Metro vs. Non-Metro – “Metro_Rural” Metro vs. Non-Metro classification type is an aggregation of the 6 National Center for Health Statistics (NCHS) Urban-Rural classifications, where “Metro” counties include Large Central Metro, Large Fringe Metro, Medium Metro, and Small Metro areas and “Non-Metro” counties include Micropolitan and Non-Core (Rural) areas. 1 – Metro, including “Large Central Metro, Large Fringe Metro, Medium Metro, and Small Metro” areas 2 – Non-Metro, including “Micropolitan, and Non-Core” areas

    Urban/rural - “NCHS_Class” Urban/rural classification type is based on the 2013 National Center for Health Statistics Urban-Rural Classification Scheme for Counties. Levels consist of:

    1 Large Central Metro
    2 Large Fringe Metro 3 Medium Metro 4 Small Metro 5 Micropolitan 6 Non-Core (Rural)

    American Community Survey (ACS) data were used to classify counties based on their age, race/ethnicity, household size, poverty level, and health insurance status distributions. Cut points were generated by using tertiles and categorized as High, Moderate, and Low percentages. The classification “Percent non-Hispanic, Native Hawaiian/Pacific Islander” is only available for “Hawaii” due to low numbers in this category for other available locations. This limitation also applies to other race/ethnicity categories within certain jurisdictions, where 0 counties fall into the certain category. The cut points for each ACS category are further detailed below:

    Age 65 - “Age65”

    1 Low (0-24.4%) 2 Moderate (>24.4%-28.6%) 3 High (>28.6%)

    Non-Hispanic, Asian - “NHAA”

    1 Low (<=5.7%) 2 Moderate (>5.7%-17.4%) 3 High (>17.4%)

    Non-Hispanic, American Indian/Alaskan Native - “NHIA”

    1 Low (<=0.7%) 2 Moderate (>0.7%-30.1%) 3 High (>30.1%)

    Non-Hispanic, Black - “NHBA”

    1 Low (<=2.5%) 2 Moderate (>2.5%-37%) 3 High (>37%)

    Hispanic - “HISP”

    1 Low (<=18.3%) 2 Moderate (>18.3%-45.5%) 3 High (>45.5%)

    Population in Poverty - “Pov”

    1 Low (0-12.3%) 2 Moderate (>12.3%-17.3%) 3 High (>17.3%)

    Population Uninsured- “Unins”

    1 Low (0-7.1%) 2 Moderate (>7.1%-11.4%) 3 High (>11.4%)

    Average Household Size - “HH”

    1 Low (1-2.4) 2 Moderate (>2.4-2.6) 3 High (>2.6)

    Community Vulnerability Index Value - “CCVI” COVID-19 Community Vulnerability Index (CCVI) scores are from Surgo Ventures, which range from 0 to 1, were generated based on tertiles and categorized as:

    1 Low Vulnerability (0.0-0.4) 2 Moderate Vulnerability (0.4-0.6) 3 High Vulnerability (0.6-1.0)

    Social Vulnerability Index Value – “SVI" Social Vulnerability Index (SVI) scores (vintage 2020), which also range from 0 to 1, are from CDC/ASTDR’s Geospatial Research, Analysis & Service Program. Cut points for CCVI and SVI scores were generated based on tertiles and categorized as:

    1 Low Vulnerability (0-0.333) 2 Moderate Vulnerability (0.334-0.666) 3 High Vulnerability (0.667-1)

  19. COVID-19 Trends in Each Country

    • data.amerigeoss.org
    esri rest, html
    Updated Jul 29, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ESRI (2020). COVID-19 Trends in Each Country [Dataset]. https://data.amerigeoss.org/dataset/covid-19-trends-in-each-country
    Explore at:
    html, esri restAvailable download formats
    Dataset updated
    Jul 29, 2020
    Dataset provided by
    Esrihttp://esri.com/
    Description

    COVID-19 Trends Methodology
    Our goal is to analyze and present daily updates in the form of recent trends within countries, states, or counties during the COVID-19 global pandemic. The data we are analyzing is taken directly from the Johns Hopkins University Coronavirus COVID-19 Global Cases Dashboard, though we expect to be one day behind the dashboard’s live feeds to allow for quality assurance of the data.


    6/24/2020 - Expanded Case Rates discussion to include fix on 6/23 for calculating active cases.
    6/22/2020 - Added Executive Summary and Subsequent Outbreaks sections
    Revisions on 6/10/2020 based on updated CDC reporting. This affects the estimate of active cases by revising the average duration of cases with hospital stays downward from 30 days to 25 days. The result shifted 76 U.S. counties out of Epidemic to Spreading trend and no change for national level trends.
    Methodology update on 6/2/2020: This sets the length of the tail of new cases to 6 to a maximum of 14 days, rather than 21 days as determined by the last 1/3 of cases. This was done to align trends and criteria for them with U.S. CDC guidance. The impact is areas transition into Controlled trend sooner for not bearing the burden of new case 15-21 days earlier.
    Correction on 6/1/2020
    Discussion of our assertion of an abundance of caution in assigning trends in rural counties added 5/7/2020.
    Revisions added on 4/30/2020 are highlighted.
    Revisions added on 4/23/2020 are highlighted.

    Executive Summary
    COVID-19 Trends is a methodology for characterizing the current trend for places during the COVID-19 global pandemic. Each day we assign one of five trends: Emergent, Spreading, Epidemic, Controlled, or End Stage to geographic areas to geographic areas based on the number of new cases, the number of active cases, the total population, and an algorithm (described below) that contextualize the most recent fourteen days with the overall COVID-19 case history. Currently we analyze the countries of the world and the U.S. Counties.
    The purpose is to give policymakers, citizens, and analysts a fact-based data driven sense for the direction each place is currently going. When a place has the initial cases, they are assigned Emergent, and if that place controls the rate of new cases, they can move directly to Controlled, and even to End Stage in a short time. However, if the reporting or measures to curtail spread are not adequate and significant numbers of new cases continue, they are assigned to Spreading, and in cases where the spread is clearly uncontrolled, Epidemic trend.

    We analyze the data reported by Johns Hopkins University to produce the trends, and we report the rates of cases, spikes of new cases, the number of days since the last reported case, and number of deaths. We also make adjustments to the assignments based on population so rural areas are not assigned trends based solely on case rates, which can be quite high relative to local populations.

    Two key factors are not consistently known or available and should be taken into consideration with the assigned trend. First is the amount of resources, e.g., hospital beds, physicians, etc.that are currently available in each area. Second is the number of recoveries, which are often not tested or reported. On the latter, we provide a probable number of active cases based on CDC guidance for the typical duration of mild to severe cases.

    Reasons for undertaking this work in March of 2020:
    1. The popular online maps and dashboards show counts of confirmed cases, deaths, and recoveries by country or administrative sub-region. Comparing the counts of one country to another can only provide a basis for comparison during the initial stages of the outbreak when counts were low and the number of local outbreaks in each country was low. By late March 2020, countries with small populations were being left out of the mainstream news because it was not easy to recognize they had high per capita rates of cases (Switzerland, Luxembourg, Iceland, etc.). Additionally, comparing countries that have had confirmed COVID-19 cases for high numbers of days to countries where the outbreak occurred recently is also a poor basis for comparison.
    2. The graphs of confirmed cases and daily increases in cases were fit into a standard size rectangle, though the Y-axis for one country had a maximum value of 50, and for another country 100,000, which potentially misled people interpreting the slope of the curve. Such misleading circumstances affected comparing large population countries to small population counties or countries with low numbers of cases to China which had a large count of cases in the early part of the outbreak. These challenges for interpreting and comparing these graphs represent work each reader must do based on their experience and ability. Thus, we felt it would be a service to attempt to automate the thought process experts would use when visually analyzing these graphs, particularly the most recent tail of the graph, and provide readers with an a resulting synthesis to characterize the state of the pandemic in that country, state, or county.
    3. The lack of reliable data for confirmed recoveries and therefore active cases. Merely subtracting deaths from total cases to arrive at this figure progressively loses accuracy after two weeks. The reason is 81% of cases recover after experiencing mild symptoms in 10 to 14 days. Severe cases are 14% and last 15-30 days (based on average days with symptoms of 11 when admitted to hospital plus 12 days median stay, and plus of one week to include a full range of severely affected people who recover). Critical cases are 5% and last 31-56 days. Sources:
    • U.S. CDC. April 3, 2020 Interim Clinical Guidance for Management of Patients with Confirmed Coronavirus Disease (COVID-19). Accessed online.
    • Initial older guidance was also obtained online.
    Additionally, many people who recover may not be tested, and many who are, may not be tracked due to privacy laws.
    Thus, the formula used to compute an estimate of active cases is:

    Active Cases = 100% of new cases in past 14 days + 19% from past 15-25 days + 5% from past 26-49 days - total deaths.
    <br

  20. DCMS Sectors Economic Estimates: Monthly GVA (to June 2022)

    • gov.uk
    • s3.amazonaws.com
    Updated Oct 5, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department for Digital, Culture, Media & Sport (2022). DCMS Sectors Economic Estimates: Monthly GVA (to June 2022) [Dataset]. https://www.gov.uk/government/statistics/dcms-sectors-economic-estimates-monthly-gva-to-june-2022
    Explore at:
    Dataset updated
    Oct 5, 2022
    Dataset provided by
    GOV.UKhttp://gov.uk/
    Authors
    Department for Digital, Culture, Media & Sport
    Description

    Headline findings

    Reported DCMS Sector GVA is estimated to have grown by 0.7% from Quarter 1 (January to March) to Quarter 2 2022 (April to June) in real terms. By comparison, the whole UK economy fell by 0.1% from Quarter 1 to Quarter 2 2022.

    GVA of reported DCMS Sectors in June 2022 was 5.3% above February 2020 levels, which was the most recent month not significantly affected by the pandemic. By comparison, GVA for the whole UK economy was 1.0% higher than in February 2020.

    Revision notice:

    The summed monthly GVA table has been revised since publication to include data for the Cultural sector (on 5 October 2022). This column previously duplicated Creative Industries in error. There are no changes to the text on the summary page.

    Released

    18 August 2022.

    About this release

    Monthly estimates

    These Economic Estimates are Official Statistics used to provide an estimate of the economic contribution of DCMS Sectors in terms of gross value added (GVA), for the period January 2019 to June 2022. Provisional monthly GVA in 2019 and 2020 was first published in March 2021 as an ad hoc statistical release. This current release contains new figures for April to June 2022 and revised estimates for previous months.

    Estimates are in chained volume measures (i.e. have been adjusted for inflation) and are seasonally adjusted. These latest monthly estimates should only be used to illustrate general trends, not used as definitive figures.

    You can use these estimates to:

    • Look at relative indicative changes in GVA over time for DCMS sectors and subsectors

    You should not use these estimates to:

    • Quantify GVA for a specific month
    • Measure absolute change in GVA over time
    • Determine findings for DCMS sectors that are defined using more detailed industrial classes (due to the data sources only being available at broader industry levels)

    “Summed monthly” Annual GVA

    Estimates of annual GVA by DCMS Sectors, based on the monthly series, are now included in this release for 2019 to 2021. These are calculated by summing the monthly estimates for the calendar year and were first published for 2019 and 2020 in DCMS Sector National Economic Estimates: 2011 - 2020.

    These estimates have been published, updating what was first published last year, in order to meet growing demand for annual figures for GVA beyond the 2019 estimates in our National Statistics GVA publication. Those estimates remain the most robust for our sectors, however estimates for years after 2019 have been delayed owing to the coronavirus (COVID-19) pandemic.

    Consequently, these “summed monthly” annual estimate figures for GVA can be used but should not be seen as definitive.

    Data sources

    The findings are calculated based on published ONS data sources including the Index of Services and Index of Production.

    These data sources provide an estimate of the monthly change in GVA for all UK industries. However, the data is only available for broader industry groups, whereas DCMS sectors are defined at a more detailed industrial level. For example, GVA for ‘Cultural education’ is estimated based on the trend for all education. Sectors such as ‘Cultural education’ may have been affected differently by COVID-19 compared to education in general. These estimates are also based on the composition of the economy in 2019. Overall, this means the accuracy of monthly GVA for DCMS sectors is likely to be lower for months in 2020 and 2021.

    The technical guidance contains further information about data sources, methodology, and the validation and accuracy of these estimates.

    Revisions

    Figures are provisional and subject to revision on a monthly basis when the ONS Index of Services and Index of Production are updated. Figures for the latest month will be highly uncertain.

    The impact of these revisions is highlighted in the following example; for the revisions applied in February 2022 the average change to DCMS sector monthly GVA was 0.6%, but there were larger differences fo

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2024). Latin America: economic sectors hit by COVID-19, based on GDP share [Dataset]. https://www.statista.com/statistics/1115450/latin-america-econmic-sectors-share-gpd-pandemic-impact/
Organization logo

Latin America: economic sectors hit by COVID-19, based on GDP share

Explore at:
Dataset updated
Aug 6, 2024
Dataset authored and provided by
Statistahttp://statista.com/
Time period covered
2020
Area covered
Latin America, LAC
Description

According to recent estimates, the most affected sectors by the coronavirus pandemic in Latin America would be wholesale and retail trade as well as services in general, such as tourism, foodservice, transport, and communications. In 2020, this group of most affected sectors was forecasted to represent more than 16 percent of Brazil’s gross domestic product (GDP). Among the countries shown in this graph, Brazil is the nation where sectors moderately affected by the pandemic could represent the highest contribution to GDP (75.8 percent).

Which Latin American economies were most vulnerable to the pandemic? In 2020, the economic sectors most affected by the coronavirus pandemic - wholesale and retail, hotels and restaurants, transport and services in general - were forecasted to account for 35.5 percent of Panama’s GDP. In addition, the moderately and most affected economic segments were estimated to contribute the most to Panama’s GDP (a combined 97.6 percent) than any other country in this region. A similar scenario was projected in Mexico, where the sectors that would least suffer the pandemic's negative effects would account for only 3.4 percent of GDP.

Did the pandemic put a stop to economic growth in Latin America? Economic growth changed dramatically after the COVID-19 outbreak. Most of the largest economies in Latin America fell under recession in 2020. Estimates predict a more optimistic scenario for 2021, with countries such as Mexico, Colombia, and Argentina growing their GDP at least five percent.

Search
Clear search
Close search
Google apps
Main menu