90 datasets found
  1. a

    Querying Data Using ArcGIS Pro

    • hub.arcgis.com
    Updated Jan 30, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State of Delaware (2019). Querying Data Using ArcGIS Pro [Dataset]. https://hub.arcgis.com/documents/1feba2ff29904387a4920f5c45c77d2c
    Explore at:
    Dataset updated
    Jan 30, 2019
    Dataset authored and provided by
    State of Delaware
    Description

    Learn the building blocks of a query expression and how to select features that meet one or more attribute criteria.

  2. National Hydrography Dataset Plus Version 2.1

    • resilience-fema.hub.arcgis.com
    • resilience.climate.gov
    • +5more
    Updated Aug 16, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2022). National Hydrography Dataset Plus Version 2.1 [Dataset]. https://resilience-fema.hub.arcgis.com/maps/4bd9b6892530404abfe13645fcb5099a
    Explore at:
    Dataset updated
    Aug 16, 2022
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    The National Hydrography Dataset Plus (NHDplus) maps the lakes, ponds, streams, rivers and other surface waters of the United States. Created by the US EPA Office of Water and the US Geological Survey, the NHDPlus provides mean annual and monthly flow estimates for rivers and streams. Additional attributes provide connections between features facilitating complicated analyses. For more information on the NHDPlus dataset see the NHDPlus v2 User Guide.Dataset SummaryPhenomenon Mapped: Surface waters and related features of the United States and associated territories not including Alaska.Geographic Extent: The United States not including Alaska, Puerto Rico, Guam, US Virgin Islands, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American SamoaProjection: Web Mercator Auxiliary Sphere Visible Scale: Visible at all scales but layer draws best at scales larger than 1:1,000,000Source: EPA and USGSUpdate Frequency: There is new new data since this 2019 version, so no updates planned in the futurePublication Date: March 13, 2019Prior to publication, the NHDPlus network and non-network flowline feature classes were combined into a single flowline layer. Similarly, the NHDPlus Area and Waterbody feature classes were merged under a single schema.Attribute fields were added to the flowline and waterbody layers to simplify symbology and enhance the layer's pop-ups. Fields added include Pop-up Title, Pop-up Subtitle, On or Off Network (flowlines only), Esri Symbology (waterbodies only), and Feature Code Description. All other attributes are from the original NHDPlus dataset. No data values -9999 and -9998 were converted to Null values for many of the flowline fields.What can you do with this layer?Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.ArcGIS OnlineAdd this layer to a map in the map viewer. The layer is limited to scales of approximately 1:1,000,000 or larger but a vector tile layer created from the same data can be used at smaller scales to produce a webmap that displays across the full range of scales. The layer or a map containing it can be used in an application. Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Apply filters. For example you can set a filter to show larger streams and rivers using the mean annual flow attribute or the stream order attribute. Change the layer’s style and symbologyAdd labels and set their propertiesCustomize the pop-upUse as an input to the ArcGIS Online analysis tools. This layer works well as a reference layer with the trace downstream and watershed tools. The buffer tool can be used to draw protective boundaries around streams and the extract data tool can be used to create copies of portions of the data.ArcGIS ProAdd this layer to a 2d or 3d map. Use as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class. Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of the ArcGIS Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.

  3. GeoForm (Deprecated)

    • data-salemva.opendata.arcgis.com
    • cityofdentongishub-dentontxgis.hub.arcgis.com
    Updated Jul 3, 2014
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    esri_en (2014). GeoForm (Deprecated) [Dataset]. https://data-salemva.opendata.arcgis.com/items/931653256fd24301a84fc77955914a82
    Explore at:
    Dataset updated
    Jul 3, 2014
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    esri_en
    Description

    Geoform is a configurable app template for form based data editing of a Feature Service. This application allows users to enter data through a form instead of a map's pop-up while leveraging the power of the Web Map and editable Feature Services. This app geo-enables data and workflows by lowering the barrier of entry for completing simple tasks. Use CasesProvides a form-based experience for entering data through a form instead of a map pop-up. This is a good choice for users who find forms a more intuitive format than pop-ups for entering data.Useful to collect new point data from a large audience of non technical staff or members of the community.Configurable OptionsGeoform has an interactive builder used to configure the app in a step-by-step process. Use Geoform to collect new point data and configure it using the following options:Choose a web map and the editable layer(s) to be used for collection.Provide a title, logo image, and form instructions/details.Control and choose what attribute fields will be present in the form. Customize how they appear in the form, the order they appear in, and add hint text.Select from over 15 different layout themes.Choose the display field that will be used for sorting when viewing submitted entries.Enable offline support, social media sharing, default map extent, locate on load, and a basemap toggle button.Choose which locate methods are available in the form, including: current location, search, latitude and longitude, USNG coordinates, MGRS coordinates, and UTM coordinates.Supported DevicesThis application is responsively designed to support use in browsers on desktops, mobile phones, and tablets.Data RequirementsThis web app includes the capability to edit a hosted feature service or an ArcGIS Server feature service. Creating hosted feature services requires an ArcGIS Online organizational subscription or an ArcGIS Developer account. Get Started This application can be created in the following ways:Click the Create a Web App button on this pageShare a map and choose to Create a Web AppOn the Content page, click Create - App - From Template Click the Download button to access the source code. Do this if you want to host the app on your own server and optionally customize it to add features or change styling.

  4. d

    Geospatial Data from the Alpine Treeline Warming Experiment (ATWE) on Niwot...

    • search.dataone.org
    • knb.ecoinformatics.org
    • +1more
    Updated Jul 7, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Fabian Zuest; Cristina Castanha; Nicole Lau; Lara M. Kueppers (2021). Geospatial Data from the Alpine Treeline Warming Experiment (ATWE) on Niwot Ridge, Colorado, USA [Dataset]. http://doi.org/10.15485/1804896
    Explore at:
    Dataset updated
    Jul 7, 2021
    Dataset provided by
    ESS-DIVE
    Authors
    Fabian Zuest; Cristina Castanha; Nicole Lau; Lara M. Kueppers
    Time period covered
    Jan 1, 2008 - Jan 1, 2012
    Area covered
    Description

    This is a collection of all GPS- and computer-generated geospatial data specific to the Alpine Treeline Warming Experiment (ATWE), located on Niwot Ridge, Colorado, USA. The experiment ran between 2008 and 2016, and consisted of three sites spread across an elevation gradient. Geospatial data for all three experimental sites and cone/seed collection locations are included in this package. ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– Geospatial files include cone collection, experimental site, seed trap, and other GPS location/terrain data. File types include ESRI shapefiles, ESRI grid files or Arc/Info binary grids, TIFFs (.tif), and keyhole markup language (.kml) files. Trimble-imported data include plain text files (.txt), Trimble COR (CorelDRAW) files, and Trimble SSF (Standard Storage Format) files. Microsoft Excel (.xlsx) and comma-separated values (.csv) files corresponding to the attribute tables of many files within this package are also included. A complete list of files can be found in this document in the “Data File Organization” section in the included Data User's Guide. Maps are also included in this data package for reference and use. These maps are separated into two categories, 2021 maps and legacy maps, which were made in 2010. Each 2021 map has one copy in portable network graphics (.png) format, and the other in .pdf format. All legacy maps are in .pdf format. .png image files can be opened with any compatible programs, such as Preview (Mac OS) and Photos (Windows). All GIS files were imported into geopackages (.gpkg) using QGIS, and double-checked for compatibility and data/attribute integrity using ESRI ArcGIS Pro. Note that files packaged within geopackages will open in ArcGIS Pro with “main.” preceding each file name, and an extra column named “geom” defining geometry type in the attribute table. The contents of each geospatial file remain intact, unless otherwise stated in “niwot_geospatial_data_list_07012021.pdf/.xlsx”. This list of files can be found as an .xlsx and a .pdf in this archive. As an open-source file format, files within gpkgs (TIFF, shapefiles, ESRI grid or “Arc/Info Binary”) can be read using both QGIS and ArcGIS Pro, and any other geospatial softwares. Text and .csv files can be read using TextEdit/Notepad/any simple text-editing software; .csv’s can also be opened using Microsoft Excel and R. .kml files can be opened using Google Maps or Google Earth, and Trimble files are most compatible with Trimble’s GPS Pathfinder Office software. .xlsx files can be opened using Microsoft Excel. PDFs can be opened using Adobe Acrobat Reader, and any other compatible programs. A selection of original shapefiles within this archive were generated using ArcMap with associated FGDC-standardized metadata (xml file format). We are including these original files because they contain metadata only accessible using ESRI programs at this time, and so that the relationship between shapefiles and xml files is maintained. Individual xml files can be opened (without a GIS-specific program) using TextEdit or Notepad. Since ESRI’s compatibility with FGDC metadata has changed since the generation of these files, many shapefiles will require upgrading to be compatible with ESRI’s latest versions of geospatial software. These details are also noted in the “niwot_geospatial_data_list_07012021” file.

  5. National Hydrography Dataset Plus High Resolution

    • oregonwaterdata.org
    • dangermondpreserve-tnc.hub.arcgis.com
    • +1more
    Updated Mar 16, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2023). National Hydrography Dataset Plus High Resolution [Dataset]. https://www.oregonwaterdata.org/maps/f1f45a3ba37a4f03a5f48d7454e4b654
    Explore at:
    Dataset updated
    Mar 16, 2023
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    The National Hydrography Dataset Plus High Resolution (NHDplus High Resolution) maps the lakes, ponds, streams, rivers and other surface waters of the United States. Created by the US Geological Survey, NHDPlus High Resolution provides mean annual flow and velocity estimates for rivers and streams. Additional attributes provide connections between features facilitating complicated analyses.For more information on the NHDPlus High Resolution dataset see the User’s Guide for the National Hydrography Dataset Plus (NHDPlus) High Resolution.Dataset SummaryPhenomenon Mapped: Surface waters and related features of the United States and associated territoriesGeographic Extent: The Contiguous United States, Hawaii, portions of Alaska, Puerto Rico, Guam, US Virgin Islands, Northern Marianas Islands, and American SamoaProjection: Web Mercator Auxiliary Sphere Visible Scale: Visible at all scales but layer draws best at scales larger than 1:1,000,000Source: USGSUpdate Frequency: AnnualPublication Date: July 2022This layer was symbolized in the ArcGIS Map Viewer and while the features will draw in the Classic Map Viewer the advanced symbology will not. Prior to publication, the network and non-network flowline feature classes were combined into a single flowline layer. Similarly, the Area and Waterbody feature classes were merged under a single schema.Attribute fields were added to the flowline and waterbody layers to simplify symbology and enhance the layer's pop-ups. Fields added include Pop-up Title, Pop-up Subtitle, Esri Symbology (waterbodies only), and Feature Code Description. All other attributes are from the original dataset. No data values -9999 and -9998 were converted to Null values.What can you do with this layer?Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.ArcGIS OnlineAdd this layer to a map in the map viewer. The layer or a map containing it can be used in an application. Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Apply filters. For example you can set a filter to show larger streams and rivers using the mean annual flow attribute or the stream order attribute.Change the layer’s style and symbologyAdd labels and set their propertiesCustomize the pop-upUse as an input to the ArcGIS Online analysis tools. This layer works well as a reference layer with the trace downstream and watershed tools. The buffer tool can be used to draw protective boundaries around streams and the extract data tool can be used to create copies of portions of the data.ArcGIS ProAdd this layer to a 2d or 3d map.Use as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class.Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of the ArcGIS Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.

  6. Sentinel-2 10m Land Use/Land Cover Change from 2018 to 2021

    • pacificgeoportal.com
    • gis-for-secondary-schools-schools-be.hub.arcgis.com
    Updated Feb 10, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2022). Sentinel-2 10m Land Use/Land Cover Change from 2018 to 2021 [Dataset]. https://www.pacificgeoportal.com/datasets/30c4287128cc446b888ca020240c456b
    Explore at:
    Dataset updated
    Feb 10, 2022
    Dataset authored and provided by
    Esrihttp://esri.com/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    Retirement Notice: This item is in mature support as of February 2023 and will be retired in December 2025. A new version of this item is available for your use. Esri recommends updating your maps and apps to use the new version.This layer displays change in pixels of the Sentinel-2 10m Land Use/Land Cover product developed by Esri, Impact Observatory, and Microsoft. Available years to compare with 2021 are 2018, 2019 and 2020. By default, the layer shows all comparisons together, in effect showing what changed 2018-2021. But the layer may be changed to show one of three specific pairs of years, 2018-2021, 2019-2021, or 2020-2021.Showing just one pair of years in ArcGIS Online Map Viewer To show just one pair of years in ArcGIS Online Map viewer, create a filter. 1. Click the filter button. 2. Next, click add expression. 3. In the expression dialogue, specify a pair of years with the ProductName attribute. Use the following example in your expression dialogue to show only places that changed between 2020 and 2021:ProductNameis2020-2021 By default, places that do not change appear as a transparent symbol in ArcGIS Pro. But in ArcGIS Online Map Viewer, a transparent symbol may need to be set for these places after a filter is chosen. To do this: 4. Click the styles button.5. Under unique values click style options. 6. Click the symbol next to No Change at the bottom of the legend. 7. Click the slider next to "enable fill" to turn the symbol off. Showing just one pair of years in ArcGIS Pro To show just one pair of years in ArcGIS Pro, choose one of the layer's processing templates to single out a particular pair of years. The processing template applies a definition query that works in ArcGIS Pro. 1. To choose a processing template, right click the layer in the table of contents for ArcGIS Pro and choose properties. 2. In the dialogue that comes up, choose the tab that says processing templates. 3. On the right where it says processing template, choose the pair of years you would like to display. The processing template will stay applied for any analysis you may want to perform as well. How the change layer was created, combining LULC classes from two yearsImpact Observatory, Esri, and Microsoft used artificial intelligence to classify the world in 10 Land Use/Land Cover (LULC) classes for the years 2017-2021. Mosaics serve the following sets of change rasters in a single global layer: Change between 2018 and 2021Change between 2019 and 2021Change between 2020 and 2021To make this change layer, Esri used an arithmetic operation combining the cells from a source year and 2021 to make a change index value. ((from year * 16) + to year) In the example of the change between 2020 and 2021, the from year (2020) was multiplied by 16, then added to the to year (2021). Then the combined number is served as an index in an 8 bit unsigned mosaic with an attribute table which describes what changed or did not change in that timeframe. Variable mapped: Change in land cover between 2018, 2019, or 2020 and 2021 Data Projection: Universal Transverse Mercator (UTM)Mosaic Projection: WGS84Extent: GlobalSource imagery: Sentinel-2Cell Size: 10m (0.00008983152098239751 degrees)Type: ThematicSource: Esri Inc.Publication date: January 2022 What can you do with this layer?Global LULC maps provide information on conservation planning, food security, and hydrologic modeling, among other things. This dataset can be used to visualize land cover anywhere on Earth. This layer can also be used in analyses that require land cover input. For example, the Zonal Statistics tools allow a user to understand the composition of a specified area by reporting the total estimates for each of the classes. Land Cover processingThis map was produced by a deep learning model trained using over 5 billion hand-labeled Sentinel-2 pixels, sampled from over 20,000 sites distributed across all major biomes of the world. The underlying deep learning model uses 6 bands of Sentinel-2 surface reflectance data: visible blue, green, red, near infrared, and two shortwave infrared bands. To create the final map, the model is run on multiple dates of imagery throughout the year, and the outputs are composited into a final representative map. Processing platformSentinel-2 L2A/B data was accessed via Microsoft’s Planetary Computer and scaled using Microsoft Azure Batch. Class definitions1. WaterAreas where water was predominantly present throughout the year; may not cover areas with sporadic or ephemeral water; contains little to no sparse vegetation, no rock outcrop nor built up features like docks; examples: rivers, ponds, lakes, oceans, flooded salt plains.2. TreesAny significant clustering of tall (~15-m or higher) dense vegetation, typically with a closed or dense canopy; examples: wooded vegetation, clusters of dense tall vegetation within savannas, plantations, swamp or mangroves (dense/tall vegetation with ephemeral water or canopy too thick to detect water underneath).4. Flooded vegetationAreas of any type of vegetation with obvious intermixing of water throughout a majority of the year; seasonally flooded area that is a mix of grass/shrub/trees/bare ground; examples: flooded mangroves, emergent vegetation, rice paddies and other heavily irrigated and inundated agriculture.5. CropsHuman planted/plotted cereals, grasses, and crops not at tree height; examples: corn, wheat, soy, fallow plots of structured land.7. Built AreaHuman made structures; major road and rail networks; large homogenous impervious surfaces including parking structures, office buildings and residential housing; examples: houses, dense villages / towns / cities, paved roads, asphalt.8. Bare groundAreas of rock or soil with very sparse to no vegetation for the entire year; large areas of sand and deserts with no to little vegetation; examples: exposed rock or soil, desert and sand dunes, dry salt flats/pans, dried lake beds, mines.9. Snow/IceLarge homogenous areas of permanent snow or ice, typically only in mountain areas or highest latitudes; examples: glaciers, permanent snowpack, snow fields. 10. CloudsNo land cover information due to persistent cloud cover.11. Rangeland Open areas covered in homogenous grasses with little to no taller vegetation; wild cereals and grasses with no obvious human plotting (i.e., not a plotted field); examples: natural meadows and fields with sparse to no tree cover, open savanna with few to no trees, parks/golf courses/lawns, pastures. Mix of small clusters of plants or single plants dispersed on a landscape that shows exposed soil or rock; scrub-filled clearings within dense forests that are clearly not taller than trees; examples: moderate to sparse cover of bushes, shrubs and tufts of grass, savannas with very sparse grasses, trees or other plants.CitationKarra, Kontgis, et al. “Global land use/land cover with Sentinel-2 and deep learning.” IGARSS 2021-2021 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2021.AcknowledgementsTraining data for this project makes use of the National Geographic Society Dynamic World training dataset, produced for the Dynamic World Project by National Geographic Society in partnership with Google and the World Resources Institute.For questions please email environment@esri.com

  7. g

    Moose Crucial Range

    • data.geospatialhub.org
    • hub.arcgis.com
    • +3more
    Updated Apr 30, 2012
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    WyomingGameAndFish@wgfd (2012). Moose Crucial Range [Dataset]. https://data.geospatialhub.org/items/2f75d229b96946b79599839c97640eb8
    Explore at:
    Dataset updated
    Apr 30, 2012
    Dataset authored and provided by
    WyomingGameAndFish@wgfd
    Area covered
    Description

    NOTE: This layer is a subset of the corresponding seasonal range layer for this species. All of the same metadata is used for this subset. The citation title is modified to replace "Seasonal" with "Crucial" and only the following seasonal ranges are included: anything with a "crucial" (CRU) designation in the RANGE attribute field (Select By Attributes... > "RANGE" LIKE '%CRU%').This data set represents the 2012 moose seasonal range boundaries for Wyoming. Seasonal range delineations depict lands that are important in each season for certain biological processes within a herd unit. Seasonal range boundaries are based on long-term observation data, specific research projects, and professional judgement. Ranges are digitized at a scale of 1:100,000 using USGS 1:100,000 DRGs as a backdrop for heads up digitizing, and are revised as needed by the Wyoming Game and Fish Department. Current seasonal range definitions are based on a 1990 document drafted by the Wyoming Chapter of The Wildlife Society in cooperation with the Wyoming Game and Fish Department and federal land agencies.

  8. g

    Rocky Mountain Goat Crucial Range

    • data.geospatialhub.org
    • wyoming-wgfd.opendata.arcgis.com
    • +2more
    Updated Apr 30, 2012
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    WyomingGameAndFish@wgfd (2012). Rocky Mountain Goat Crucial Range [Dataset]. https://data.geospatialhub.org/datasets/95765c8309d749048160ce2ed052caa6
    Explore at:
    Dataset updated
    Apr 30, 2012
    Dataset authored and provided by
    WyomingGameAndFish@wgfd
    Area covered
    Description

    NOTE: This layer is a subset of the corresponding seasonal range layer for this species. All of the same metadata is used for this subset. The citation title is modified to replace "Seasonal" with "Crucial" and only the following seasonal ranges are included: anything with a "crucial" (CRU) designation in the RANGE attribute field (Select By Attributes... > "RANGE" LIKE '%CRU%').This data set represents the 2012 mountain goat seasonal range boundaries for Wyoming. Seasonal range delineations depict lands that are important in each season for certain biological processes within a herd unit. Seasonal range boundaries are based on long-term observation data, specific research projects, and professional judgement. Ranges are digitized at a scale of 1:100,000 using USGS 1:100,000 DRGs as a backdrop for heads up digitizing, and are revised as needed by the Wyoming Game and Fish Department. Current seasonal range definitions are based on a 1990 document drafted by the Wyoming Chapter of The Wildlife Society in cooperation with the Wyoming Game and Fish Department and federal land agencies.

  9. d

    King County Tax Parcel Centroids with select City of Seattle geographic...

    • catalog.data.gov
    • data.seattle.gov
    • +3more
    Updated Oct 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Seattle ArcGIS Online (2025). King County Tax Parcel Centroids with select City of Seattle geographic overlays [Dataset]. https://catalog.data.gov/dataset/king-county-tax-parcel-centroids-with-select-city-of-seattle-geographic-overlays-15483
    Explore at:
    Dataset updated
    Oct 11, 2025
    Dataset provided by
    City of Seattle ArcGIS Online
    Area covered
    King County, Seattle
    Description

    PLEASE NOTE: If choosing the Download option of "Spreadsheet" the field PIN is reformatted to a number - you will need to format it as a 10 character text string with leading zeros to join this data with data from King County.King County Assessor data has been summarized to the tax parcel identification number (PIN) and City of Seattle spatial overlay data has been assigned through geographic overlay processes. This data is updated periodically and is used to support the analytical and reporting functions of the City of Seattle long-range and policy planning office.The table includes attribute data from the King County Assessor as well as spatial overlay data for various City of Seattle reporting geographies. These geographic attributes are assigned as "majority rules" by land area in cases where multiple geographies span a single tax parcel.KCA tax parcels are created by King County for property tax assessment and collection and may not match development sites as defined by the City of Seattle (single buildings may span multiple tax parcels), may be stacked on top of each other to represent undivided interest and vertical parcels, or may be made up of several sites that are not contiguous. Every effort is made to accurately summarize key tax parcel attributes to a single PIN. Attributes include parcel centroid locations in latitude/longitude and Washington State Plane X,Y. To get polygon representation of the data please see King County's open data page for parcels and join this table through the PIN field. Please be aware that the King County Assessor site address is not a postal address and may not match other address sources for the same property such as postal, utility billing, and permitting.See the detailed data dictionary for more information.

  10. g

    Antelope Crucial Range

    • data.geospatialhub.org
    • wyoming-wgfd.opendata.arcgis.com
    • +2more
    Updated May 1, 2012
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    WyomingGameAndFish@wgfd (2012). Antelope Crucial Range [Dataset]. https://data.geospatialhub.org/items/5ce8eaffcd4e47b99a0164bb81881d36
    Explore at:
    Dataset updated
    May 1, 2012
    Dataset authored and provided by
    WyomingGameAndFish@wgfd
    Area covered
    Description

    NOTE: This layer is a subset of the corresponding seasonal range layer for this species. All of the same metadata is used for this subset. The citation title is modified to replace "Seasonal" with "Crucial" and only the following seasonal ranges are included: anything with a "crucial" (CRU) designation in the RANGE attribute field (Select By Attributes... > "RANGE" LIKE '%CRU%').This data set represents the 2016 pronghorn antelope seasonal range boundaries for Wyoming. Seasonal range delineations depict lands that are important in each season for certain biological processes within a herd unit. Seasonal range boundaries are based on long-term observation data, specific research projects, and professional judgement. Ranges are digitized at a scale of 1:100,000 using USGS 1:100,000 DRGs as a backdrop for heads up digitizing, and are revised as needed by the Wyoming Game and Fish Department. Current seasonal range definitions are based on a 1990 document drafted by the Wyoming Chapter of The Wildlife Society in cooperation with the Wyoming Game and Fish Department and federal land agencies.

  11. Activity FACTS Common Attributes (Feature Layer)

    • catalog.data.gov
    • agdatacommons.nal.usda.gov
    • +5more
    Updated Nov 14, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Forest Service (2025). Activity FACTS Common Attributes (Feature Layer) [Dataset]. https://catalog.data.gov/dataset/activity-facts-common-attributes-feature-layer-dcdbb
    Explore at:
    Dataset updated
    Nov 14, 2025
    Dataset provided by
    U.S. Department of Agriculture Forest Servicehttp://fs.fed.us/
    Description

    The data in this map service is updated every weekend.Note: This data includes all activities regardless of whether there is a spatial feature attached.Note: This is a large dataset. Metadata and Downloads are available at: https://data.fs.usda.gov/geodata/edw/datasets.php?xmlKeyword=FACTS+common+attributesTo download FACTS activities layers, search for the activity types you want, such as timber harvest or hazardous fuels treatments. The Forest Service's Natural Resource Manager (NRM) Forest Activity Tracking System (FACTS) is the agency standard for managing information about activities related to fire/fuels, silviculture, and invasive species. This feature class contains the FACTS attributes most commonly needed to describe FACTS activities.

  12. g

    Elk Crucial Range

    • data.geospatialhub.org
    • wyoming-wgfd.opendata.arcgis.com
    • +2more
    Updated Mar 20, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    WyomingGameAndFish@wgfd (2018). Elk Crucial Range [Dataset]. https://data.geospatialhub.org/items/ade74a3eb73448dcbd811e398d3669f3
    Explore at:
    Dataset updated
    Mar 20, 2018
    Dataset authored and provided by
    WyomingGameAndFish@wgfd
    Area covered
    Description

    NOTE: This layer is a subset of the corresponding seasonal range layer for this species. All of the same metadata is used for this subset. The citation title is modified to replace "Seasonal" with "Crucial" and only the following seasonal ranges are included: anything with a "crucial" (CRU) designation in the RANGE attribute field (Select By Attributes... > "RANGE" LIKE '%CRU%').This data set represents the 2018 elk seasonal range boundaries for Wyoming. Seasonal range delineations depict lands that are important in each season for certain biological processes within a herd unit. Seasonal range boundaries are based on long-term observation data, specific research projects, and professional judgement. Ranges were originally digitized at a scale of 1:100,000 using USGS 1:100,000 DRGs as a backdrop for heads up digitizing, and are revised as needed by the Wyoming Game and Fish Department. Current seasonal range definitions are based on a 1990 document drafted by the Wyoming Chapter of The Wildlife Society in cooperation with the Wyoming Game and Fish Department and federal land agencies.

  13. USA Flood Hazard Areas

    • sea-level-rise-esrioceans.hub.arcgis.com
    • resilience-fema.hub.arcgis.com
    • +8more
    Updated Oct 3, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2018). USA Flood Hazard Areas [Dataset]. https://sea-level-rise-esrioceans.hub.arcgis.com/datasets/11955f1b47ec41a3af86650824e0c634
    Explore at:
    Dataset updated
    Oct 3, 2018
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    United States,
    Description

    The Federal Emergency Management Agency (FEMA) produces Flood Insurance Rate maps and identifies Special Flood Hazard Areas as part of the National Flood Insurance Program's floodplain management. Special Flood Hazard Areas have regulations that include the mandatory purchase of flood insurance for holders of federally regulated mortgages. In addition, this layer can help planners and firms avoid areas of flood risk and also avoid additional cost to carry insurance for certain planned activities. Dataset SummaryPhenomenon Mapped: Flood Hazard AreasGeographic Extent: Contiguous United States, Alaska, Hawaii, Puerto Rico, Guam, US Virgin Islands, Northern Mariana Islands and American Samoa.Projection: Web Mercator Auxiliary SphereData Coordinate System: USA Contiguous Albers Equal Area Conic USGS version (contiguous US, Puerto Rico, US Virgin Islands), WGS 1984 Albers (Alaska), Hawaii Albers Equal Area Conic (Hawaii), Western Pacific Albers Equal Area Conic (Guam, Northern Mariana Islands, and American Samoa)Cell Sizes: 10 meters (default), 30 meters, and 90 metersUnits: NoneSource Type: ThematicPixel Type: Unsigned integerSource: Federal Emergency Management Agency (FEMA)Update Frequency: AnnualPublication Date: May 7, 2025 This layer is derived from the May 7, 2025 version Flood Insurance Rate Map feature class S_FLD_HAZ_AR. The vector data were then flagged with an index of 94 classes, representing a unique combination of values displayed by three renderers. (In three resolutions the three renderers make nine processing templates.) Repair Geometry was run on the set of features, then the features were rasterized using the 94 class index at a resolutions of 10, 30, and 90 meters, using the Polygon to Raster tool and the "MAXIMUM_COMBINED_AREA" option. Not every part of the United States is covered by flood rate maps. This layer compiles all the flood insurance maps available at the time of publication. To make analysis easier, areas that were NOT mapped by FEMA for flood insurance rates no longer are served as NODATA but are filled in with a value of 250, representing any unmapped areas which appear in the US Census boundary of the USA states and territories. The attribute table corresponding to value 250 will indicate that the area was not mapped.What can you do with this layer?This layer is suitable for both visualization and analysis across the ArcGIS system. This layer can be combined with your data and other layers from the ArcGIS Living Atlas of the World in ArcGIS Online and ArcGIS Pro to create powerful web maps that can be used alone or in a story map or other application. Because this layer is part of the ArcGIS Living Atlas of the World it is easy to add to your map:In ArcGIS Online, you can add this layer to a map by selecting Add then Browse Living Atlas Layers. A window will open. Type "flood hazard areas" in the search box and browse to the layer. Select the layer then click Add to Map.In ArcGIS Pro, open a map and select Add Data from the Map Tab. Select Data at the top of the drop down menu. The Add Data dialog box will open on the left side of the box, expand Portal if necessary, then select Living Atlas. Type "flood hazard areas" in the search box, browse to the layer then click OK. In ArcGIS Pro you can use the built-in raster functions to create custom extracts of the data. Imagery layers provide fast, powerful inputs to geoprocessing tools, models, or Python scripts in Pro. The ArcGIS Living Atlas of the World provides an easy way to explore many other beautiful and authoritative maps on hundreds of topics like this one. Processing TemplatesCartographic Renderer - The default. These are meaningful classes grouped by FEMA which group its own Flood Zone Type and Subtype fields. This renderer uses FEMA's own cartographic interpretations of its flood zone and zone subtype fields to help you identify and assess risk. Flood Zone Type Renderer - Specifically renders FEMA FLD_ZONE (flood zone) attribute, which distinguishes the original, broadest categories of flood zones. This renderer displays high level categories of flood zones, and is less nuanced than the Cartographic Renderer. For example, a fld_zone value of X can either have moderate or low risk depending on location. This renderer will simply render fld_zone X as its own color without identifying "500 year" flood zones within that category.Flood Insurance Requirement Renderer - Shows Special Flood Hazard Area (SFHA) true-false status. This may be helpful if you want to show just the places where flood insurance is required. A value of True means flood insurance is mandatory in a majority of the area covered by each 10m pixel. Each of these three renderers have templates at three different raster resolutions depending on your analysis needs. To include the layer in web maps to serve maps and queries, the 10 meter renderers are the preferred option. These are served with overviews and render at all resolutions. However, when doing analysis of larger areas, we now offer two coarser resolutions of 30 and 90 meters in processing templates for added convenience and time savings.Data DictionaryMaking a copy of your area of interest using copyraster in arcgis pro will copy the layer's attribute table to your network alongside the local output raster. The raster attribute table in the copied raster will contain the flood zone, zone subtype, and special flood hazard area true/false flag which corresponds to each value in the layer for your area of interest. For your convienence, we also included a table in CSV format in the box below as a data dictionary you can use as an index to every value in the layer. Value,FLD_ZONE,ZONE_SUBTY,SFHA_TF 2,A,, 3,A,,F 4,A,,T 5,A,,T 6,A,,T 7,A,1 PCT ANNUAL CHANCE FLOOD HAZARD CONTAINED IN CHANNEL,T 8,A,1 PCT ANNUAL CHANCE FLOOD HAZARD CONTAINED IN STRUCTURE,T 9,A,ADMINISTRATIVE FLOODWAY,T 10,A,COASTAL FLOODPLAIN,T 11,A,FLOWAGE EASEMENT AREA,T 12,A99,,T 13,A99,AREA WITH REDUCED FLOOD RISK DUE TO LEVEE,T 14,AE,,F 15,AE,,T 16,AE,,T 17,AE,,T 18,AE,1 PCT ANNUAL CHANCE FLOOD HAZARD CONTAINED IN CHANNEL,T 19,AE,1 PCT ANNUAL CHANCE FLOOD HAZARD CONTAINED IN STRUCTURE,T 20,AE,"1 PCT CONTAINED IN STRUCTURE, COMMUNITY ENCROACHMENT",T 21,AE,"1 PCT CONTAINED IN STRUCTURE, FLOODWAY",T 22,AE,ADMINISTRATIVE FLOODWAY,T 23,AE,AREA OF SPECIAL CONSIDERATION,T 24,AE,COASTAL FLOODPLAIN,T 25,AE,COLORADO RIVER FLOODWAY,T 26,AE,COMBINED RIVERINE AND COASTAL FLOODPLAIN,T 27,AE,COMMUNITY ENCROACHMENT,T 28,AE,COMMUNITY ENCROACHMENT AREA,T 29,AE,DENSITY FRINGE AREA,T 30,AE,FLOODWAY,T 31,AE,FLOODWAY CONTAINED IN CHANNEL,T 32,AE,FLOODWAY CONTAINED IN STRUCTURE,T 33,AE,FLOWAGE EASEMENT AREA,T 34,AE,RIVERINE FLOODWAY IN COMBINED RIVERINE AND COASTAL ZONE,T 35,AE,RIVERINE FLOODWAY SHOWN IN COASTAL ZONE,T 36,AE,STATE ENCROACHMENT AREA,T 37,AH,,T 38,AH,,T 39,AH,FLOODWAY,T 40,AO,,T 41,AO,COASTAL FLOODPLAIN,T 42,AO,FLOODWAY,T 43,AREA NOT INCLUDED,,F 44,AREA NOT INCLUDED,,T 45,AREA NOT INCLUDED,,U 46,D,,F 47,D,,T 48,D,AREA WITH FLOOD RISK DUE TO LEVEE,F 49,OPEN WATER,,F 50,OPEN WATER,,T 51,OPEN WATER,,U 52,V,,T 53,V,COASTAL FLOODPLAIN,T 54,VE,,T 55,VE,,T 56,VE,COASTAL FLOODPLAIN,T 57,VE,RIVERINE FLOODWAY SHOWN IN COASTAL ZONE,T 58,X,,F 59,X,0.2 PCT ANNUAL CHANCE FLOOD HAZARD,F 60,X,0.2 PCT ANNUAL CHANCE FLOOD HAZARD,T 61,X,0.2 PCT ANNUAL CHANCE FLOOD HAZARD,U 62,X,0.2 PCT ANNUAL CHANCE FLOOD HAZARD CONTAINED IN CHANNEL,F 63,X,0.2 PCT ANNUAL CHANCE FLOOD HAZARD CONTAINED IN STRUCTURE,F 64,X,0.2 PCT ANNUAL CHANCE FLOOD HAZARD IN COASTAL ZONE,F 65,X,0.2 PCT ANNUAL CHANCE FLOOD HAZARD IN COMBINED RIVERINE AND COASTAL ZONE,F 66,X,"1 PCT CONTAINED IN STRUCTURE, COMMUNITY ENCROACHMENT",F 67,X,"1 PCT CONTAINED IN STRUCTURE, FLOODWAY",F 68,X,1 PCT DEPTH LESS THAN 1 FOOT,F 69,X,1 PCT DRAINAGE AREA LESS THAN 1 SQUARE MILE,F 70,X,1 PCT FUTURE CONDITIONS,F 71,X,1 PCT FUTURE CONDITIONS CONTAINED IN STRUCTURE,F 72,X,"1 PCT FUTURE CONDITIONS, COMMUNITY ENCROACHMENT",F 73,X,"1 PCT FUTURE CONDITIONS, FLOODWAY",F 74,X,"1 PCT FUTURE IN STRUCTURE, COMMUNITY ENCROACHMENT",F 75,X,"1 PCT FUTURE IN STRUCTURE, FLOODWAY",F 76,X,AREA OF MINIMAL FLOOD HAZARD, 77,X,AREA OF MINIMAL FLOOD HAZARD,F 78,X,AREA OF MINIMAL FLOOD HAZARD,T 79,X,AREA OF MINIMAL FLOOD HAZARD,U 80,X,AREA OF SPECIAL CONSIDERATION,F 81,X,AREA WITH REDUCED FLOOD RISK DUE TO LEVEE,F 82,X,AREA WITH REDUCED FLOOD RISK DUE TO LEVEE,T 83,X,FLOWAGE EASEMENT AREA,F 84,X,1 PCT FUTURE CONDITIONS,T 85,AH,COASTAL FLOODPLAIN,T 86,AE,,U 87,AE,FLOODWAY,F 88,X,AREA WITH REDUCED FLOOD HAZARD DUE TO ACCREDITED LEVEE SYSTEM,F 89,X,530,F 90,VE,100,T 91,AE,100,T 92,A99,AREA WITH REDUCED FLOOD HAZARD DUE TO LEVEE SYSTEM,T 93,A99,AREA WITH REDUCED FLOOD HAZARD DUE TO NON-ACCREDITED LEVEE SYSTEM,T 94,A,COMBINED RIVERINE AND COASTAL FLOODPLAIN,T 250,AREA NOT INCLUDED,Not Mapped by FEMA, Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.

  14. s

    Property Lookup

    • data.stlouisco.com
    • hamhanding-dcdev.opendata.arcgis.com
    Updated Jul 22, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Saint Louis County GIS Service Center (2025). Property Lookup [Dataset]. https://data.stlouisco.com/datasets/property-lookup-2
    Explore at:
    Dataset updated
    Jul 22, 2025
    Dataset authored and provided by
    Saint Louis County GIS Service Center
    Description

    Web App. Use the tabs provided to discover information about map features and capabilities. Link to Metadata. A variety of searches can be performed to find the parcel of interest. Use the Query Tool to build searches. Click Apply button at the bottom of the tool.Query by Name (Last First) (e.g. Bond James)Query by Address (e.g. 41 S Central)Query by Locator number (e.g. 21J411046)Search results will be listed under the Results tab. Click on a parcel in the list to zoom to that parcel. Click on the parcel in the map and scroll through the pop-up to see more information about the parcel. Click the ellipse in the Results tab or in the pop-up to view information in a table. Attribute information can be exported to CSV file. Build a custom Filter to select and map properties by opening the Parcels attribute table: 1. Click the arrow tab at the bottom middle of the map to expand the attribute table window2. Click on the Parcels tab3. Check off Filter by map extent4. Open Options>Filter5. Build expressions as needed to filter by owner name or other variables6. Select the needed records from the returned list7. Click Zoom to which will zoom to the selected records Please note that as the map zooms out detailed layers, such as the parcel boundaries will not display. In addition to Search capabilities, the following tools are provided:MeasureDrawPrint

  15. b

    Cityworks Public Work Activity Lookup

    • datahub.burienwa.gov
    • datahub-burienwa.hub.arcgis.com
    Updated Mar 10, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Burien, WA (2023). Cityworks Public Work Activity Lookup [Dataset]. https://datahub.burienwa.gov/datasets/cityworks-public-work-activity-lookup
    Explore at:
    Dataset updated
    Mar 10, 2023
    Dataset authored and provided by
    City of Burien, WA
    Description

    Users may use this webapp to find information for City of Burien Work activities recorded in Cityworks. The app allows Users may highlight features from Public Works WorkOrders, Public Works Service Requests, Parks Non-Cyclic Work Orders, and Parks Service Requests. Routine/cyclic work activities from Parks are not included. Parks service requests are configured within the app but are not in use by the Parks department at time of app construction. The data in this app is time gated to 6 months from work orders close or from a service requests initiation to keep the returned records manageable for the end user and ensure performance.Note only work activities that have been geolocated will be displayed as a result.The primary selection tool allows users to indicate which class of work activity they wish to interact with, and draw a selection on a point or line. On pressing review, they can commit the selection to the rest of the map. They are able to export a simple description of the selected work activities as either a pdf or as a CSV file. The app allows you to expand the attribute table by clicking the arrow button at the bottom of the map. By selecting options, the user can show only the selected records. The attribute table also supports export to CSV and has more details than the simple record search. Additionally, a select and filter tool are available to help users specify the information they are looking for underneath the address search bar. The nearby tool, also located beneath the address search bar, also provides similar functionality to the primary selection tool, but allows an address to be input as the starting location. Records identified through this tool will need to be selected via the other options to view in the attribute table.

  16. d

    Legal Speed Limits

    • catalogue.data.wa.gov.au
    • esriaustraliahub.com.au
    • +2more
    Updated Oct 19, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Main Roads Western Australia (2016). Legal Speed Limits [Dataset]. https://catalogue.data.wa.gov.au/dataset/mrwa-legal-speed-limits/resource/fa7bdcef-bfed-4650-a8d4-77d690e028b6
    Explore at:
    Dataset updated
    Oct 19, 2016
    Dataset authored and provided by
    Main Roads Western Australiahttp://www.mainroads.wa.gov.au/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    Legal Speed Limit (State and Local Roads)The maximum speed limit permitted under the provisions of the State Traffic Act and Regulations. Road speed limits are used to regulate the speed of vehicles and may define maximum (which may be variable), minimum, or no speed limit. These limits are indicated using traffic signs.Speed limits are set by the Commissioner of Main Roads Western Australia (Regulation 297 of the Road Traffic Code 2000) and enforced by national or regional police and/or judicial bodies. The speed limit displayed in this layer may not be current or accurate. The only enforceable source of speed limits is the road sign at the relevant physical location.Update FrequencyUpdates to the ArcGIS layer are triggered by changes in IRIS data and refreshed weekly.DisclaimerThis layer shows the location of legal speed limits on all public access roads included in the Integrated Road Information System (IRIS) and is provided for informational purposes only.Please note that you are accessing this data under a Creative Commons Attribution Licence, which includes a disclaimer of warranties and a limitation of liability. You acknowledge that the data provided under this licence is subject to change and may not be current or accurate. The only enforceable source of speed limits is the road sign at the relevant physical location.Important Usage NoticeWhile this dataset may be used under the terms of the Creative Commons Licence, Main Roads WA does not recommend its use in navigation systems or applications requiring real-time or precise speed limit data. The dataset is not maintained for operational purposes and may not reflect current or signed speed limits. Main Roads WA is not liable for the use of this data, including in navigation or compliance tools.Licence NoticePursuant to Section 3 of the Licence, you are provided with the following notice to include when sharing the licensed material:The Commissioner of Main Roads is the creator and owner of the data and licensed material, which is accessed under a Creative Commons Attribution Licence. This licence includes a disclaimer of warranties and a limitation of liability. The data may not be current or accurate. The only enforceable source of speed limits is the road sign at the relevant physical location.LicenceCreative Commons CC BY 4.0https://creativecommons.org/licenses/by/4.0/Data Domain StewardData Planning and Standards ManagerData CustodianData and Systems ManagerOperational Data StewardData Planning and Standards ManagerCoordinate System TypeGeographic (unprojected, EPSG:4283 – GDA94)ReferencesSigns – Regulatoryhttps://portal-mainroads.opendata.arcgis.com/datasets/3768b2d6a8fe4e3fa9c8b53197ba3b5e_22/To explore the meaning of regulatory signs, refer to the Panel_01_design_meaning attribute.For speed-related signage, filter or search this attribute using the keyword "speed".

  17. a

    Flowlines

    • pend-oreille-county-open-data-pendoreilleco.hub.arcgis.com
    Updated Jun 7, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Pend Oreille County (2024). Flowlines [Dataset]. https://pend-oreille-county-open-data-pendoreilleco.hub.arcgis.com/datasets/flowlines
    Explore at:
    Dataset updated
    Jun 7, 2024
    Dataset authored and provided by
    Pend Oreille County
    Area covered
    Description

    *This dataset is authored by ESRI and is being shared as a direct link to the feature service by Pend Oreille County. NHD is a primary hydrologic reference used by our organization.The National Hydrography Dataset Plus High Resolution (NHDplus High Resolution) maps the lakes, ponds, streams, rivers and other surface waters of the United States. Created by the US Geological Survey, NHDPlus High Resolution provides mean annual flow and velocity estimates for rivers and streams. Additional attributes provide connections between features facilitating complicated analyses.For more information on the NHDPlus High Resolution dataset see the User’s Guide for the National Hydrography Dataset Plus (NHDPlus) High Resolution.Dataset SummaryPhenomenon Mapped: Surface waters and related features of the United States and associated territoriesCoordinate System: Web Mercator Auxiliary Sphere Extent: The Contiguous United States, Hawaii, portions of Alaska, Puerto Rico, Guam, US Virgin Islands, Northern Marianas Islands, and American Samoa Visible Scale: Visible at all scales but layer draws best at scales larger than 1:1,000,000Source: USGSPublication Date: July 2022This layer was symbolized in the ArcGIS Map Viewer and while the features will draw in the Classic Map Viewer the advanced symbology will not.Prior to publication, the network and non-network flowline feature classes were combined into a single flowline layer. Similarly, the Area and Waterbody feature classes were merged under a single schema.Attribute fields were added to the flowline and waterbody layers to simplify symbology and enhance the layer's pop-ups. Fields added include Pop-up Title, Pop-up Subtitle, Esri Symbology (waterbodies only), and Feature Code Description. All other attributes are from the original dataset. No data values -9999 and -9998 were converted to Null values.What can you do with this Feature Layer?Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.ArcGIS OnlineAdd this layer to a map in the map viewer. The layer or a map containing it can be used in an application. Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Apply filters. For example you can set a filter to show larger streams and rivers using the mean annual flow attribute or the stream order attribute.Change the layer’s style and symbologyAdd labels and set their propertiesCustomize the pop-upUse as an input to the ArcGIS Online analysis tools. This layer works well as a reference layer with the trace downstream and watershed tools. The buffer tool can be used to draw protective boundaries around streams and the extract data tool can be used to create copies of portions of the data.ArcGIS ProAdd this layer to a 2d or 3d map.Use as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class.Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of the ArcGIS Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.

  18. 2021 North Florida TPO National Accessibility Evaluation Data

    • gis-fdot.opendata.arcgis.com
    • mapdirect-fdep.opendata.arcgis.com
    Updated Jul 7, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Florida Department of Transportation (2023). 2021 North Florida TPO National Accessibility Evaluation Data [Dataset]. https://gis-fdot.opendata.arcgis.com/content/7caa0a8dfdaf4443b168e988a2ce845f
    Explore at:
    Dataset updated
    Jul 7, 2023
    Dataset authored and provided by
    Florida Department of Transportationhttps://www.fdot.gov/
    Area covered
    Description

    Overview:This document describes the 2021 accessibility data released by the Accessibility Observatory at the University of Minnesota. The data are included in the National Accessibility Evaluation Project for 2021, and this information can be accessed for each state in the U.S. at https://access.umn.edu/research/america. The following sections describe the format, naming, and content of the data files.Data Formats: The data files are provided in a Geopackage format. Geopackage (.gpkg) files are an open-source, geospatial filetype that can contain multiple layers of data in a single file, and can be opened with most GIS software, including both ArcGIS and QGIS.Within this zipfile, there are six geopackage files (.gpkg) structured as follows. Each of them contains the blocks shapes layer, results at the block level for all LEHD variables (jobs and workers), with a layer of results for each travel time (5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60 minutes). {MPO ID}_tr_2021_0700-0859-avg.gpkg = Average Transit Access Departing Every Minute 7am-9am{MPO ID}_au_2021_08.gpkg = Average Auto Access Departing 8am{MPO ID}_bi_2021_1200_lts1.gpkg = Average Bike Access on LTS1 Network{MPO ID}_bi_2021_1200_lts2.gpkg = Average Bike Access on LTS2 Network{MPO ID}_bi_2021_1200_lts3.gpkg = Average Bike Access on LTS3 Network{MPO ID}_bi_2021_1200_lts4.gpkg = Average Bike Access on LTS4 NetworkFor mapping and geospatial analysis, the blocks shape layer within each geopackage can be joined to the blockid of the access attribute data. Opening and Using Geopackages in ArcGIS:Unzip the zip archiveUse the "Add Data" function in Arc to select the .gpkg fileSelect which layer(s) are needed — always select "main.blocks" as this layer contains the Census block shapes; select any other attribute data layers as well.There are three types of layers in the geopackage file — the "main.blocks" layer is the spatial features layer, and all other layers are either numerical attribute data tables, or the "fieldname_descriptions" metadata layer. The numerical attribute layers are named with the following format:[mode]_[threshold]_minutes[mode] is a two-character code indicating the transport mode used[threshold] is an integer indicating the travel time threshold used for this data layerTo use the data spatially, perform a join between the "main.blocks" layer and the desired numerical data layer, using either the numerical "id" fields, or 15-digit "blockid" fields as join fields.

  19. Attachment Viewer

    • city-of-lawrenceville-arcgis-hub-lville.hub.arcgis.com
    Updated Jul 1, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    esri_en (2020). Attachment Viewer [Dataset]. https://city-of-lawrenceville-arcgis-hub-lville.hub.arcgis.com/items/65dd2fa3369649529b2c5939333977a1
    Explore at:
    Dataset updated
    Jul 1, 2020
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    esri_en
    Description

    Use the Attachment Viewer template to provide an app for users to explore a layer's features and review attachments with the option to update attribute data. Present your images, videos, and PDF files collected using ArcGIS Field Maps or ArcGIS Survey123 workflows. Choose an attachment-focused layout to display individual images beside your map or a map-focused layout to highlight your map next to a gallery of images. Examples: Review photos collected during emergency response damage inspections. Display the results of field data collection and support downloading images for inclusion in a report. Present a map of land parcel along with associated documents stored as attachments. Data requirements The Attachment Viewer template requires a feature layer with attachments. It includes the capability to view attachments of a hosted feature service or an ArcGIS Server feature service (10.8 or later). Currently, the app can display JPEG, JPG, PNG, GIF, MP4, QuickTime (.mov), and PDF files in the viewer window. All other attachment types are displayed as a link. Key app capabilities App layout - Choose between an attachment-focused layout, which displays one attachment at a time in the main panel of the app with the map on the side, or a map-focused layout, which displays the map in the main panel of the app with a gallery of attachments. Feature selection - Allows users to select features in the map and view associated attachments. Review data - Enable tools to review and update existing records. Zoom, pan, download images - Allow users to interact with and download attachments. Language switcher - Provide translations for custom text and create a multilingual app. Home, Zoom controls, Legend, Layer List, Search Supportability This web app is designed responsively to be used in browsers on desktops, mobile phones, and tablets. We are committed to ongoing efforts towards making our apps as accessible as possible. Please feel free to leave a comment on how we can improve the accessibility of our apps for those who use assistive technologies.

  20. a

    MajorRiversGRT

    • uscssi.hub.arcgis.com
    Updated Jul 7, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Spatial Sciences Institute (2022). MajorRiversGRT [Dataset]. https://uscssi.hub.arcgis.com/datasets/4a45a3cdf97e4679b1206b9a2962180b
    Explore at:
    Dataset updated
    Jul 7, 2022
    Dataset authored and provided by
    Spatial Sciences Institute
    Area covered
    Description

    The National Hydrography Dataset (NHD) is a feature-based database that interconnects and uniquely identifies the stream segments or reaches that make up the nation's surface water drainage system. NHD data was originally developed at 1:100,000-scale and exists at that scale for the whole country. This high-resolution NHD, generally developed at 1:24,000/1:12,000 scale, adds detail to the original 1:100,000-scale NHD. (Data for Alaska, Puerto Rico and the Virgin Islands was developed at high-resolution, not 1:100,000 scale.) Local resolution NHD is being developed where partners and data exist. The NHD contains reach codes for networked features, flow direction, names, and centerline representations for areal water bodies. Reaches are also defined on waterbodies and the approximate shorelines of the Great Lakes, the Atlantic and Pacific Oceans and the Gulf of Mexico. The NHD also incorporates the National Spatial Data Infrastructure framework criteria established by the Federal Geographic Data Committee.Selecting Only Major Rivers in the NHD using ArcMapfrom the USGS National Hydrography Dataset Newsletter, Vol. 13, No. 8, June 2014, by Jeff Simley, USGSThe NHD contains a lot of information, but for some applications, particularly those at small scales, it needs to be generalized. One approach is to show only “major rivers” in the NHD. A quick technique to show only the named rivers can easily be done by selecting NHDFlowline GNIS_NAME > ‘0’. See: ftp://nhdftp.usgs.gov/Hydro_Images/BlueRiver_Named_Rivers.jpgTo be even more restrictive, major rivers can be defined as only “double-line” or polygonal rivers, which appear in NHDArea. This is more complicated, and takes a few minutes, but works well. This approach finds the Artifical Path of those polygonal rivers:1. Find the polygonal rivers: Select by Attributes NHDArea where FType = 460 - Stream/River.2. Now it is necessary to find the NHDFlowline Artificial Paths of those rivers. Artificial Paths are linked to the polygon they are inside of using the field WBArea_Permanent_Identier. Create the link by doing a relate between NHDFlowline (key WBArea_Permanent_Identifier) and NHDArea (key Permanent_Identifier)3. Invoke the relationship and select the corresponding NHDFlowlines.4. For clarity, turn off the NHDArea selected features (the polygonal rivers).5. Now the candidate artificial paths are selected, but there are two problems: One is that the rivers running through lakes are not selected (which they should be), and two, the “stubs”of the tributary artificial paths have been selected (which are not wanted). 6. Next order of business is to eliminate the minor stubs with no name. Select from selection by Attributes NHDFlowline GNIS_Name > ‘0’. Now only stubs that are named remain. 7. Some of the remaining candidate artificial paths are wanted (the major rivers) and some are not (the named stubs). The named stubs can be eliminated by virtue of the fact that there are very few of them (normally one record per name) and those with low counts can be eliminated.8. Open the NHDFlowline attribute table. Some records are selected (the remaining candidate list) and some are not (all other flowlines making up “minor rivers”). Summarize the number of records under the field GNIS_Name and write this out as Sum_Output.dbf which you then add to ArcMap.9. Now the goal is to find the names of the major rivers. These will be rivers with a record count greater than 1. The extraneous non-named stubs have already been eliminated, which helps reduce the load. The next steps will select only records with significant counts, that is, the major rivers. This will allow deselecting the remaining NHDFlowlines and in the process eliminate the named stubs.10. It is necessary to relate Sum_Output (key GNIS_Name) with NHDFlowline (key GNIS_Name) to make it possible to use the GNIS_NAME’s to select the major rivers in NHDFlowline.11. Open the Sum_Output table. Note the field Count_GNIS_Name which will be used to count records. This will eliminate named stubs, leaving just the major rivers selected. Create a New Selection, Cnt_GNIS_N > 1. Leave the table open. Note major rivers are selected.Invoke the relationship to select the major rivers. In ArcMap all “major rivers” have been selected, even rivers through lakes. See ftp://nhdftp.usgs.gov/Hydro_Images/Blue_River_Selected.jpg12. Select only those features with "River" in the GNIS Name.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
State of Delaware (2019). Querying Data Using ArcGIS Pro [Dataset]. https://hub.arcgis.com/documents/1feba2ff29904387a4920f5c45c77d2c

Querying Data Using ArcGIS Pro

Explore at:
Dataset updated
Jan 30, 2019
Dataset authored and provided by
State of Delaware
Description

Learn the building blocks of a query expression and how to select features that meet one or more attribute criteria.

Search
Clear search
Close search
Google apps
Main menu