97 datasets found
  1. a

    Querying Data Using ArcGIS Pro

    • hub.arcgis.com
    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    Updated Jan 30, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State of Delaware (2019). Querying Data Using ArcGIS Pro [Dataset]. https://hub.arcgis.com/documents/1feba2ff29904387a4920f5c45c77d2c
    Explore at:
    Dataset updated
    Jan 30, 2019
    Dataset authored and provided by
    State of Delaware
    Description

    Learn the building blocks of a query expression and how to select features that meet one or more attribute criteria.

  2. d

    Geospatial Data from the Alpine Treeline Warming Experiment (ATWE) on Niwot...

    • search.dataone.org
    • knb.ecoinformatics.org
    • +1more
    Updated Jul 7, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Fabian Zuest; Cristina Castanha; Nicole Lau; Lara M. Kueppers (2021). Geospatial Data from the Alpine Treeline Warming Experiment (ATWE) on Niwot Ridge, Colorado, USA [Dataset]. http://doi.org/10.15485/1804896
    Explore at:
    Dataset updated
    Jul 7, 2021
    Dataset provided by
    ESS-DIVE
    Authors
    Fabian Zuest; Cristina Castanha; Nicole Lau; Lara M. Kueppers
    Time period covered
    Jan 1, 2008 - Jan 1, 2012
    Area covered
    Description

    This is a collection of all GPS- and computer-generated geospatial data specific to the Alpine Treeline Warming Experiment (ATWE), located on Niwot Ridge, Colorado, USA. The experiment ran between 2008 and 2016, and consisted of three sites spread across an elevation gradient. Geospatial data for all three experimental sites and cone/seed collection locations are included in this package. ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– Geospatial files include cone collection, experimental site, seed trap, and other GPS location/terrain data. File types include ESRI shapefiles, ESRI grid files or Arc/Info binary grids, TIFFs (.tif), and keyhole markup language (.kml) files. Trimble-imported data include plain text files (.txt), Trimble COR (CorelDRAW) files, and Trimble SSF (Standard Storage Format) files. Microsoft Excel (.xlsx) and comma-separated values (.csv) files corresponding to the attribute tables of many files within this package are also included. A complete list of files can be found in this document in the “Data File Organization” section in the included Data User's Guide. Maps are also included in this data package for reference and use. These maps are separated into two categories, 2021 maps and legacy maps, which were made in 2010. Each 2021 map has one copy in portable network graphics (.png) format, and the other in .pdf format. All legacy maps are in .pdf format. .png image files can be opened with any compatible programs, such as Preview (Mac OS) and Photos (Windows). All GIS files were imported into geopackages (.gpkg) using QGIS, and double-checked for compatibility and data/attribute integrity using ESRI ArcGIS Pro. Note that files packaged within geopackages will open in ArcGIS Pro with “main.” preceding each file name, and an extra column named “geom” defining geometry type in the attribute table. The contents of each geospatial file remain intact, unless otherwise stated in “niwot_geospatial_data_list_07012021.pdf/.xlsx”. This list of files can be found as an .xlsx and a .pdf in this archive. As an open-source file format, files within gpkgs (TIFF, shapefiles, ESRI grid or “Arc/Info Binary”) can be read using both QGIS and ArcGIS Pro, and any other geospatial softwares. Text and .csv files can be read using TextEdit/Notepad/any simple text-editing software; .csv’s can also be opened using Microsoft Excel and R. .kml files can be opened using Google Maps or Google Earth, and Trimble files are most compatible with Trimble’s GPS Pathfinder Office software. .xlsx files can be opened using Microsoft Excel. PDFs can be opened using Adobe Acrobat Reader, and any other compatible programs. A selection of original shapefiles within this archive were generated using ArcMap with associated FGDC-standardized metadata (xml file format). We are including these original files because they contain metadata only accessible using ESRI programs at this time, and so that the relationship between shapefiles and xml files is maintained. Individual xml files can be opened (without a GIS-specific program) using TextEdit or Notepad. Since ESRI’s compatibility with FGDC metadata has changed since the generation of these files, many shapefiles will require upgrading to be compatible with ESRI’s latest versions of geospatial software. These details are also noted in the “niwot_geospatial_data_list_07012021” file.

  3. a

    How to Smart Map: Color & Size

    • hub.arcgis.com
    • schoolboard-esrica-k12admin.hub.arcgis.com
    Updated Mar 1, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ArcGIS Living Atlas Team (2017). How to Smart Map: Color & Size [Dataset]. https://hub.arcgis.com/items/cc8ed7ffcd5a4e329cdc552d6856abe4
    Explore at:
    Dataset updated
    Mar 1, 2017
    Dataset authored and provided by
    ArcGIS Living Atlas Team
    Description

    This story map explains how to use two attributes to make a map using both color and size using the smart mapping capability within ArcGIS Online and ArcGIS Enterprise. You can easily select two attributes, and one will be shown in your map using color, while the other will be used to represent size. This mapping technique can help to show relationships you might not have known existed. This method can also help turn multiple maps into a single map to share with others. This story map walks you through multiple examples, which can help get you started with smart mapping color and size.

  4. National Hydrography Dataset Plus High Resolution

    • hub.arcgis.com
    • oregonwaterdata.org
    Updated Mar 16, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2023). National Hydrography Dataset Plus High Resolution [Dataset]. https://hub.arcgis.com/maps/f1f45a3ba37a4f03a5f48d7454e4b654
    Explore at:
    Dataset updated
    Mar 16, 2023
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    The National Hydrography Dataset Plus High Resolution (NHDplus High Resolution) maps the lakes, ponds, streams, rivers and other surface waters of the United States. Created by the US Geological Survey, NHDPlus High Resolution provides mean annual flow and velocity estimates for rivers and streams. Additional attributes provide connections between features facilitating complicated analyses.For more information on the NHDPlus High Resolution dataset see the User’s Guide for the National Hydrography Dataset Plus (NHDPlus) High Resolution.Dataset SummaryPhenomenon Mapped: Surface waters and related features of the United States and associated territoriesGeographic Extent: The Contiguous United States, Hawaii, portions of Alaska, Puerto Rico, Guam, US Virgin Islands, Northern Marianas Islands, and American SamoaProjection: Web Mercator Auxiliary Sphere Visible Scale: Visible at all scales but layer draws best at scales larger than 1:1,000,000Source: USGSUpdate Frequency: AnnualPublication Date: July 2022This layer was symbolized in the ArcGIS Map Viewer and while the features will draw in the Classic Map Viewer the advanced symbology will not. Prior to publication, the network and non-network flowline feature classes were combined into a single flowline layer. Similarly, the Area and Waterbody feature classes were merged under a single schema.Attribute fields were added to the flowline and waterbody layers to simplify symbology and enhance the layer's pop-ups. Fields added include Pop-up Title, Pop-up Subtitle, Esri Symbology (waterbodies only), and Feature Code Description. All other attributes are from the original dataset. No data values -9999 and -9998 were converted to Null values.What can you do with this layer?Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.ArcGIS OnlineAdd this layer to a map in the map viewer. The layer or a map containing it can be used in an application. Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Apply filters. For example you can set a filter to show larger streams and rivers using the mean annual flow attribute or the stream order attribute.Change the layer’s style and symbologyAdd labels and set their propertiesCustomize the pop-upUse as an input to the ArcGIS Online analysis tools. This layer works well as a reference layer with the trace downstream and watershed tools. The buffer tool can be used to draw protective boundaries around streams and the extract data tool can be used to create copies of portions of the data.ArcGIS ProAdd this layer to a 2d or 3d map.Use as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class.Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of the ArcGIS Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.

  5. Activity FACTS Common Attributes (Feature Layer)

    • agdatacommons.nal.usda.gov
    • catalog.data.gov
    • +5more
    bin
    Updated Jun 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Forest Service (2025). Activity FACTS Common Attributes (Feature Layer) [Dataset]. https://agdatacommons.nal.usda.gov/articles/dataset/Activity_FACTS_Common_Attributes_Feature_Layer_/25974223
    Explore at:
    binAvailable download formats
    Dataset updated
    Jun 21, 2025
    Dataset provided by
    U.S. Department of Agriculture Forest Servicehttp://fs.fed.us/
    Authors
    U.S. Forest Service
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The data in this map service is updated every weekend.Note: This data includes all activities regardless of whether there is a spatial feature attached.Note: This is a large dataset. Metadata and Downloads are available at: https://data.fs.usda.gov/geodata/edw/datasets.php?xmlKeyword=FACTS+common+attributesTo download FACTS activities layers, search for the activity types you want, such as timber harvest or hazardous fuels treatments. The Forest Service's Natural Resource Manager (NRM) Forest Activity Tracking System (FACTS) is the agency standard for managing information about activities related to fire/fuels, silviculture, and invasive species. This feature class contains the FACTS attributes most commonly needed to describe FACTS activities.This record was taken from the USDA Enterprise Data Inventory that feeds into the https://data.gov catalog. Data for this record includes the following resources: ISO-19139 metadata ArcGIS Hub Dataset ArcGIS GeoService CSV Shapefile GeoJSON KML https://apps.fs.usda.gov/arcx/rest/services/EDW/EDW_ActivityFactsCommonAttributes_01/MapServer/0 Geodatabase Download Shapefile Download For complete information, please visit https://data.gov.

  6. a

    2021 Gainesville MTPO National Accessibility Evaluation Data

    • hub.arcgis.com
    • performance-data-integration-space-fdot.hub.arcgis.com
    Updated Jul 7, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Florida Department of Transportation (2023). 2021 Gainesville MTPO National Accessibility Evaluation Data [Dataset]. https://hub.arcgis.com/content/a04352b37c2c4ccb921fae8730f63b0d
    Explore at:
    Dataset updated
    Jul 7, 2023
    Dataset authored and provided by
    Florida Department of Transportation
    Area covered
    Description

    Overview:This document describes the 2021 accessibility data released by the Accessibility Observatory at the University of Minnesota. The data are included in the National Accessibility Evaluation Project for 2021, and this information can be accessed for each state in the U.S. at https://access.umn.edu/research/america. The following sections describe the format, naming, and content of the data files.Data Formats: The data files are provided in a Geopackage format. Geopackage (.gpkg) files are an open-source, geospatial filetype that can contain multiple layers of data in a single file, and can be opened with most GIS software, including both ArcGIS and QGIS.Within this zipfile, there are six geopackage files (.gpkg) structured as follows. Each of them contains the blocks shapes layer, results at the block level for all LEHD variables (jobs and workers), with a layer of results for each travel time (5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60 minutes). {MPO ID}_tr_2021_0700-0859-avg.gpkg = Average Transit Access Departing Every Minute 7am-9am{MPO ID}_au_2021_08.gpkg = Average Auto Access Departing 8am{MPO ID}_bi_2021_1200_lts1.gpkg = Average Bike Access on LTS1 Network{MPO ID}_bi_2021_1200_lts2.gpkg = Average Bike Access on LTS2 Network{MPO ID}_bi_2021_1200_lts3.gpkg = Average Bike Access on LTS3 Network{MPO ID}_bi_2021_1200_lts4.gpkg = Average Bike Access on LTS4 NetworkFor mapping and geospatial analysis, the blocks shape layer within each geopackage can be joined to the blockid of the access attribute data. Opening and Using Geopackages in ArcGIS:Unzip the zip archiveUse the "Add Data" function in Arc to select the .gpkg fileSelect which layer(s) are needed — always select "main.blocks" as this layer contains the Census block shapes; select any other attribute data layers as well.There are three types of layers in the geopackage file — the "main.blocks" layer is the spatial features layer, and all other layers are either numerical attribute data tables, or the "fieldname_descriptions" metadata layer. The numerical attribute layers are named with the following format:[mode]_[threshold]_minutes[mode] is a two-character code indicating the transport mode used[threshold] is an integer indicating the travel time threshold used for this data layerTo use the data spatially, perform a join between the "main.blocks" layer and the desired numerical data layer, using either the numerical "id" fields, or 15-digit "blockid" fields as join fields.

  7. W

    USA Flood Hazard Areas

    • wifire-data.sdsc.edu
    • gis-calema.opendata.arcgis.com
    • +1more
    csv, esri rest +4
    Updated Jul 14, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CA Governor's Office of Emergency Services (2020). USA Flood Hazard Areas [Dataset]. https://wifire-data.sdsc.edu/dataset/usa-flood-hazard-areas
    Explore at:
    csv, kml, esri rest, geojson, zip, htmlAvailable download formats
    Dataset updated
    Jul 14, 2020
    Dataset provided by
    CA Governor's Office of Emergency Services
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    United States
    Description
    The Federal Emergency Management Agency (FEMA) produces Flood Insurance Rate maps and identifies Special Flood Hazard Areas as part of the National Flood Insurance Program's floodplain management. Special Flood Hazard Areas have regulations that include the mandatory purchase of flood insurance.

    Dataset Summary

    Phenomenon Mapped: Flood Hazard Areas
    Coordinate System: Web Mercator Auxiliary Sphere
    Extent: 50 United States plus Puerto Rico, the US Virgin Islands, Guam, the Northern Mariana Islands and American Samoa
    Visible Scale: The layer is limited to scales of 1:1,000,000 and larger. Use the USA Flood Hazard Areas imagery layer for smaller scales.
    Publication Date: April 1, 2019

    This layer is derived from the April 1, 2019 version of the National Flood Hazard Layer feature class S_Fld_Haz_Ar. The data were aggregated into eight classes to produce the Esri Symbology field based on symbology provided by FEMA. All other layer attributes are derived from the National Flood Hazard Layer. The layer was projected to Web Mercator Auxiliary Sphere and the resolution set to 1 meter.

    To improve performance Flood Zone values "Area Not Included", "Open Water", "D", "NP", and No Data were removed from the layer. Areas with Flood Zone value "X" subtype "Area of Minimal Flood Hazard" were also removed. An imagery layer created from this dataset provides access to the full set of records in the National Flood Hazard Layer.

    A web map featuring this layer is available for you to use.

    What can you do with this Feature Layer?

    Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.

    ArcGIS Online
    • Add this layer to a map in the map viewer. The layer is limited to scales of approximately 1:1,000,000 or larger but an imagery layer created from the same data can be used at smaller scales to produce a webmap that displays across the full range of scales. The layer or a map containing it can be used in an application.
    • Change the layer’s transparency and set its visibility range
    • Open the layer’s attribute table and make selections and apply filters. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.
    • Change the layer’s style and filter the data. For example, you could change the symbology field to Special Flood Hazard Area and set a filter for = “T” to create a map of only the special flood hazard areas.
    • Add labels and set their properties
    • Customize the pop-up
    ArcGIS Pro
    • Add this layer to a 2d or 3d map. The same scale limit as Online applies in Pro
    • Use as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class. Areas up to 1,000-2,000 features can be exported successfully.
    • Change the symbology and the attribute field used to symbolize the data
    • Open table and make interactive selections with the map
    • Modify the pop-ups
    • Apply Definition Queries to create sub-sets of the layer
    This layer is part of the Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.
  8. ACS Context for Emergency Response - Boundaries

    • coronavirus-resources.esri.com
    • covid-hub.gio.georgia.gov
    • +9more
    Updated Mar 10, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2020). ACS Context for Emergency Response - Boundaries [Dataset]. https://coronavirus-resources.esri.com/maps/9b15b7ac4e2e4ef7b70ed53a205beff2
    Explore at:
    Dataset updated
    Mar 10, 2020
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This layer shows demographic context for emergency response efforts. This is shown by tract, county, and state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. This layer is symbolized to show the percentage of households who do not have access to internet. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2019-2023ACS Table(s): B01001, B08201, B09021, B16003, B16004, B17020, B18101, B25040, B25117, B27010, B28001, B28002 Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2023 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.

  9. a

    ACS Travel Time To Work Variables - Tract

    • hub.arcgis.com
    • hub.scag.ca.gov
    Updated Feb 3, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    rdpgisadmin (2022). ACS Travel Time To Work Variables - Tract [Dataset]. https://hub.arcgis.com/datasets/3341ca03b6044fc6bc474765f6f1eac7
    Explore at:
    Dataset updated
    Feb 3, 2022
    Dataset authored and provided by
    rdpgisadmin
    Area covered
    Description

    This layer shows workers' place of residence by commute length. This is shown by tract, county, and state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. This layer is symbolized to show the percentage of commuters whose commute is 90 minutes or more. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2015-2019ACS Table(s): B08303Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 10, 2020National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases. Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines clipped for cartographic purposes. For census tracts, the water cutouts are derived from a subset of the 2010 AWATER (Area Water) boundaries offered by TIGER. For state and county boundaries, the water and coastlines are derived from the coastlines of the 500k TIGER Cartographic Boundary Shapefiles. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.

  10. A

    ‘King County Tax Parcel Centroids with select City of Seattle geographic...

    • analyst-2.ai
    Updated Feb 13, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2022). ‘King County Tax Parcel Centroids with select City of Seattle geographic overlays’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/data-gov-king-county-tax-parcel-centroids-with-select-city-of-seattle-geographic-overlays-0ed4/latest
    Explore at:
    Dataset updated
    Feb 13, 2022
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Seattle, King County
    Description

    Analysis of ‘King County Tax Parcel Centroids with select City of Seattle geographic overlays’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://catalog.data.gov/dataset/360b2b98-85f4-4a30-ae63-1b047824ef61 on 13 February 2022.

    --- Dataset description provided by original source is as follows ---

    PLEASE NOTE: If choosing the Download option of "Spreadsheet" the field PIN is reformatted to a number - you will need to format it as a 10 character text string with leading zeros to join this data with data from King County.

    King County Assessor data has been summarized to the tax parcel identification number (PIN) and City of Seattle spatial overlay data has been assigned through geographic overlay processes. This data is updated periodically and is used to support the analytical and reporting functions of the City of Seattle long-range and policy planning office.

    The table includes attribute data from the King County Assessor as well as spatial overlay data for various City of Seattle reporting geographies. These geographic attributes are assigned as "majority rules" by land area in cases where multiple geographies span a single tax parcel.

    KCA tax parcels are created by King County for property tax assessment and collection and may not match development sites as defined by the City of Seattle (single buildings may span multiple tax parcels), may be stacked on top of each other to represent undivided interest and vertical parcels, or may be made up of several sites that are not contiguous. Every effort is made to accurately summarize key tax parcel attributes to a single PIN.

    Attributes include parcel centroid locations in latitude/longitude and Washington State Plane X,Y. To get polygon representation of the data please see King County's open data page for parcels and join this table through the PIN field. Please be aware that the King County Assessor site address is not a postal address and may not match other address sources for the same property such as postal, utility billing, and permitting.

    See the detailed data dictionary for more information.

    --- Original source retains full ownership of the source dataset ---

  11. ACS Disability Status Variables - Boundaries

    • coronavirus-resources.esri.com
    • covid-hub.gio.georgia.gov
    • +10more
    Updated Oct 20, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2018). ACS Disability Status Variables - Boundaries [Dataset]. https://coronavirus-resources.esri.com/maps/ef1492a820674160ba6815c5e1637c27
    Explore at:
    Dataset updated
    Oct 20, 2018
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This layer shows disability status by sex and age group. This is shown by tract, county, and state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. This layer is symbolized to show the percentage of elderly (65+) with a disability. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2019-2023ACS Table(s): B18101Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2023 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.

  12. ACS Median Household Income Variables - Boundaries

    • hub.arcgis.com
    • coronavirus-resources.esri.com
    • +11more
    Updated Oct 22, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2018). ACS Median Household Income Variables - Boundaries [Dataset]. https://hub.arcgis.com/maps/45ede6d6ff7e4cbbbffa60d34227e462
    Explore at:
    Dataset updated
    Oct 22, 2018
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This layer shows median household income by race and by age of householder. This is shown by tract, county, and state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. Median income and income source is based on income in past 12 months of survey. This layer is symbolized to show median household income. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2019-2023ACS Table(s): B19013B, B19013C, B19013D, B19013E, B19013F, B19013G, B19013H, B19013I, B19049, B19053Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2023 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.

  13. Navarro Statements and Parcels

    • gis.data.ca.gov
    • calepa-dtsc.opendata.arcgis.com
    Updated Jun 18, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Water Boards (2021). Navarro Statements and Parcels [Dataset]. https://gis.data.ca.gov/maps/ccd3694765584164928fad654b6c1f3d
    Explore at:
    Dataset updated
    Jun 18, 2021
    Dataset provided by
    California State Water Resources Control Board
    Authors
    California Water Boards
    Area covered
    Description

    This service (Nav_Rip_Statements) represents Riparian Statements of Diversion and Use for the Navarro watershed clipped from the Points of Diversion service published by wb_publish. Points of Diversion (PODs) are locations where water is being drawn from a surface water source such as a stream or river. Each water right registered with the California State Water Resources Control Board's Division of Water Rights includes an identified point of diversion. Ground water extraction points (such as water supply wells) are generally not included in this dataset. Last updated: 02/21/2020This service (Nav_Parcels) represents all parcels within the Navarro Watershed HUC 10 provided by parcels within the water49 geodatabase. The parcel boundaries should only be used for estimation purposes. The Water Board has a subscription for cadastral (parcel) GIS information with the California Department of Technology (CDT), who in turn receive the data through a contract with Digital Map Products (DMP). DMP collects parcel information from the 58 county assessors offices (the authoritative sources for this information), compiles it into a GIS dataset, and makes the data available via their LandVision web application. As part of their contract with DMP, CDT receives a quarterly snapshot of the parcel GIS information and redistributes this information to the subscriber state agencies. At the Water Boards, this information is uploaded to the water49 data library for staff use in ArcGIS. In order to facilitate the use of this data in desktop and web GIS applications, the GIS Unit has compiled the individual county layers and selected parcel attributes into a single statewide layer. For more information on the parcel attributes, please refer to the parcel data dictionary available at: http://wiki.waterboards.ca.gov/gis/lib/exe/fetch.php?media=dmp_datadictionary.pdf Please note that because there is no single standard for parcel information among the 58 county assessors, accuracy and attribution will vary across this dataset. Last updated: 02/21/2020

  14. a

    Middle Kuskokwim Inventory with Tables Public View

    • gis.data.alaska.gov
    • data-soa-dnr.opendata.arcgis.com
    • +3more
    Updated Nov 13, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Alaska Department of Natural Resources ArcGIS Online (2021). Middle Kuskokwim Inventory with Tables Public View [Dataset]. https://gis.data.alaska.gov/maps/4bfff7f4f9c141c39646ab8966c36006
    Explore at:
    Dataset updated
    Nov 13, 2021
    Dataset authored and provided by
    Alaska Department of Natural Resources ArcGIS Online
    Area covered
    Earth
    Description

    Vegetation classification in the Lower Kuskokwim area utilizes Spot 2015 and ESRI basemap imagery and has been interpreted by the State of Alaska, Department of Natural Resources, Division of Forestry, Northern Region. Vegetation layer includes attributes for volume calculations of timbered polygons. Sample plot layer includes individual sample tree attributes. Sample stand layer includes volume calculations for sample stands. Selected stands were sampled for volume in 2004.

  15. r

    Natural Earth Vector (NE)

    • researchdata.edu.au
    • catalogue.eatlas.org.au
    • +1more
    bin
    Updated Aug 2, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nathaniel Vaughn KELSO (2016). Natural Earth Vector (NE) [Dataset]. https://researchdata.edu.au/natural-earth-vector-ne/675135
    Explore at:
    binAvailable download formats
    Dataset updated
    Aug 2, 2016
    Dataset provided by
    eAtlas
    Authors
    Nathaniel Vaughn KELSO
    Area covered
    Description

    Natural Earth is a public domain map dataset available at 1:10m, 1:50m, and 1:110 million scales. Featuring tightly integrated vector and raster data, with Natural Earth you can make a variety of visually pleasing, well-crafted maps with cartography or GIS software.

    Natural Earth was built through a collaboration of many volunteers and is supported by NACIS (North American Cartographic Information Society).

    Natural Earth Vector comes in ESRI shapefile format, the de facto standard for vector geodata. Character encoding is Windows-1252.

    Natural Earth Vector includes features corresponding to the following:

    Cultural Vector Data Thremes:

    • Countries: matched boundary lines and polygons with names attributes for countries and sovereign states. Includes dependencies (French Polynesia), map units (U.S. Pacific Island Territories) and sub-national map subunits (Corsica versus mainland Metropolitan France).
    • Disputed areas and breakaway regions - From Kashmir to the Elemi Triangle, Northern Cyprus to Western Sahara.
    • First order admin (provinces, departments, states, etc.): internal boundaries and polygons for all but a few tiny island nations. Includes names attributes and some statistical groupings of the same for smaller countries.
    • Populated places: point symbols with name attributes. Includes capitals, major cities and towns, plus significant smaller towns in sparsely inhabited regions. We favor regional significance over population census in determining rankings.
    • Urban polygons: derived from 2002-2003 MODIS satellite data.
    • Parks and protected areas: US National Park Service units.
    • Pacific nation groupings: boxes for keeping these far-flung islands tidy.
    • Water boundary indicators: partial selection of key 200-mile nautical limits, plus some disputed, treaty, and median lines.

    Physical Vector Data Themes:

    • Coastline: ocean coastline, including major islands. Coastline is matched to land and water polygons.
    • Land: Land polygons including major islands
    • Ocean: Ocean polygon split into contiguous pieces.
    • Minor Islands: additional small ocean islands ranked to two levels of relative importance.
    • Reefs: major coral reefs from WDB2.
    • Physical region features: polygon and point labels of major physical features.
    • Rivers and Lake Centerlines: ranked by relative importance. Includes name and line width attributes. Don’t want minor lakes? Turn on their centerlines to avoid unseemly data gaps.
    • Lakes: ranked by relative importance, coordinating with river ranking. Includes name attributes.
    • Glaciated areas: polygons derived from DCW, except for Antarctica derived from MOA. Includes name attributes for major polar glaciers.
    • Antarctic ice shelves: derived from 2003-2004 MOA. Reflects recent ice shelf collapses.
    • Bathymetry: nested polygons at 0, -200, -1,000, -2,000, -3,000, -4,000, -5,000, -6,000, -7,000, -8,000, -9,000,and -10,000 meters. Created from SRTM Plus.
    • Geographic lines: Polar circles, tropical circles, equator, and International Date Line.
    • Graticules: 1-, 5-, 10-, 15-, 20-, and 30-degree increments. Includes WGS84 bounding box.
  16. ACS Internet Access by Age and Race Variables - Boundaries

    • coronavirus-resources.esri.com
    • resilience.climate.gov
    • +7more
    Updated Dec 7, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2018). ACS Internet Access by Age and Race Variables - Boundaries [Dataset]. https://coronavirus-resources.esri.com/maps/5a1b51d3c6374c3cbb7c9ff7acdba16b
    Explore at:
    Dataset updated
    Dec 7, 2018
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This layer shows computer ownership and internet access by age and race. This is shown by tract, county, and state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. This layer is symbolized to show the percent of population age 18 to 64 in households with no computer. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2019-2023ACS Table(s): B28005, B28003, B28009B, B28009C, B28009D, B28009E, B28009F, B28009G, B28009H, B28009I Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2023 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.

  17. a

    2021 Capital Region TPA National Accessibility Evaluation Data

    • hub.arcgis.com
    • mapdirect-fdep.opendata.arcgis.com
    • +2more
    Updated Jul 7, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Florida Department of Transportation (2023). 2021 Capital Region TPA National Accessibility Evaluation Data [Dataset]. https://hub.arcgis.com/content/c3d7871a5b4b47399e6ebcf96b8e2ac0
    Explore at:
    Dataset updated
    Jul 7, 2023
    Dataset authored and provided by
    Florida Department of Transportation
    Area covered
    Description

    Overview:This document describes the 2021 accessibility data released by the Accessibility Observatory at the University of Minnesota. The data are included in the National Accessibility Evaluation Project for 2021, and this information can be accessed for each state in the U.S. at https://access.umn.edu/research/america. The following sections describe the format, naming, and content of the data files.Data Formats: The data files are provided in a Geopackage format. Geopackage (.gpkg) files are an open-source, geospatial filetype that can contain multiple layers of data in a single file, and can be opened with most GIS software, including both ArcGIS and QGIS.Within this zipfile, there are six geopackage files (.gpkg) structured as follows. Each of them contains the blocks shapes layer, results at the block level for all LEHD variables (jobs and workers), with a layer of results for each travel time (5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60 minutes). {MPO ID}_tr_2021_0700-0859-avg.gpkg = Average Transit Access Departing Every Minute 7am-9am{MPO ID}_au_2021_08.gpkg = Average Auto Access Departing 8am{MPO ID}_bi_2021_1200_lts1.gpkg = Average Bike Access on LTS1 Network{MPO ID}_bi_2021_1200_lts2.gpkg = Average Bike Access on LTS2 Network{MPO ID}_bi_2021_1200_lts3.gpkg = Average Bike Access on LTS3 Network{MPO ID}_bi_2021_1200_lts4.gpkg = Average Bike Access on LTS4 NetworkFor mapping and geospatial analysis, the blocks shape layer within each geopackage can be joined to the blockid of the access attribute data. Opening and Using Geopackages in ArcGIS:Unzip the zip archiveUse the "Add Data" function in Arc to select the .gpkg fileSelect which layer(s) are needed — always select "main.blocks" as this layer contains the Census block shapes; select any other attribute data layers as well.There are three types of layers in the geopackage file — the "main.blocks" layer is the spatial features layer, and all other layers are either numerical attribute data tables, or the "fieldname_descriptions" metadata layer. The numerical attribute layers are named with the following format:[mode]_[threshold]_minutes[mode] is a two-character code indicating the transport mode used[threshold] is an integer indicating the travel time threshold used for this data layerTo use the data spatially, perform a join between the "main.blocks" layer and the desired numerical data layer, using either the numerical "id" fields, or 15-digit "blockid" fields as join fields.

  18. a

    NHD Plus - High Resolution

    • pend-oreille-county-open-data-pendoreilleco.hub.arcgis.com
    Updated Jun 7, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Pend Oreille County (2024). NHD Plus - High Resolution [Dataset]. https://pend-oreille-county-open-data-pendoreilleco.hub.arcgis.com/maps/d2660f0b23184f5087c0df2f6d6b50b8
    Explore at:
    Dataset updated
    Jun 7, 2024
    Dataset authored and provided by
    Pend Oreille County
    Area covered
    Description

    *This dataset is authored by ESRI and is being shared as a direct link to the feature service by Pend Oreille County. NHD is a primary hydrologic reference used by our organization.The National Hydrography Dataset Plus High Resolution (NHDplus High Resolution) maps the lakes, ponds, streams, rivers and other surface waters of the United States. Created by the US Geological Survey, NHDPlus High Resolution provides mean annual flow and velocity estimates for rivers and streams. Additional attributes provide connections between features facilitating complicated analyses.For more information on the NHDPlus High Resolution dataset see the User’s Guide for the National Hydrography Dataset Plus (NHDPlus) High Resolution.Dataset SummaryPhenomenon Mapped: Surface waters and related features of the United States and associated territoriesCoordinate System: Web Mercator Auxiliary Sphere Extent: The Contiguous United States, Hawaii, portions of Alaska, Puerto Rico, Guam, US Virgin Islands, Northern Marianas Islands, and American Samoa Visible Scale: Visible at all scales but layer draws best at scales larger than 1:1,000,000Source: USGSPublication Date: July 2022This layer was symbolized in the ArcGIS Map Viewer and while the features will draw in the Classic Map Viewer the advanced symbology will not.Prior to publication, the network and non-network flowline feature classes were combined into a single flowline layer. Similarly, the Area and Waterbody feature classes were merged under a single schema.Attribute fields were added to the flowline and waterbody layers to simplify symbology and enhance the layer's pop-ups. Fields added include Pop-up Title, Pop-up Subtitle, Esri Symbology (waterbodies only), and Feature Code Description. All other attributes are from the original dataset. No data values -9999 and -9998 were converted to Null values.What can you do with this Feature Layer?Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.ArcGIS OnlineAdd this layer to a map in the map viewer. The layer or a map containing it can be used in an application. Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Apply filters. For example you can set a filter to show larger streams and rivers using the mean annual flow attribute or the stream order attribute.Change the layer’s style and symbologyAdd labels and set their propertiesCustomize the pop-upUse as an input to the ArcGIS Online analysis tools. This layer works well as a reference layer with the trace downstream and watershed tools. The buffer tool can be used to draw protective boundaries around streams and the extract data tool can be used to create copies of portions of the data.ArcGIS ProAdd this layer to a 2d or 3d map.Use as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class.Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of the ArcGIS Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.

  19. a

    2021 MetroPlan Orlando National Accessibility Evaluation Data

    • hub.arcgis.com
    • gis-fdot.opendata.arcgis.com
    • +2more
    Updated Jul 7, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Florida Department of Transportation (2023). 2021 MetroPlan Orlando National Accessibility Evaluation Data [Dataset]. https://hub.arcgis.com/content/8ba59c9d8ad74af18642faf25e98fcbf
    Explore at:
    Dataset updated
    Jul 7, 2023
    Dataset authored and provided by
    Florida Department of Transportation
    Area covered
    Description

    Overview:This document describes the 2021 accessibility data released by the Accessibility Observatory at the University of Minnesota. The data are included in the National Accessibility Evaluation Project for 2021, and this information can be accessed for each state in the U.S. at https://access.umn.edu/research/america. The following sections describe the format, naming, and content of the data files.Data Formats: The data files are provided in a Geopackage format. Geopackage (.gpkg) files are an open-source, geospatial filetype that can contain multiple layers of data in a single file, and can be opened with most GIS software, including both ArcGIS and QGIS.Within this zipfile, there are six geopackage files (.gpkg) structured as follows. Each of them contains the blocks shapes layer, results at the block level for all LEHD variables (jobs and workers), with a layer of results for each travel time (5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60 minutes). {MPO ID}_tr_2021_0700-0859-avg.gpkg = Average Transit Access Departing Every Minute 7am-9am{MPO ID}_au_2021_08.gpkg = Average Auto Access Departing 8am{MPO ID}_bi_2021_1200_lts1.gpkg = Average Bike Access on LTS1 Network{MPO ID}_bi_2021_1200_lts2.gpkg = Average Bike Access on LTS2 Network{MPO ID}_bi_2021_1200_lts3.gpkg = Average Bike Access on LTS3 Network{MPO ID}_bi_2021_1200_lts4.gpkg = Average Bike Access on LTS4 NetworkFor mapping and geospatial analysis, the blocks shape layer within each geopackage can be joined to the blockid of the access attribute data. Opening and Using Geopackages in ArcGIS:Unzip the zip archiveUse the "Add Data" function in Arc to select the .gpkg fileSelect which layer(s) are needed — always select "main.blocks" as this layer contains the Census block shapes; select any other attribute data layers as well.There are three types of layers in the geopackage file — the "main.blocks" layer is the spatial features layer, and all other layers are either numerical attribute data tables, or the "fieldname_descriptions" metadata layer. The numerical attribute layers are named with the following format:[mode]_[threshold]_minutes[mode] is a two-character code indicating the transport mode used[threshold] is an integer indicating the travel time threshold used for this data layerTo use the data spatially, perform a join between the "main.blocks" layer and the desired numerical data layer, using either the numerical "id" fields, or 15-digit "blockid" fields as join fields.

  20. Grocery Access Map Gallery

    • supply-chain-data-hub-nmcdc.hub.arcgis.com
    Updated Apr 19, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Urban Observatory by Esri (2021). Grocery Access Map Gallery [Dataset]. https://supply-chain-data-hub-nmcdc.hub.arcgis.com/datasets/UrbanObservatory::grocery-access-map-gallery
    Explore at:
    Dataset updated
    Apr 19, 2021
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Urban Observatory by Esri
    Area covered
    Description

    This is a collection of maps, layers, apps and dashboards that show population access to essential retail locations, such as grocery stores. Data sourcesPopulation data is from the 2010 U.S. Census blocks. Each census block has a count of stores within a 10 minute walk, and a count of stores within a ten minute drive. Census blocks known to be unpopulated are given a score of 0. The layer is available as a hosted feature layer.Grocery store locations are from SafeGraph, reflecting what was in the data as of October 2020. Access to the layer was obtained from the SafeGraph offering in ArcGIS Marketplace. For this project, ArcGIS StreetMap Premium was used for the street network in the origin-destination analysis work, because it already has the necessary attributes on each street segment to identify which streets are considered walkable, and supports a wide variety of driving parameters.The walkable access layer and drivable access layers are rasters, whose colors were chosen to allow the drivable access layer to serve as backdrop to the walkable access layer. Alternative versions of these layers are available. These pairs use different colors but are otherwise identical in content.Data PreparationArcGIS Network Analyst was used to set up a network street layer for analysis. ArcGIS StreetMap Premium was installed to a local hard drive and selected in the Origin-Destination workflow as the network data source. This allows the origins (Census block centroids) and destinations (SafeGraph grocery stores) to be connected to that network, to allow origin-destination analysis.The Census blocks layer contains the centroid of each Census block. The data allows a simple popup to be created. This layer's block figures can be summarized further, to tract, county and state levels.The SafeGraph grocery store locations were created by querying the SafeGraph source layer based on primary NAICS code. After connecting to the layer in ArcGIS Pro, a definition query was set to only show records with NAICS code 445110 as an initial screening. The layer was exported to a local disk drive for further definition query refinement, to eliminate any records that were obviously not grocery stores. The final layer used in the analysis had approximately 53,600 records. In this map, this layer is included as a vector tile layer.MethodologyEvery census block in the U.S. was assigned two access scores, whose numbers are simply how many grocery stores are within a 10 minute walk and a 10 minute drive of that census block. Every census block has a score of 0 (no stores), 1, 2 or more stores. The count of accessible stores was determined using Origin-Destination Analysis in ArcGIS Network Analyst, in ArcGIS Pro. A set of Tools in this ArcGIS Pro package allow a similar analysis to be conducted for any city or other area. The Tools step through the data prep and analysis steps. Download the Pro package, open it and substitute your own layers for Origins and Destinations. Parcel centroids are a suggested option for Origins, for example. Origin-Destination analysis was configured, using ArcGIS StreetMap Premium as the network data source. Census block centroids with population greater than zero were used as the Origins, and grocery store locations were used as the Destinations. A cutoff of 10 minutes was used with the Walk Time option. Only one restriction was applied to the street network: Walkable, which means Interstates and other non-walkable street segments were treated appropriately. You see the results in the map: wherever freeway overpasses and underpasses are present near a grocery store, the walkable area extends across/through that pass, but not along the freeway.A cutoff of 10 minutes was used with the Drive Time option. The default restrictions were applied to the street network, which means a typical vehicle's access to all types of roads was factored in.The results for each analysis were captured in the Lines layer, which shows which origins are within the cutoff of each destination over the street network, given the assumptions about that network (walking, or driving a vehicle).The Lines layer was then summarized by census block ID to capture the Maximum value of the Destination_Rank field. A census block within 10 minutes of 3 stores would have 3 records in the Lines layer, but only one value in the summarized table, with a MAX_Destination_Rank field value of 3. This is the number of stores accessible to that census block in the 10 minutes measured, for walking and driving. These data were joined to the block centroids layer and given unique names. At this point, all blocks with zero population or null values in the MAX_Destination_Rank fields were given a store count of 0, to help the next step.Walkable and Drivable areas are calculated into a raster layer, using Nearest Neighbor geoprocessing tool on the count of stores within a 10 minute walk, and a count of stores within a ten minute drive, respectively. This tool uses a 200 meter grid and interpolates the values between each census block. A census tracts layer containing all water polygons "erased" from the census tract boundaries was used as an environment setting, to help constrain interpolation into/across bodies of water. The same layer use used to "shoreline" the Nearest Neighbor results, to eliminate any interpolation into the ocean or Great Lakes. This helped but was not perfect.Notes and LimitationsThe map provides a baseline for discussing access to grocery stores in a city. It does not presume local population has the desire or means to walk or drive to obtain groceries. It does not take elevation gain or loss into account. It does not factor time of day nor weather, seasons, or other variables that affect a person's commute choices. Walking and driving are just two ways people get to a grocery store. Some people ride a bike, others take public transit, have groceries delivered, or rely on a friend with a vehicle. Thank you to Melinda Morang on the Network Analyst team for guidance and suggestions at key moments along the way; to Emily Meriam for reviewing the previous version of this map and creating new color palettes and marker symbols specific to this project. Additional ReadingThe methods by which access to food is measured and reported have improved in the past decade or so, as has the uses of such measurements. Some relevant papers and articles are provided below as a starting point.Measuring Food Insecurity Using the Food Abundance Index: Implications for Economic, Health and Social Well-BeingHow to Identify Food Deserts: Measuring Physical and Economic Access to Supermarkets in King County, WashingtonAccess to Affordable and Nutritious Food: Measuring and Understanding Food Deserts and Their ConsequencesDifferent Measures of Food Access Inform Different SolutionsThe time cost of access to food – Distance to the grocery store as measured in minutes

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
State of Delaware (2019). Querying Data Using ArcGIS Pro [Dataset]. https://hub.arcgis.com/documents/1feba2ff29904387a4920f5c45c77d2c

Querying Data Using ArcGIS Pro

Explore at:
Dataset updated
Jan 30, 2019
Dataset authored and provided by
State of Delaware
Description

Learn the building blocks of a query expression and how to select features that meet one or more attribute criteria.

Search
Clear search
Close search
Google apps
Main menu