4 datasets found
  1. Google Data Analytics Case Study Cyclistic

    • kaggle.com
    zip
    Updated Sep 27, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Udayakumar19 (2022). Google Data Analytics Case Study Cyclistic [Dataset]. https://www.kaggle.com/datasets/udayakumar19/google-data-analytics-case-study-cyclistic/suggestions
    Explore at:
    zip(1299 bytes)Available download formats
    Dataset updated
    Sep 27, 2022
    Authors
    Udayakumar19
    Description

    Introduction

    Welcome to the Cyclistic bike-share analysis case study! In this case study, you will perform many real-world tasks of a junior data analyst. You will work for a fictional company, Cyclistic, and meet different characters and team members. In order to answer the key business questions, you will follow the steps of the data analysis process: ask, prepare, process, analyze, share, and act. Along the way, the Case Study Roadmap tables — including guiding questions and key tasks — will help you stay on the right path.

    Scenario

    You are a junior data analyst working in the marketing analyst team at Cyclistic, a bike-share company in Chicago. The director of marketing believes the company’s future success depends on maximizing the number of annual memberships. Therefore, your team wants to understand how casual riders and annual members use Cyclistic bikes differently. From these insights, your team will design a new marketing strategy to convert casual riders into annual members. But first, Cyclistic executives must approve your recommendations, so they must be backed up with compelling data insights and professional data visualizations.

    Ask

    How do annual members and casual riders use Cyclistic bikes differently?

    Guiding Question:

    What is the problem you are trying to solve?
      How do annual members and casual riders use Cyclistic bikes differently?
    How can your insights drive business decisions?
      The insight will help the marketing team to make a strategy for casual riders
    

    Prepare

    Guiding Question:

    Where is your data located?
      Data located in Cyclistic organization data.
    
    How is data organized?
      Dataset are in csv format for each month wise from Financial year 22.
    
    Are there issues with bias or credibility in this data? Does your data ROCCC? 
      It is good it is ROCCC because data collected in from Cyclistic organization.
    
    How are you addressing licensing, privacy, security, and accessibility?
      The company has their own license over the dataset. Dataset does not have any personal information about the riders.
    
    How did you verify the data’s integrity?
      All the files have consistent columns and each column has the correct type of data.
    
    How does it help you answer your questions?
      Insights always hidden in the data. We have the interpret with data to find the insights.
    
    Are there any problems with the data?
      Yes, starting station names, ending station names have null values.
    

    Process

    Guiding Question:

    What tools are you choosing and why?
      I used R studio for the cleaning and transforming the data for analysis phase because of large dataset and to gather experience in the language.
    
    Have you ensured the data’s integrity?
     Yes, the data is consistent throughout the columns.
    
    What steps have you taken to ensure that your data is clean?
      First duplicates, null values are removed then added new columns for analysis.
    
    How can you verify that your data is clean and ready to analyze? 
     Make sure the column names are consistent thorough out all data sets by using the “bind row” function.
    
    Make sure column data types are consistent throughout all the dataset by using the “compare_df_col” from the “janitor” package.
    Combine the all dataset into single data frame to make consistent throught the analysis.
    Removed the column start_lat, start_lng, end_lat, end_lng from the dataframe because those columns not required for analysis.
    Create new columns day, date, month, year, from the started_at column this will provide additional opportunities to aggregate the data
    Create the “ride_length” column from the started_at and ended_at column to find the average duration of the ride by the riders.
    Removed the null rows from the dataset by using the “na.omit function”
    Have you documented your cleaning process so you can review and share those results? 
      Yes, the cleaning process is documented clearly.
    

    Analyze Phase:

    Guiding Questions:

    How should you organize your data to perform analysis on it? The data has been organized in one single dataframe by using the read csv function in R Has your data been properly formatted? Yes, all the columns have their correct data type.

    What surprises did you discover in the data?
      Casual member ride duration is higher than the annual members
      Causal member widely uses docked bike than the annual members
    What trends or relationships did you find in the data?
      Annual members are used mainly for commute purpose
      Casual member are preferred the docked bikes
      Annual members are preferred the electric or classic bikes
    How will these insights help answer your business questions?
      This insights helps to build a profile for members
    

    Share

    Guiding Quesions:

    Were you able to answer the question of how ...
    
  2. Z

    Data from: Lower complexity of motor primitives ensures robust control of...

    • data.niaid.nih.gov
    Updated Jun 18, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Santuz, Alessandro; Ekizos, Antonis; Kunimasa, Yoko; Kijima, Kota; Ishikawa, Masaki; Arampatzis, Adamantios (2022). Lower complexity of motor primitives ensures robust control of high-speed human locomotion [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_3764760
    Explore at:
    Dataset updated
    Jun 18, 2022
    Dataset provided by
    Humboldt-Universität zu Berlin
    Osaka University of Health and Sport Sciences
    Humboldt-Universität zu Berlin, Dalhousie University
    Authors
    Santuz, Alessandro; Ekizos, Antonis; Kunimasa, Yoko; Kijima, Kota; Ishikawa, Masaki; Arampatzis, Adamantios
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Walking and running are mechanically and energetically different locomotion modes. For selecting one or another, speed is a parameter of paramount importance. Yet, both are likely controlled by similar low-dimensional neuronal networks that reflect in patterned muscle activations called muscle synergies. Here, we investigated how humans synergistically activate muscles during locomotion at different submaximal and maximal speeds. We analysed the duration and complexity (or irregularity) over time of motor primitives, the temporal components of muscle synergies. We found that the challenge imposed by controlling high-speed locomotion forces the central nervous system to produce muscle activation patterns that are wider and less complex relative to the duration of the gait cycle. The motor modules, or time-independent coefficients, were redistributed as locomotion speed changed. These outcomes show that robust locomotion control at challenging speeds is achieved by modulating the relative contribution of muscle activations and producing less complex and wider control signals, whereas slow speeds allow for more irregular control.

    In this supplementary data set we made available: a) the metadata with anonymized participant information, b) the raw EMG, c) the touchdown and lift-off timings of the recorded limb, d) the filtered and time-normalized EMG, e) the muscle synergies extracted via NMF and f) the code to process the data, including the scripts to calculate the Higuchi's fractal dimension (HFD) of motor primitives. In total, 180 trials from 30 participants are included in the supplementary data set.

    The file “metadata.dat” is available in ASCII and RData format and contains:

    Code: the participant’s code

    Group: the experimental group in which the participant was involved (G1 = walking and submaximal running; G2 = submaximal and maximal running)

    Sex: the participant’s sex (M or F)

    Speeds: the type of locomotion (W for walking or R for running) and speed at which the recordings were conducted in 10*[m/s]

    Age: the participant’s age in years

    Height: the participant’s height in [cm]

    Mass: the participant’s body mass in [kg]

    PB: 100 m-personal best time (for G2).

    The "RAW_DATA.RData" R list consists of elements of S3 class "EMG", each of which is a human locomotion trial containing cycle segmentation timings and raw electromyographic (EMG) data from 13 muscles of the right-side leg. Cycle times are structured as data frames containing two columns that correspond to touchdown (first column) and lift-off (second column). Raw EMG data sets are also structured as data frames with one row for each recorded data point and 14 columns. The first column contains the incremental time in seconds. The remaining 13 columns contain the raw EMG data, named with the following muscle abbreviations: ME = gluteus medius, MA = gluteus maximus, FL = tensor fasciæ latæ, RF = rectus femoris, VM = vastus medialis, VL = vastus lateralis, ST = semitendinosus, BF = biceps femoris, TA = tibialis anterior, PL = peroneus longus, GM = gastrocnemius medialis, GL = gastrocnemius lateralis, SO = soleus. Please note that the following trials include less than 30 gait cycles (the actual number shown between parentheses): P16_R_83 (20), P16_R_95 (25), P17_R_28 (28), P17_R_83 (24), P17_R_95 (13), P18_R_95 (23), P19_R_95 (18), P20_R_28 (25), P20_R_42 (27), P20_R_95 (25), P22_R_28 (23), P23_R_28(29), P24_R_28 (28), P24_R_42 (29), P25_R_28 (29), P25_R_95 (28), P26_R_28 (29), P26_R_95 (28), P27_R_28 (28), P27_R_42 (29), P27_R_95 (24), P28_R_28 (29), P29_R_95 (17). All the other trials consist of 30 gait cycles. Trials are named like “P20_R_20,” where the characters “P20” indicate the participant number (in this example the 20th), the character “R” indicate the locomotion type (W=walking, R=running), and the numbers “20” indicate the locomotion speed in 10*m/s (in this case the speed is 2.0 m/s). The filtered and time-normalized emg data is named, following the same rules, like “FILT_EMG_P03_R_30”.

    Old versions not compatible with the R package musclesyneRgies

    The files containing the gait cycle breakdown are available in RData format, in the file named “CYCLE_TIMES.RData”. The files are structured as data frames with as many rows as the available number of gait cycles and two columns. The first column named “touchdown” contains the touchdown incremental times in seconds. The second column named “stance” contains the duration of each stance phase of the right foot in seconds. Each trial is saved as an element of a single R list. Trials are named like “CYCLE_TIMES_P20_R_20,” where the characters “CYCLE_TIMES” indicate that the trial contains the gait cycle breakdown times, the characters “P20” indicate the participant number (in this example the 20th), the character “R” indicate the locomotion type (W=walking, R=running), and the numbers “20” indicate the locomotion speed in 10*m/s (in this case the speed is 2.0 m/s). Please note that the following trials include less than 30 gait cycles (the actual number shown between parentheses): P16_R_83 (20), P16_R_95 (25), P17_R_28 (28), P17_R_83 (24), P17_R_95 (13), P18_R_95 (23), P19_R_95 (18), P20_R_28 (25), P20_R_42 (27), P20_R_95 (25), P22_R_28 (23), P23_R_28(29), P24_R_28 (28), P24_R_42 (29), P25_R_28 (29), P25_R_95 (28), P26_R_28 (29), P26_R_95 (28), P27_R_28 (28), P27_R_42 (29), P27_R_95 (24), P28_R_28 (29), P29_R_95 (17).

    The files containing the raw, filtered and the normalized EMG data are available in RData format, in the files named “RAW_EMG.RData” and “FILT_EMG.RData”. The raw EMG files are structured as data frames with as many rows as the amount of recorded data points and 13 columns. The first column named “time” contains the incremental time in seconds. The remaining 12 columns contain the raw EMG data, named with muscle abbreviations that follow those reported above. Each trial is saved as an element of a single R list. Trials are named like “RAW_EMG_P03_R_30”, where the characters “RAW_EMG” indicate that the trial contains raw emg data, the characters “P03” indicate the participant number (in this example the 3rd), the character “R” indicate the locomotion type (see above), and the numbers “30” indicate the locomotion speed (see above). The filtered and time-normalized emg data is named, following the same rules, like “FILT_EMG_P03_R_30”.

    The files containing the muscle synergies extracted from the filtered and normalized EMG data are available in RData format, in the files named “SYNS_H.RData” and “SYNS_W.RData”. The muscle synergies files are divided in motor primitives and motor modules and are presented as direct output of the factorisation and not in any functional order. Motor primitives are data frames with 6000 rows and a number of columns equal to the number of synergies (which might differ from trial to trial) plus one. The rows contain the time-dependent coefficients (motor primitives), one column for each synergy plus the time points (columns are named e.g. “time, Syn1, Syn2, Syn3”, where “Syn” is the abbreviation for “synergy”). Each gait cycle contains 200 data points, 100 for the stance and 100 for the swing phase which, multiplied by the 30 recorded cycles, result in 6000 data points distributed in as many rows. This output is transposed as compared to the one discussed in the methods section to improve user readability. Each set of motor primitives is saved as an element of a single R list. Trials are named like “SYNS_H_P12_W_07”, where the characters “SYNS_H” indicate that the trial contains motor primitive data, the characters “P12” indicate the participant number (in this example the 12th), the character “W” indicate the locomotion type (see above), and the numbers “07” indicate the speed (see above). Motor modules are data frames with 12 rows (number of recorded muscles) and a number of columns equal to the number of synergies (which might differ from trial to trial). The rows, named with muscle abbreviations that follow those reported above, contain the time-independent coefficients (motor modules), one for each synergy and for each muscle. Each set of motor modules relative to one synergy is saved as an element of a single R list. Trials are named like “SYNS_W_P22_R_20”, where the characters “SYNS_W” indicate that the trial contains motor module data, the characters “P22” indicate the participant number (in this example the 22nd), the character “W” indicates the locomotion type (see above), and the numbers “20” indicate the speed (see above). Given the nature of the NMF algorithm for the extraction of muscle synergies, the supplementary data set might show non-significant differences as compared to the one used for obtaining the results of this paper.

    The files containing the HFD calculated from motor primitives are available in RData format, in the file named “HFD.RData”. HFD results are presented in a list of lists containing, for each trial, 1) the HFD, and 2) the interval time k used for the calculations. HFDs are presented as one number (mean HFD of the primitives for that trial), as are the interval times k. Trials are named like “HFD_P01_R_95”, where the characters “HFD” indicate that the trial contains HFD data, the characters “P01” indicate the participant number (in this example the 1st), the character “R” indicates the locomotion type (see above), and the numbers “95” indicate the speed (see above).

    All the code used for the pre-processing of EMG data, the extraction of muscle synergies and the calculation of HFD is available in R format. Explanatory comments are profusely present throughout the script “muscle_synergies.R”.

  3. d

    Data from: Extending null scenarios with Faddy distributions in a...

    • datadryad.org
    • data.niaid.nih.gov
    zip
    Updated May 13, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jorge Navarro Alberto; Bryan Manly; Kenneth Gerow (2021). Extending null scenarios with Faddy distributions in a probabilistic randomization protocol for presence-absence data [Dataset]. http://doi.org/10.5061/dryad.p2ngf1vn5
    Explore at:
    zipAvailable download formats
    Dataset updated
    May 13, 2021
    Dataset provided by
    Dryad
    Authors
    Jorge Navarro Alberto; Bryan Manly; Kenneth Gerow
    Time period covered
    Apr 14, 2020
    Description

    The file contains coded presence-absence data of 20 lizard species on 25 islands in the Gulf of California (Case 1983; Manly 1995). Species and island numbers follow the order shown in Manly (1995). Each space-delimited line corresponds to a single species (20 lines in the example); each line always ends with a –1. A positive number correspond to an island number, i.e., the column in the presence-absence matrix where that species appeared. With the exception of the last number on each line, a negative number will always be preceded by a positive number indicating the range of islands where the species occurs, from the positive number to the absolute value of the negative number.

    Example. The third line in lizgal.txt (species Scleoporus orcutti) contains the numbers:

    13_–16_22_23_–1 (_ indicates a whitespace)

    The line indicates that Scleoporus orcutti occurred on islands 13, 14, 15, 16, 22 and 23.

    References

    Case, T. J. (1983) Niche overlap and the assembly o...

  4. l

    LScDC Word-Category RIG Matrix

    • figshare.le.ac.uk
    pdf
    Updated Apr 28, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neslihan Suzen (2020). LScDC Word-Category RIG Matrix [Dataset]. http://doi.org/10.25392/leicester.data.12133431.v2
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Apr 28, 2020
    Dataset provided by
    University of Leicester
    Authors
    Neslihan Suzen
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    LScDC Word-Category RIG MatrixApril 2020 by Neslihan Suzen, PhD student at the University of Leicester (ns433@leicester.ac.uk / suzenneslihan@hotmail.com)Supervised by Prof Alexander Gorban and Dr Evgeny MirkesGetting StartedThis file describes the Word-Category RIG Matrix for theLeicester Scientific Corpus (LSC) [1], the procedure to build the matrix and introduces the Leicester Scientific Thesaurus (LScT) with the construction process. The Word-Category RIG Matrix is a 103,998 by 252 matrix, where rows correspond to words of Leicester Scientific Dictionary-Core (LScDC) [2] and columns correspond to 252 Web of Science (WoS) categories [3, 4, 5]. Each entry in the matrix corresponds to a pair (category,word). Its value for the pair shows the Relative Information Gain (RIG) on the belonging of a text from the LSC to the category from observing the word in this text. The CSV file of Word-Category RIG Matrix in the published archive is presented with two additional columns of the sum of RIGs in categories and the maximum of RIGs over categories (last two columns of the matrix). So, the file ‘Word-Category RIG Matrix.csv’ contains a total of 254 columns.This matrix is created to be used in future research on quantifying of meaning in scientific texts under the assumption that words have scientifically specific meanings in subject categories and the meaning can be estimated by information gains from word to categories. LScT (Leicester Scientific Thesaurus) is a scientific thesaurus of English. The thesaurus includes a list of 5,000 words from the LScDC. We consider ordering the words of LScDC by the sum of their RIGs in categories. That is, words are arranged in their informativeness in the scientific corpus LSC. Therefore, meaningfulness of words evaluated by words’ average informativeness in the categories. We have decided to include the most informative 5,000 words in the scientific thesaurus. Words as a Vector of Frequencies in WoS CategoriesEach word of the LScDC is represented as a vector of frequencies in WoS categories. Given the collection of the LSC texts, each entry of the vector consists of the number of texts containing the word in the corresponding category.It is noteworthy that texts in a corpus do not necessarily belong to a single category, as they are likely to correspond to multidisciplinary studies, specifically in a corpus of scientific texts. In other words, categories may not be exclusive. There are 252 WoS categories and a text can be assigned to at least 1 and at most 6 categories in the LSC. Using the binary calculation of frequencies, we introduce the presence of a word in a category. We create a vector of frequencies for each word, where dimensions are categories in the corpus.The collection of vectors, with all words and categories in the entire corpus, can be shown in a table, where each entry corresponds to a pair (word,category). This table is build for the LScDC with 252 WoS categories and presented in published archive with this file. The value of each entry in the table shows how many times a word of LScDC appears in a WoS category. The occurrence of a word in a category is determined by counting the number of the LSC texts containing the word in a category. Words as a Vector of Relative Information Gains Extracted for CategoriesIn this section, we introduce our approach to representation of a word as a vector of relative information gains for categories under the assumption that meaning of a word can be quantified by their information gained for categories.For each category, a function is defined on texts that takes the value 1, if the text belongs to the category, and 0 otherwise. For each word, a function is defined on texts that takes the value 1 if the word belongs to the text, and 0 otherwise. Consider LSC as a probabilistic sample space (the space of equally probable elementary outcomes). For the Boolean random variables, the joint probability distribution, the entropy and information gains are defined.The information gain about the category from the word is the amount of information on the belonging of a text from the LSC to the category from observing the word in the text [6]. We used the Relative Information Gain (RIG) providing a normalised measure of the Information Gain. This provides the ability of comparing information gains for different categories. The calculations of entropy, Information Gains and Relative Information Gains can be found in the README file in the archive published. Given a word, we created a vector where each component of the vector corresponds to a category. Therefore, each word is represented as a vector of relative information gains. It is obvious that the dimension of vector for each word is the number of categories. The set of vectors is used to form the Word-Category RIG Matrix, in which each column corresponds to a category, each row corresponds to a word and each component is the relative information gain from the word to the category. In Word-Category RIG Matrix, a row vector represents the corresponding word as a vector of RIGs in categories. We note that in the matrix, a column vector represents RIGs of all words in an individual category. If we choose an arbitrary category, words can be ordered by their RIGs from the most informative to the least informative for the category. As well as ordering words in each category, words can be ordered by two criteria: sum and maximum of RIGs in categories. The top n words in this list can be considered as the most informative words in the scientific texts. For a given word, the sum and maximum of RIGs are calculated from the Word-Category RIG Matrix.RIGs for each word of LScDC in 252 categories are calculated and vectors of words are formed. We then form the Word-Category RIG Matrix for the LSC. For each word, the sum (S) and maximum (M) of RIGs in categories are calculated and added at the end of the matrix (last two columns of the matrix). The Word-Category RIG Matrix for the LScDC with 252 categories, the sum of RIGs in categories and the maximum of RIGs over categories can be found in the database.Leicester Scientific Thesaurus (LScT)Leicester Scientific Thesaurus (LScT) is a list of 5,000 words form the LScDC [2]. Words of LScDC are sorted in descending order by the sum (S) of RIGs in categories and the top 5,000 words are selected to be included in the LScT. We consider these 5,000 words as the most meaningful words in the scientific corpus. In other words, meaningfulness of words evaluated by words’ average informativeness in the categories and the list of these words are considered as a ‘thesaurus’ for science. The LScT with value of sum can be found as CSV file with the published archive. Published archive contains following files:1) Word_Category_RIG_Matrix.csv: A 103,998 by 254 matrix where columns are 252 WoS categories, the sum (S) and the maximum (M) of RIGs in categories (last two columns of the matrix), and rows are words of LScDC. Each entry in the first 252 columns is RIG from the word to the category. Words are ordered as in the LScDC.2) Word_Category_Frequency_Matrix.csv: A 103,998 by 252 matrix where columns are 252 WoS categories and rows are words of LScDC. Each entry of the matrix is the number of texts containing the word in the corresponding category. Words are ordered as in the LScDC.3) LScT.csv: List of words of LScT with sum (S) values. 4) Text_No_in_Cat.csv: The number of texts in categories. 5) Categories_in_Documents.csv: List of WoS categories for each document of the LSC.6) README.txt: Description of Word-Category RIG Matrix, Word-Category Frequency Matrix and LScT and forming procedures.7) README.pdf (same as 6 in PDF format)References[1] Suzen, Neslihan (2019): LSC (Leicester Scientific Corpus). figshare. Dataset. https://doi.org/10.25392/leicester.data.9449639.v2[2] Suzen, Neslihan (2019): LScDC (Leicester Scientific Dictionary-Core). figshare. Dataset. https://doi.org/10.25392/leicester.data.9896579.v3[3] Web of Science. (15 July). Available: https://apps.webofknowledge.com/[4] WoS Subject Categories. Available: https://images.webofknowledge.com/WOKRS56B5/help/WOS/hp_subject_category_terms_tasca.html [5] Suzen, N., Mirkes, E. M., & Gorban, A. N. (2019). LScDC-new large scientific dictionary. arXiv preprint arXiv:1912.06858. [6] Shannon, C. E. (1948). A mathematical theory of communication. Bell system technical journal, 27(3), 379-423.

  5. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Udayakumar19 (2022). Google Data Analytics Case Study Cyclistic [Dataset]. https://www.kaggle.com/datasets/udayakumar19/google-data-analytics-case-study-cyclistic/suggestions
Organization logo

Google Data Analytics Case Study Cyclistic

Difference between Casual vs Member in Cyclistic Riders

Explore at:
zip(1299 bytes)Available download formats
Dataset updated
Sep 27, 2022
Authors
Udayakumar19
Description

Introduction

Welcome to the Cyclistic bike-share analysis case study! In this case study, you will perform many real-world tasks of a junior data analyst. You will work for a fictional company, Cyclistic, and meet different characters and team members. In order to answer the key business questions, you will follow the steps of the data analysis process: ask, prepare, process, analyze, share, and act. Along the way, the Case Study Roadmap tables — including guiding questions and key tasks — will help you stay on the right path.

Scenario

You are a junior data analyst working in the marketing analyst team at Cyclistic, a bike-share company in Chicago. The director of marketing believes the company’s future success depends on maximizing the number of annual memberships. Therefore, your team wants to understand how casual riders and annual members use Cyclistic bikes differently. From these insights, your team will design a new marketing strategy to convert casual riders into annual members. But first, Cyclistic executives must approve your recommendations, so they must be backed up with compelling data insights and professional data visualizations.

Ask

How do annual members and casual riders use Cyclistic bikes differently?

Guiding Question:

What is the problem you are trying to solve?
  How do annual members and casual riders use Cyclistic bikes differently?
How can your insights drive business decisions?
  The insight will help the marketing team to make a strategy for casual riders

Prepare

Guiding Question:

Where is your data located?
  Data located in Cyclistic organization data.

How is data organized?
  Dataset are in csv format for each month wise from Financial year 22.

Are there issues with bias or credibility in this data? Does your data ROCCC? 
  It is good it is ROCCC because data collected in from Cyclistic organization.

How are you addressing licensing, privacy, security, and accessibility?
  The company has their own license over the dataset. Dataset does not have any personal information about the riders.

How did you verify the data’s integrity?
  All the files have consistent columns and each column has the correct type of data.

How does it help you answer your questions?
  Insights always hidden in the data. We have the interpret with data to find the insights.

Are there any problems with the data?
  Yes, starting station names, ending station names have null values.

Process

Guiding Question:

What tools are you choosing and why?
  I used R studio for the cleaning and transforming the data for analysis phase because of large dataset and to gather experience in the language.

Have you ensured the data’s integrity?
 Yes, the data is consistent throughout the columns.

What steps have you taken to ensure that your data is clean?
  First duplicates, null values are removed then added new columns for analysis.

How can you verify that your data is clean and ready to analyze? 
 Make sure the column names are consistent thorough out all data sets by using the “bind row” function.

Make sure column data types are consistent throughout all the dataset by using the “compare_df_col” from the “janitor” package.
Combine the all dataset into single data frame to make consistent throught the analysis.
Removed the column start_lat, start_lng, end_lat, end_lng from the dataframe because those columns not required for analysis.
Create new columns day, date, month, year, from the started_at column this will provide additional opportunities to aggregate the data
Create the “ride_length” column from the started_at and ended_at column to find the average duration of the ride by the riders.
Removed the null rows from the dataset by using the “na.omit function”
Have you documented your cleaning process so you can review and share those results? 
  Yes, the cleaning process is documented clearly.

Analyze Phase:

Guiding Questions:

How should you organize your data to perform analysis on it? The data has been organized in one single dataframe by using the read csv function in R Has your data been properly formatted? Yes, all the columns have their correct data type.

What surprises did you discover in the data?
  Casual member ride duration is higher than the annual members
  Causal member widely uses docked bike than the annual members
What trends or relationships did you find in the data?
  Annual members are used mainly for commute purpose
  Casual member are preferred the docked bikes
  Annual members are preferred the electric or classic bikes
How will these insights help answer your business questions?
  This insights helps to build a profile for members

Share

Guiding Quesions:

Were you able to answer the question of how ...
Search
Clear search
Close search
Google apps
Main menu