Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
India's main stock market index, the SENSEX, fell to 82500 points on July 11, 2025, losing 0.83% from the previous session. Over the past month, the index has climbed 0.99% and is up 2.46% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from India. BSE SENSEX Stock Market Index - values, historical data, forecasts and news - updated on July of 2025.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Stock market return (%, year-on-year) in India was reported at 21.5 % in 2021, according to the World Bank collection of development indicators, compiled from officially recognized sources. India - Stock market return (%, year-on-year) - actual values, historical data, forecasts and projections were sourced from the World Bank on July of 2025.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
ABSTRACT The purpose of this article was to develop a new indicator to estimate the aggregate long-term expected return on stocks. There is not a widely used method to model directly the aggregated expected return of the stock market. Most current methods use indirect approaches. We developed a new indicator that does not need an econometric model to generate expected returns and provides an estimate of the long-term expected returns. The proposed methodology can be used to develop an indicator of future returns of the stock market similar to the yield-to-maturity used for bonds. We used a restricted one-stage constant-growth model - a variant of the residual income model (RIM) - whose main input is the duration of companies’ competitive advantage and cyclical adjusted real return on invested capital (ROIC) with a 10-year average. We used a new methodology to develop an indicator of the long-term expected return on the equity market at the aggregate level, considering the duration of the competitive advantage of companies. Our results showed a strong correlation between the estimated implied return on equity (IRE) of current stock prices and realized returns of the 10-year real total return of the index.
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Stock market return (%, year-on-year) in China was reported at 13.47 % in 2021, according to the World Bank collection of development indicators, compiled from officially recognized sources. China - Stock market return (%, year-on-year) - actual values, historical data, forecasts and projections were sourced from the World Bank on July of 2025.
https://fred.stlouisfed.org/legal/#copyright-pre-approvalhttps://fred.stlouisfed.org/legal/#copyright-pre-approval
View data of the S&P 500, an index of the stocks of 500 leading companies in the US economy, which provides a gauge of the U.S. equity market.
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
The Dow Jones Industrial Average (DJIA) is a stock market index used to analyze trends in the stock market. While many economists prefer to use other, market-weighted indices (the DJIA is price-weighted) as they are perceived to be more representative of the overall market, the Dow Jones remains one of the most commonly-used indices today, and its longevity allows for historical events and long-term trends to be analyzed over extended periods of time. Average changes in yearly closing prices, for example, shows how markets developed year on year. Figures were more sporadic in early years, but the impact of major events can be observed throughout. For example, the occasions where a decrease of more than 25 percent was observed each coincided with a major recession; these include the Post-WWI Recession in 1920, the Great Depression in 1929, the Recession of 1937-38, the 1973-75 Recession, and the Great Recession in 2008.
India's main stock market index, the SENSEX, fell to 82500 points on July 11, 2025, losing 0.83% from the previous session. Over the past month, the index has climbed 0.99% and is up 2.46% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from India. BSE SENSEX Stock Market Index - values, historical data, forecasts and news - updated on July of 2025.
Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
The Nifty 50 Index data provides a comprehensive overview of the performance of the top 50 actively traded stocks listed on the National Stock Exchange of India (NSE). This dataset encompasses a wide range of industries, including finance, technology, healthcare, and consumer goods, offering insights into the overall health and direction of the Indian stock market.
Included in the data are key metrics such as daily opening and closing prices, high and low prices, trading volume, and percentage changes. These metrics allow analysts and investors to track trends, identify patterns, and make informed decisions regarding investment strategies.
Additionally, the dataset may incorporate historical data, enabling users to conduct thorough analyses over specific time periods and assess the long-term performance of individual stocks or the index as a whole. Whether used for research, financial modeling, or investment decision-making, the Nifty 50 Index data serves as a valuable resource for understanding and navigating the dynamic landscape of the Indian stock market.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Interactive chart of the Dow Jones Industrial Average (DJIA) stock market index for the last 100 years. Historical data is inflation-adjusted using the headline CPI and each data point represents the month-end closing value. The current month is updated on an hourly basis with today's latest value.
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
By [source]
This dataset contains 862,231 labeled tweets and associated stock returns, providing a comprehensive look into the impact of social media on company-level stock market performance. For each tweet, researchers have extracted data such as the date of the tweet and its associated stock symbol, along with metrics such as last price and various returns (1-day return, 2-day return, 3-day return, 7-day return). Also recorded are volatility scores for both 10 day intervals and 30 day intervals. Finally, sentiment scores from both Long Short - Term Memory (LSTM) and TextBlob models have been included to quantify the overall tone in which these messages were delivered. With this dataset you will be able to explore how tweets can affect a company's share prices both short term and long term by leveraging all of these data points for analysis!
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
In order to use this dataset, users can utilize descriptive statistics such as histograms or regression techniques to establish relationships between tweet content & sentiment with corresponding stock return data points such as 1-day & 7-day returns measurements.
The primary fields used for analysis include Tweet Text (TWEET), Stock symbol (STOCK), Date (DATE), Closing Price at the time of Tweet (LAST_PRICE) a range of Volatility measures 10 day Volatility(VOLATILITY_10D)and 30 day Volatility(VOLATILITY_30D ) for each Stock which capture changes in market fluctuation during different periods around when Twitter reactions occur. Additionally Sentiment Polarity analysis undertaken via two Machine learning algorithms LSTM Polarity(LSTM_POLARITY)and Textblob polarity provide insight into whether people are expressing positive or negative sentiments about each company at given times which again could influence thereby potentially influence Stock Prices over shorter term periods like 1-Day Returns(1_DAY_RETURN),2-Day Returns(2_DAY_RETURN)or longer term horizon like 7 Day Returns*7DAY RETURNS*.Finally MENTION field indicates if names/acronyms associated with Companies were specifically mentioned in each Tweet or not which gives extra insight into whether company specific contexts were present within individual Tweets aka “Company Relevancy”
- Analyzing the degree to which tweets can influence stock prices. By analyzing relationships between variables such as tweet sentiment and stock returns, correlations can be identified that could be used to inform investment decisions.
- Exploring natural language processing (NLP) models for predicting future market trends based on textual data such as tweets. Through testing and evaluating different text-based models using this dataset, better predictive models may emerge that can give investors advance warning of upcoming market shifts due to news or other events.
- Investigating the impact of different types of tweets (positive/negative, factual/opinionated) on stock prices over specific time frames. By studying correlations between the sentiment or nature of a tweet and its effect on stocks, insights may be gained into what sort of news or events have a greater impact on markets in general
If you use this dataset in your research, please credit the original authors. Data Source
License: CC0 1.0 Universal (CC0 1.0) - Public Domain Dedication No Copyright - You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission. See Other Information.
File: reduced_dataset-release.csv | Column name | Description | |:----------------------|:-------------------------------------------------------------------------------------------------------| | TWEET | Text of the tweet. (String) | | STOCK | Company's stock mentioned in the tweet. (String) | | DATE | Date the tweet was posted. (Date) | | LAST_PRICE | Company's last price at the time of tweeting. (Float) ...
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Interactive chart of the S&P 500 stock market index since 1927. Historical data is inflation-adjusted using the headline CPI and each data point represents the month-end closing value. The current month is updated on an hourly basis with today's latest value.
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The COVID-19 pandemic has emerged as a significant event of the current century, introducing substantial transformations in economic and social activities worldwide. The primary objective of this study is to investigate the relationship between daily COVID-19 cases and Pakistan stock market (PSX) return volatility. To assess the relationship between daily COVID-19 cases and the PSX return volatility, we collected secondary data from the World Health Organization (WHO) and the PSX website, specifically focusing on the PSX 100 index, spanning from March 15, 2020, to March 31, 2021. We used the GARCH family models for measuring the volatility and the COVID-19 impact on the stock market performance. Our E-GARCH findings show that there is long-term persistence in the return volatility of the stock market of Pakistan in the period of the COVID-19 timeline because ARCH alpha (ω1) and GARCH beta (ω2) are significant. Moreover, is asymmetrical effect is found in the stock market of Pakistan during the COVID-19 period due to Gamma (ѱ) being significant for PSX. Our DCC-GARCH results show that the COVID-19 active cases have a long-term spillover impact on the Pakistan stock market. Therefore, the need of strong planning and alternative platform should be needed in the distress period to promote the stock market and investor should advised to make diversified international portfolio by investing in high and low volatility stock market to save their income. This study advocated the implications for investors to invest in low volatility stock especially during the period of pandemics to protect their return on investment. Moreover, policy makers and the regulators can make effective policies to maintain financial stability during pandemics that is very important for the country’s economic development.
In 2024, ** percent of adults in the United States invested in the stock market. This figure has remained steady over the last few years, and is still below the levels before the Great Recession, when it peaked in 2007 at ** percent. What is the stock market? The stock market can be defined as a group of stock exchanges, where investors can buy shares in a publicly traded company. In more recent years, it is estimated an increasing number of Americans are using neobrokers, making stock trading more accessible to investors. Other investments A significant number of people think stocks and bonds are the safest investments, while others point to real estate, gold, bonds, or a savings account. Since witnessing the significant one-day losses in the stock market during the Financial Crisis, many investors were turning towards these alternatives in hopes for more stability, particularly for investments with longer maturities. This could explain the decrease in this statistic since 2007. Nevertheless, some speculators enjoy chasing the short-run fluctuations, and others see value in choosing particular stocks.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
We investigate the relationship between long-term US stock market risks and the macroeconomic environment using a two-component GARCH-MIDAS model. Our results show that macroeconomic variables are important determinants of the secular component of stock market volatility. Among the various macro variables in our dataset the term spread, housing starts, corporate profits and the unemployment rate have the highest predictive ability for long-term stock market volatility. While the term spread and housing starts are leading variables with respect to stock market volatility, for industrial production and the unemployment rate expectations data from the Survey of Professional Forecasters regarding the future development are most informative.
Between March 4 and March 11, 2020, the S&P 500 index declined by ** percent, descending into a bear market. On March 12, 2020, the S&P 500 plunged *** percent, its steepest one-day fall since 1987. The index began to recover at the start of April and reached a peak in December 2021. As of December 29, 2024, the value of the S&P 500 stood at ******** points. Coronavirus sparks stock market chaos Stock markets plunged in the wake of the COVID-19 pandemic, with investors fearing its spread would destroy economic growth. Buoyed by figures that suggested cases were leveling off in China, investors were initially optimistic about the virus being contained. However, confidence in the market started to subside as the number of cases increased worldwide. Investors were deterred from buying stocks, and this was reflected in the markets – the values of the Dow Jones Industrial Average and the Nasdaq Composite also dived during the height of the crisis. What is a bear market? A bear market occurs when the value of a stock market suffers a prolonged decline of more than 20 percent over a period of at least 2 months. The COVID-19 pandemic caused severe concern and sent stock markets on a steep downward spiral. The S&P 500 achieved a record closing high of ***** on February 19, 2020. However, just over 3 weeks later, the market closed on *****, which represented a decline of around ** percent in only 16 sessions.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
We study the long-run return on equities in the Madrid Stock Exchange from the early emergence of a stock market around 1900 to its “big bang” at the end of the 20th century. Using high-quality data from primary sources, we constructed an original monthly capital-weighted index, the H-IBEX, based on the same methodology of the modern IBEX35. Our historical index provides for the first time an accurate measure of the impact of the Spanish civil war on equity wealth. We also document the time-varying characteristics of market cycles and the magnitude, frequency and determinants of extreme events. Our index suggests that in the long run Spanish equities underperformed relative to global and European benchmarks in real terms, primarily due to persistent macroeconomic instability from the 1940s to the 1980s and a massive destruction of financial wealth in the transition from a closed to an open economy after the fall of the Francoist regime. For almost half century the Spanish equity market was virtually barred to foreign investors and offered limited attractiveness due to high exchange rate risk. After the macroeconomic stabilization and the stock exchange reforms of the late 1980s, Spanish equities offered high expected returns due to their high exposure to global factors, but yielded lower risk-adjusted returns and provided limited benefits of diversification due to their fast-rising correlation with foreign markets.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
India's main stock market index, the SENSEX, fell to 82500 points on July 11, 2025, losing 0.83% from the previous session. Over the past month, the index has climbed 0.99% and is up 2.46% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from India. BSE SENSEX Stock Market Index - values, historical data, forecasts and news - updated on July of 2025.