100+ datasets found
  1. Twitter dataset

    • figshare.com
    csv
    Updated Feb 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Shreyas Poojary; Mohammed Riza; Rashmi Laxmikant Malghan (2025). Twitter dataset [Dataset]. http://doi.org/10.6084/m9.figshare.28390334.v2
    Explore at:
    csvAvailable download formats
    Dataset updated
    Feb 11, 2025
    Dataset provided by
    figshare
    Authors
    Shreyas Poojary; Mohammed Riza; Rashmi Laxmikant Malghan
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset contains tweets labeled for sentiment analysis, categorized into Positive, Negative, and Neutral sentiments. The dataset includes tweet IDs, user metadata, sentiment labels, and tweet text, making it suitable for Natural Language Processing (NLP), machine learning, and AI-based sentiment classification research. Originally sourced from Kaggle, this dataset is curated for improved usability in social media sentiment analysis.

  2. m

    Twitter Sentiments Dataset

    • data.mendeley.com
    Updated May 14, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    SHERIF HUSSEIN (2021). Twitter Sentiments Dataset [Dataset]. http://doi.org/10.17632/z9zw7nt5h2.1
    Explore at:
    Dataset updated
    May 14, 2021
    Authors
    SHERIF HUSSEIN
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The dataset has three sentiments namely, negative, neutral, and positive. It contains two fields for the tweet and label.

  3. t

    Sentiment Prediction Outputs for Twitter Dataset

    • test.researchdata.tuwien.at
    bin, csv, png, txt
    Updated May 20, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hachem Bouhamidi; Hachem Bouhamidi; Hachem Bouhamidi; Hachem Bouhamidi (2025). Sentiment Prediction Outputs for Twitter Dataset [Dataset]. http://doi.org/10.70124/c8v83-0sy11
    Explore at:
    bin, csv, png, txtAvailable download formats
    Dataset updated
    May 20, 2025
    Dataset provided by
    TU Wien
    Authors
    Hachem Bouhamidi; Hachem Bouhamidi; Hachem Bouhamidi; Hachem Bouhamidi
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Apr 28, 2025
    Description

    Context and Methodology:

    This dataset was created as part of a sentiment analysis project using enriched Twitter data. The objective was to train and test a machine learning model to automatically classify the sentiment of tweets (e.g., Positive, Negative, Neutral).
    The data was generated using tweets that were sentiment-scored with a custom sentiment scorer. A machine learning pipeline was applied, including text preprocessing, feature extraction with CountVectorizer, and prediction with a HistGradientBoostingClassifier.

    Technical Details:

    The dataset includes five main files:

    • test_predictions_full.csv – Predicted sentiment labels for the test set.

    • sentiment_model.joblib – Trained machine learning model.

    • count_vectorizer.joblib – Text feature extraction model (CountVectorizer).

    • model_performance.txt – Evaluation metrics and performance report of the trained model.

    • confusion_matrix.png – Visualization of the model’s confusion matrix.

    The files follow standard naming conventions based on their purpose.
    The .joblib files can be loaded into Python using the joblib and scikit-learn libraries.
    The .csv,.txt, and .png files can be opened with any standard text reader, spreadsheet software, or image viewer.
    Additional performance documentation is included within the model_performance.txt file.

    Additional Details:

    • The data was constructed to ensure reproducibility.

    • No personal or sensitive information is present.

    • It can be reused by researchers, data scientists, and students interested in Natural Language Processing (NLP), machine learning classification, and sentiment analysis tasks.

  4. Twitter Sentiment Analysis Datasets

    • brightdata.com
    .json, .csv, .xlsx
    Updated Jul 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bright Data (2024). Twitter Sentiment Analysis Datasets [Dataset]. https://brightdata.com/products/datasets/twitter/sentiment-analysis
    Explore at:
    .json, .csv, .xlsxAvailable download formats
    Dataset updated
    Jul 4, 2024
    Dataset authored and provided by
    Bright Datahttps://brightdata.com/
    License

    https://brightdata.com/licensehttps://brightdata.com/license

    Area covered
    Worldwide
    Description

    Our Twitter Sentiment Analysis Dataset provides a comprehensive collection of tweets, enabling businesses, researchers, and analysts to assess public sentiment, track trends, and monitor brand perception in real time. This dataset includes detailed metadata for each tweet, allowing for in-depth analysis of user engagement, sentiment trends, and social media impact.

    Key Features:
    
      Tweet Content & Metadata: Includes tweet text, hashtags, mentions, media attachments, and engagement metrics such as likes, retweets, and replies.
      Sentiment Classification: Analyze sentiment polarity (positive, negative, neutral) to gauge public opinion on brands, events, and trending topics.
      Author & User Insights: Access user details such as username, profile information, follower count, and account verification status.
      Hashtag & Topic Tracking: Identify trending hashtags and keywords to monitor conversations and sentiment shifts over time.
      Engagement Metrics: Measure tweet performance based on likes, shares, and comments to evaluate audience interaction.
      Historical & Real-Time Data: Choose from historical datasets for trend analysis or real-time data for up-to-date sentiment tracking.
    
    
    Use Cases:
    
      Brand Monitoring & Reputation Management: Track public sentiment around brands, products, and services to manage reputation and customer perception.
      Market Research & Consumer Insights: Analyze consumer opinions on industry trends, competitor performance, and emerging market opportunities.
      Political & Social Sentiment Analysis: Evaluate public opinion on political events, social movements, and global issues.
      AI & Machine Learning Applications: Train sentiment analysis models for natural language processing (NLP) and predictive analytics.
      Advertising & Campaign Performance: Measure the effectiveness of marketing campaigns by analyzing audience engagement and sentiment.
    
    
    
      Our dataset is available in multiple formats (JSON, CSV, Excel) and can be delivered via API, cloud storage (AWS, Google Cloud, Azure), or direct download. 
      Gain valuable insights into social media sentiment and enhance your decision-making with high-quality, structured Twitter data.
    
  5. Twitter Sentiment Analysis

    • kaggle.com
    Updated Apr 16, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    raj713335 (2023). Twitter Sentiment Analysis [Dataset]. https://www.kaggle.com/datasets/raj713335/twittesentimentanalysis/discussion
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Apr 16, 2023
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    raj713335
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    About Dataset

    Context

    This is the Twitter Sentiment Analysis dataset. It contains 1 Million tweets extracted using the Twitter Opensource API. The tweets have been annotated (0 = negative, 4 = positive) and they can be used primarily to detect sentiment.

    Content It contains the following 6 fields:

    target: the polarity of the tweet (0 = negative, 2 = neutral, 4 = positive)

    ids: The id of the tweet ( 2087)

    date: the date of the tweet (Sat April 15 23:58:44 UTC 2023)

    flag: The query (lyx). If there is no query, then this value is NO_QUERY.

    user: The user that tweeted (raj713335)

    **text: **the text of the tweet (Lyx is cool)

    Acknowledgments The official link regarding the dataset with resources about how it was generated is here The official paper detailing the approach is here

    Citation: Go, A., Bhayani, R. and Huang, L., 2009. Twitter sentiment classification using distant supervision. CS224N Project Report, Stanford, 1(2009), p.12.

    Inspiration To detect severity from tweets. You may have a look at this.

  6. Z

    Brussel mobility Twitter sentiment analysis CSV Dataset

    • data.niaid.nih.gov
    • zenodo.org
    Updated May 31, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tori, Floriano; Betancur Arenas, Juliana; Ginis, Vincent; van Vessem, Charlotte (2024). Brussel mobility Twitter sentiment analysis CSV Dataset [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_11401123
    Explore at:
    Dataset updated
    May 31, 2024
    Authors
    Tori, Floriano; Betancur Arenas, Juliana; Ginis, Vincent; van Vessem, Charlotte
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Brussels
    Description

    SSH CENTRE (Social Sciences and Humanities for Climate, Energy aNd Transport Research Excellence) is a Horizon Europe project, engaging directly with stakeholders across research, policy, and business (including citizens) to strengthen social innovation, SSH-STEM collaboration, transdisciplinary policy advice, inclusive engagement, and SSH communities across Europe, accelerating the EU’s transition to carbon neutrality. SSH CENTRE is based in a range of activities related to Open Science, inclusivity and diversity – especially with regards Southern and Eastern Europe and different career stages – including: development of novel SSH-STEM collaborations to facilitate the delivery of the EU Green Deal; SSH knowledge brokerage to support regions in transition; and the effective design of strategies for citizen engagement in EU R&I activities. Outputs include action-led agendas and building stakeholder synergies through regular Policy Insight events.This is captured in a high-profile virtual SSH CENTRE generating and sharing best practice for SSH policy advice, overcoming fragmentation to accelerate the EU’s journey to a sustainable future.The documents uploaded here are part of WP2 whereby novel, interdisciplinary teams were provided funding to undertake activities to develop a policy recommendation related to EU Green Deal policy. Each of these policy recommendations, and the activities that inform them, will be written-up as a chapter in an edited book collection. Three books will make up this edited collection - one on climate, one on energy and one on mobility. As part of writing a chapter for the SSH CENTRE book on ‘Mobility’, we set out to analyse the sentiment of users on Twitter regarding shared and active mobility modes in Brussels. This involved us collecting tweets between 2017-2022. A tweet was collected if it contained a previously defined mobility keyword (for example: metro) and either the name of a (local) politician, a neighbourhood or municipality, or a (shared) mobility provider. The files attached to this Zenodo webpage is a csv files containing the tweets collected.”.

  7. h

    large-twitter-tweets-sentiment

    • huggingface.co
    Updated Mar 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Gong Xiangbo (2024). large-twitter-tweets-sentiment [Dataset]. https://huggingface.co/datasets/gxb912/large-twitter-tweets-sentiment
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Mar 6, 2024
    Authors
    Gong Xiangbo
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    Dataset Card for "Large twitter tweets sentiment analysis"

      Dataset Description
    
    
    
    
    
      Dataset Summary
    

    This dataset is a collection of tweets formatted in a tabular data structure, annotated for sentiment analysis. Each tweet is associated with a sentiment label, with 1 indicating a Positive sentiment and 0 for a Negative sentiment.

      Languages
    

    The tweets in English.

      Dataset Structure
    
    
    
    
    
      Data Instances
    

    An instance of the dataset includes… See the full description on the dataset page: https://huggingface.co/datasets/gxb912/large-twitter-tweets-sentiment.

  8. i

    Coronavirus (COVID-19) Tweets Sentiment Trend

    • ieee-dataport.org
    Updated Nov 4, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rabindra Lamsal (2022). Coronavirus (COVID-19) Tweets Sentiment Trend [Dataset]. https://ieee-dataport.org/open-access/coronavirus-covid-19-tweets-sentiment-trend
    Explore at:
    Dataset updated
    Nov 4, 2022
    Authors
    Rabindra Lamsal
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset gives a cursory glimpse at the overall sentiment trend of the public discourse regarding the COVID-19 pandemic on Twitter. The live scatter plot of this dataset is available as The Overall Trend block at https://live.rlamsal.com.np. The trend graph reveals multiple peaks and drops that need further analysis. The n-grams during those peaks and drops can prove beneficial for better understanding the discourse.

  9. m

    The Climate Change Twitter Dataset

    • data.mendeley.com
    Updated May 19, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dimitrios Effrosynidis (2022). The Climate Change Twitter Dataset [Dataset]. http://doi.org/10.17632/mw8yd7z9wc.2
    Explore at:
    Dataset updated
    May 19, 2022
    Authors
    Dimitrios Effrosynidis
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    If you use the dataset, cite the paper: https://doi.org/10.1016/j.eswa.2022.117541

    The most comprehensive dataset to date regarding climate change and human opinions via Twitter. It has the heftiest temporal coverage, spanning over 13 years, includes over 15 million tweets spatially distributed across the world, and provides the geolocation of most tweets. Seven dimensions of information are tied to each tweet, namely geolocation, user gender, climate change stance and sentiment, aggressiveness, deviations from historic temperature, and topic modeling, while accompanied by environmental disaster events information. These dimensions were produced by testing and evaluating a plethora of state-of-the-art machine learning algorithms and methods, both supervised and unsupervised, including BERT, RNN, LSTM, CNN, SVM, Naive Bayes, VADER, Textblob, Flair, and LDA.

    The following columns are in the dataset:

    ➡ created_at: The timestamp of the tweet. ➡ id: The unique id of the tweet. ➡ lng: The longitude the tweet was written. ➡ lat: The latitude the tweet was written. ➡ topic: Categorization of the tweet in one of ten topics namely, seriousness of gas emissions, importance of human intervention, global stance, significance of pollution awareness events, weather extremes, impact of resource overconsumption, Donald Trump versus science, ideological positions on global warming, politics, and undefined. ➡ sentiment: A score on a continuous scale. This scale ranges from -1 to 1 with values closer to 1 being translated to positive sentiment, values closer to -1 representing a negative sentiment while values close to 0 depicting no sentiment or being neutral. ➡ stance: That is if the tweet supports the belief of man-made climate change (believer), if the tweet does not believe in man-made climate change (denier), and if the tweet neither supports nor refuses the belief of man-made climate change (neutral). ➡ gender: Whether the user that made the tweet is male, female, or undefined. ➡ temperature_avg: The temperature deviation in Celsius and relative to the January 1951-December 1980 average at the time and place the tweet was written. ➡ aggressiveness: That is if the tweet contains aggressive language or not.

    Since Twitter forbids making public the text of the tweets, in order to retrieve it you need to do a process called hydrating. Tools such as Twarc or Hydrator can be used to hydrate tweets.

  10. c

    Twitter Tweets Sentiment Dataset

    • cubig.ai
    zip
    Updated Feb 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CUBIG (2025). Twitter Tweets Sentiment Dataset [Dataset]. https://cubig.ai/store/products/142/twitter-tweets-sentiment-dataset
    Explore at:
    zipAvailable download formats
    Dataset updated
    Feb 25, 2025
    Dataset authored and provided by
    CUBIG
    License

    https://cubig.ai/store/terms-of-servicehttps://cubig.ai/store/terms-of-service

    Measurement technique
    Synthetic data generation using AI techniques for model training, Privacy-preserving data transformation via differential privacy
    Description

    1) Data introduction • Twitter-tweets-sentiment dataset is a dataset that aims to analyze tweet sentiment for Twitter and natural language processing.

    2) Data utilization (1)Twitter-tweets-sentiment data has characteristics that: • The data consists of three columns, including emotion and text, and aims to block negative tweets through a powerful classification model. (2) Twitter-tweets-sentiment data can be used to: • Social Media Monitoring: Businesses and organizations can use data to monitor social media platforms and gauge public sentiment about a brand, product, event, or social issue. • Sentiment analysis: This dataset can be used to train models that classify the sentiment of tweets, which can help companies and researchers understand public opinion on a variety of topics.

  11. BTC Tweets Sentiment

    • kaggle.com
    Updated Mar 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ai solutions353 (2023). BTC Tweets Sentiment [Dataset]. https://www.kaggle.com/datasets/aisolutions353/btc-tweets-sentiment
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Mar 1, 2023
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Ai solutions353
    Description

    BTC tweets sentiments dataset scrapped Data-world platform. The selected dataset is based on the tweets of different users along with their sentiments. BTC tweets sentiments dataset is generated by collecting the tweets about Bitcoin. Here we will use the BTC dataset for the prediction of tweets sentiment by using the deep learning model.
    The original Dataset contains the following number of rows and Columns:

    Number of Rows in Dataset: 50852 Number of Variables in Dataset: 10

  12. a

    Sentiment-140 Dataset

    • datasets.activeloop.ai
    • tensorflow.org
    • +2more
    deeplake
    Updated Feb 3, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Alec Go, Richa Bhayani, and Lei Huang (2022). Sentiment-140 Dataset [Dataset]. https://datasets.activeloop.ai/docs/ml/datasets/sentiment-140-dataset/
    Explore at:
    deeplakeAvailable download formats
    Dataset updated
    Feb 3, 2022
    Dataset authored and provided by
    Alec Go, Richa Bhayani, and Lei Huang
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    Jan 1, 2009 - Dec 31, 2009
    Description

    A dataset of tweets with sentiment labels, collected from Twitter in 2009. The dataset contains 1,800,000 tweets, with each tweet having a sentiment label of positive, negative, or neutral. The dataset is a valuable resource for training and evaluating sentiment analysis models.

  13. Z

    Data from: Arabic news credibility on Twitter using sentiment analysis and...

    • data.niaid.nih.gov
    Updated Jun 3, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Samdani, Duha; Taileb, Mounira; Almani, Nada (2023). Arabic news credibility on Twitter using sentiment analysis and ensemble learning [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_8000716
    Explore at:
    Dataset updated
    Jun 3, 2023
    Authors
    Samdani, Duha; Taileb, Mounira; Almani, Nada
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Arabic news credibility on Twitter using sentiment analysis and ensemble learning.

    WHAT IS IT?

    an Arabic news credibility model on Twitter using sentiment analysis and ensemble learning.

    Here we include the Collected dataset and the source code of the proposed model written in Python language and using Keras library with Tensorflow backend.

    Required Packages

    Keras (https://keras.io/).

    Scikit-learn (http://scikit-learn.org/)

    Imnlearn (imbalanced-learn documentation — Version 0.10.1)

    To Run the model

    One data file is required to run the model which are:

    The data that were used are the collected dataset in the file, set the path of the required data file in the code.

    The dataset

    There are the dataset file with all features, you can choose the features that you need and apply it on the model.

    There are a description file that describe each feature in the news credibility dataset

    The file Tweet_ID contains the list of tweets id in the dataset.

    The annotated replies based on credibility is provided.

    CONTACTS

    If you want to report bugs or have general queries email to

  14. r

    Twitter Sentiment Analysis Dataset

    • resodate.org
    • service.tib.eu
    Updated Nov 25, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sara Rosenthal; Noura Farra; Preslav Nakov (2024). Twitter Sentiment Analysis Dataset [Dataset]. https://resodate.org/resources/aHR0cHM6Ly9zZXJ2aWNlLnRpYi5ldS9sZG1zZXJ2aWNlL2RhdGFzZXQvdHdpdHRlci1zZW50aW1lbnQtYW5hbHlzaXMtZGF0YXNldA==
    Explore at:
    Dataset updated
    Nov 25, 2024
    Dataset provided by
    Leibniz Data Manager
    Authors
    Sara Rosenthal; Noura Farra; Preslav Nakov
    Description

    The dataset comprises tweets labeled with sentiment ratings in an ordinal five-point scale, including classes for strongly negative, negative, neutral, positive, and strongly positive.

  15. Bitcoin tweets - Market Sentiment

    • kaggle.com
    Updated Aug 29, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Gaurav Dutta (2021). Bitcoin tweets - Market Sentiment [Dataset]. https://www.kaggle.com/datasets/gauravduttakiit/bitcoin-tweets-16m-tweets-with-sentiment-tagged
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Aug 29, 2021
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Gaurav Dutta
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Context

    Scrapped from twitters from 2016-01-01 to 2019-03-29, Collecting Tweets containing Bitcoin or BTC Tools used:

    Twint Tweepy

    Content

    Tweet in multiple Language & Talked about Bitcoin

    Acknowledgements

    Thanks to Alex ( https://www.kaggle.com/alaix14 ) for his dataset (https://www.kaggle.com/alaix14/bitcoin-tweets-20160101-to-20190329 ), It is just an additional dimension where Sentiment is analyzed with a price change for Bitcoin

  16. Data mining and sentiment analysis on Twitter and Facebook

    • zenodo.org
    • data.niaid.nih.gov
    bin, csv
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Admira Halili; Coralie Chevalley; Erisvelton Tavares Da Costa; Felipe Covaleda; Admira Halili; Coralie Chevalley; Erisvelton Tavares Da Costa; Felipe Covaleda (2023). Data mining and sentiment analysis on Twitter and Facebook [Dataset]. http://doi.org/10.5281/zenodo.7992510
    Explore at:
    csv, binAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Admira Halili; Coralie Chevalley; Erisvelton Tavares Da Costa; Felipe Covaleda; Admira Halili; Coralie Chevalley; Erisvelton Tavares Da Costa; Felipe Covaleda
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Les données récoltées sont sur le sujet "Data mining and sentiment analysis on Twitter and Facebook". Ce jeu de donnée contient la liste des attributs principaux suivants :

    • titles, titre du fichier PDF,
    • authors, auteurs du fichier PDF,
    • years, année de création du fichier PDF,
    • ncitedby, nombre de citation,
    • linkfiles, liens du fichier PDF,

    mais également des métadonnées.

    La récupération du jeu de données a été récolté sur Google Scholar. Plusieurs recherches sur Google Scholar ont été faites pour ce dernier (voir liens ci-dessous) :

  17. Twitter Sentiment Analysis

    • kaggle.com
    Updated Sep 30, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Shanks0465 (2020). Twitter Sentiment Analysis [Dataset]. https://www.kaggle.com/shanks0465/twitter-sentiment-analysis/activity
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Sep 30, 2020
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Shanks0465
    Description

    Context

    Twitter Sentiment Analysis Dataset especially for classification using Logistic Regression

    Content

    • tweet - Preprocessed token array for each tweet (Preprocessing done are remove hyperlinks, remove hashtags, remove stop words and punctuation)

    • bias - Just a simple bias value (default 1)

    • pos - Sum of positive frequencies of each word in the tweet tokens.

    • neg - Sum of negative frequencies of each word in the tweet tokens.

    • label - 1.0 for Positive Tweet and 0.0 for Negative Tweet.

    Acknowledgements

    This dataset was part of the Week 1 Labs of Coursera Natural Language Processing Course. This dataset was custom created from scratch using NLTL Library for text preprocessing and all functions for preprocessing were from scratch.

  18. d

    EdChat Public Tweets

    • search.dataone.org
    • borealisdata.ca
    Updated Dec 28, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Gruzd, Anatoliy; Conroy, Nadia (2023). EdChat Public Tweets [Dataset]. http://doi.org/10.5683/SP/JQ0NLC
    Explore at:
    Dataset updated
    Dec 28, 2023
    Dataset provided by
    Borealis
    Authors
    Gruzd, Anatoliy; Conroy, Nadia
    Description

    This is a data set of 482,251 public tweets and retweets (Twitter IDs) posted by the #edchat online community of educators who discuss current trends in teaching with technology. The data set was collected via Twitter's Streaming API between Feb 1, 2018 and Apr 4, 2018, and was used as part of the research on developing a learning analytics dashboard for teaching and learning with Twitter. Following Twitter's terms of service, the data set only includes unique identifiers of relevant tweets. To collect the actual tweets that are part of this data set, you will need to use one of the available third party tools such as Hydrator or Twarc ("hydrate" function). As part of this release, we are also attaching an enriched version of this data set that contains sentiment and opinion analysis labels that were produced by analyzing each tweet with the help of the NLTK SentimentAnalyzer Python package. *This work was supported in part by eCampusOntario and The Social Sciences and Humanities Research Council of Canada.

  19. h

    AfriSenti-Twitter

    • huggingface.co
    • opendatalab.com
    Updated Feb 19, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    HausaNLP (2023). AfriSenti-Twitter [Dataset]. https://huggingface.co/datasets/HausaNLP/AfriSenti-Twitter
    Explore at:
    Dataset updated
    Feb 19, 2023
    Dataset authored and provided by
    HausaNLP
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Description

    AfriSenti is the largest sentiment analysis benchmark dataset for under-represented African languages---covering 110,000+ annotated tweets in 14 African languages (Amharic, Algerian Arabic, Hausa, Igbo, Kinyarwanda, Moroccan Arabic, Mozambican Portuguese, Nigerian Pidgin, Oromo, Swahili, Tigrinya, Twi, Xitsonga, and yoruba).

  20. f

    SMILE Twitter Emotion dataset

    • figshare.com
    txt
    Updated Apr 21, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bo Wang; Adam Tsakalidis; Maria Liakata; Arkaitz Zubiaga; Rob Procter; Eric Jensen (2016). SMILE Twitter Emotion dataset [Dataset]. http://doi.org/10.6084/m9.figshare.3187909.v2
    Explore at:
    txtAvailable download formats
    Dataset updated
    Apr 21, 2016
    Dataset provided by
    figshare
    Authors
    Bo Wang; Adam Tsakalidis; Maria Liakata; Arkaitz Zubiaga; Rob Procter; Eric Jensen
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset is collected and annotated for the SMILE project http://www.culturesmile.org. This collection of tweets mentioning 13 Twitter handles associated with British museums was gathered between May 2013 and June 2015. It was created for the purpose of classifying emotions, expressed on Twitter towards arts and cultural experiences in museums. It contains 3,085 tweets, with 5 emotions namely anger, disgust, happiness, surprise and sadness. Please see our paper "SMILE: Twitter Emotion Classification using Domain Adaptation" for more details of the dataset.License: The annotations are provided under a CC-BY license, while Twitter retains the ownership and rights of the content of the tweets.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Shreyas Poojary; Mohammed Riza; Rashmi Laxmikant Malghan (2025). Twitter dataset [Dataset]. http://doi.org/10.6084/m9.figshare.28390334.v2
Organization logo

Twitter dataset

Explore at:
csvAvailable download formats
Dataset updated
Feb 11, 2025
Dataset provided by
figshare
Authors
Shreyas Poojary; Mohammed Riza; Rashmi Laxmikant Malghan
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

This dataset contains tweets labeled for sentiment analysis, categorized into Positive, Negative, and Neutral sentiments. The dataset includes tweet IDs, user metadata, sentiment labels, and tweet text, making it suitable for Natural Language Processing (NLP), machine learning, and AI-based sentiment classification research. Originally sourced from Kaggle, this dataset is curated for improved usability in social media sentiment analysis.

Search
Clear search
Close search
Google apps
Main menu