100+ datasets found
  1. Barest Earth Sentinel 2 Map Index

    • ecat.ga.gov.au
    • researchdata.edu.au
    esri:map-service +2
    Updated Dec 3, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Commonwealth of Australia (Geoscience Australia) (2021). Barest Earth Sentinel 2 Map Index [Dataset]. https://ecat.ga.gov.au/geonetwork/srv/api/records/3aac2af4-ed0b-420a-ac19-3fd748ac6629
    Explore at:
    esri:map-service, ogc:wms, www:link-1.0-http--linkAvailable download formats
    Dataset updated
    Dec 3, 2021
    Dataset provided by
    Geoscience Australiahttp://ga.gov.au/
    Time period covered
    Nov 1, 2021
    Area covered
    Description

    The Barest Earth Sentinel-2 Map Index dataset depicts the 1 to 250 000 maps sheet tile frames that have been used to generate individual tile downloads of the Barest Earth Sentinel-2 product. This web service is designed to be used in conjunction with the Barest Earth Sentinel-2 web service to provide users with direct links for imagery download.

  2. a

    Sentinel-2 Views

    • hub.arcgis.com
    • cacgeoportal.com
    Updated Apr 2, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Central Asia and the Caucasus GeoPortal (2024). Sentinel-2 Views [Dataset]. https://hub.arcgis.com/maps/0d7870b282e345859ccf1a85af5cadc4
    Explore at:
    Dataset updated
    Apr 2, 2024
    Dataset authored and provided by
    Central Asia and the Caucasus GeoPortal
    Area covered
    Description

    This web map is a subset of Sentinel-2 Views. Sentinel-2, 10, 20, and 60m Multispectral, Multitemporal, 13-band imagery is rendered on-the-fly and available for visualization and analytics. This imagery layer pulls directly from the Sentinel-2 on AWS collection and is updated daily with new imagery.This imagery layer can be applied across a number of industries, scientific disciplines, and management practices. Some applications include, but are not limited to, land cover and environmental monitoring, climate change, deforestation, disaster and emergency management, national security, plant health and precision agriculture, forest monitoring, watershed analysis and runoff predictions, land-use planning, tracking urban expansion, highlighting burned areas and estimating fire severity.Geographic CoverageGlobalContinental land masses from 65.4° South to 72.1° North, with these special guidelines:All coastal waters up to 20 km from the shoreAll islands greater than 100 km2All EU islandsAll closed seas (e.g. Caspian Sea)The Mediterranean SeaNote: Areas of interest going beyond the Mission baseline (as laid out in the Mission Requirements Document) will be assessed, and may be added to the baseline if sufficient resources are identified.Temporal CoverageThe revisit time for each point on Earth is every 5 days.This layer is updated daily with new imagery.This imagery layer is designed to include imagery collected within the past 14 months. Custom Image Services can be created for access to images older than 14 months.The number of images available will vary depending on location.Image Selection/FilteringThe most recent and cloud free images are displayed by default.Any image available, within the past 14 months, can be displayed via custom filtering.Filtering can be done based on attributes such as Acquisition Date, Estimated Cloud Cover, and Tile ID.Tile_ID is computed as [year][month][day]T[hours][minutes][seconds]_[UTMcode][latitudeband][square]_[sequence]. More…NOTE: Not using filters, and loading the entire archive, may affect performance.Analysis ReadyThis imagery layer is analysis ready with TOA correction applied.Visual RenderingDefault rendering is Natural Color (bands 4,3,2) with Dynamic Range Adjustment (DRA).The DRA version of each layer enables visualization of the full dynamic range of the images.Rendering (or display) of band combinations and calculated indices is done on-the-fly from the source images via Raster Functions.Various pre-defined Raster Functions can be selected or custom functions created.Available renderings include: Agriculture with DRA, Bathymetric with DRA, Color-Infrared with DRA, Natural Color with DRA, Short-wave Infrared with DRA, Geology with DRA, NDMI Colorized, Normalized Difference Built-Up Index (NDBI), NDWI Raw, NDWI - with VRE Raw, NDVI – with VRE Raw (NDRE), NDVI - VRE only Raw, NDVI Raw, Normalized Burn Ratio, NDVI Colormap.Multispectral BandsBandDescriptionWavelength (µm)Resolution (m)1Coastal aerosol0.433 - 0.453602Blue0.458 - 0.523103Green0.543 - 0.578104Red0.650 - 0.680105Vegetation Red Edge0.698 - 0.713206Vegetation Red Edge0.733 - 0.748207Vegetation Red Edge0.773 - 0.793208NIR0.785 - 0.900108ANarrow NIR0.855 - 0.875209Water vapour0.935 - 0.9556010SWIR – Cirrus1.365 - 1.3856011SWIR-11.565 - 1.6552012SWIR-22.100 - 2.28020Additional NotesOverviews exist with a spatial resolution of 150m and are updated every quarter based on the best and latest imagery available at that time.To work with source images at all scales, the ‘Lock Raster’ functionality is available.NOTE: ‘Lock Raster’ should only be used on the layer for short periods of time, as the imagery and associated record Object IDs may change daily.This ArcGIS Server dynamic imagery layer can be used in Web Maps and ArcGIS Desktop as well as Web and Mobile applications using the REST based Image services API.Images can be exported up to a maximum of 4,000 columns x 4,000 rows per request.Data SourceSentinel-2 imagery is the result of close collaboration between the (European Space Agency) ESA, the European Commission and USGS. Data is hosted by the Amazon Web Services as part of their Registry of Open Data. Users can access the imagery from Sentinel-2 on AWS , or alternatively access Sentinel2Look Viewer, EarthExplorer or the Copernicus Open Access Hub to download the scenes.For information on Sentinel-2 imagery, see Sentinel-2.

  3. r

    Sentinel 2 10m Land Use Land Cover Time Series

    • opendata.rcmrd.org
    • wfp-demographic-analysis-usfca.hub.arcgis.com
    Updated Mar 7, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    UC Davis Continuing and Professional Education (2025). Sentinel 2 10m Land Use Land Cover Time Series [Dataset]. https://opendata.rcmrd.org/maps/2d18af68262d4f068c7e35d1870f75ba
    Explore at:
    Dataset updated
    Mar 7, 2025
    Dataset authored and provided by
    UC Davis Continuing and Professional Education
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This layer displays a global map of land use/land cover (LULC) derived from ESA Sentinel-2 imagery at 10m resolution. Each year is generated with Impact Observatory’s deep learning AI land classification model, trained using billions of human-labeled image pixels from the National Geographic Society. The global maps are produced by applying this model to the Sentinel-2 Level-2A image collection on Microsoft’s Planetary Computer, processing over 400,000 Earth observations per year.The algorithm generates LULC predictions for nine classes, described in detail below. The year 2017 has a land cover class assigned for every pixel, but its class is based upon fewer images than the other years. The years 2018-2023 are based upon a more complete set of imagery. For this reason, the year 2017 may have less accurate land cover class assignments than the years 2018-2023.Variable mapped: Land use/land cover in 2017, 2018, 2019, 2020, 2021, 2022, 2023Source Data Coordinate System: Universal Transverse Mercator (UTM) WGS84Service Coordinate System: Web Mercator Auxiliary Sphere WGS84 (EPSG:3857)Extent: GlobalSource imagery: Sentinel-2 L2ACell Size: 10-metersType: ThematicAttribution: Esri, Impact ObservatoryWhat can you do with this layer?Global land use/land cover maps provide information on conservation planning, food security, and hydrologic modeling, among other things. This dataset can be used to visualize land use/land cover anywhere on Earth. This layer can also be used in analyses that require land use/land cover input. For example, the Zonal toolset allows a user to understand the composition of a specified area by reporting the total estimates for each of the classes. NOTE: Land use focus does not provide the spatial detail of a land cover map. As such, for the built area classification, yards, parks, and groves will appear as built area rather than trees or rangeland classes.Class definitionsValueNameDescription1WaterAreas where water was predominantly present throughout the year; may not cover areas with sporadic or ephemeral water; contains little to no sparse vegetation, no rock outcrop nor built up features like docks; examples: rivers, ponds, lakes, oceans, flooded salt plains.2TreesAny significant clustering of tall (~15 feet or higher) dense vegetation, typically with a closed or dense canopy; examples: wooded vegetation, clusters of dense tall vegetation within savannas, plantations, swamp or mangroves (dense/tall vegetation with ephemeral water or canopy too thick to detect water underneath).4Flooded vegetationAreas of any type of vegetation with obvious intermixing of water throughout a majority of the year; seasonally flooded area that is a mix of grass/shrub/trees/bare ground; examples: flooded mangroves, emergent vegetation, rice paddies and other heavily irrigated and inundated agriculture.5CropsHuman planted/plotted cereals, grasses, and crops not at tree height; examples: corn, wheat, soy, fallow plots of structured land.7Built AreaHuman made structures; major road and rail networks; large homogenous impervious surfaces including parking structures, office buildings and residential housing; examples: houses, dense villages / towns / cities, paved roads, asphalt.8Bare groundAreas of rock or soil with very sparse to no vegetation for the entire year; large areas of sand and deserts with no to little vegetation; examples: exposed rock or soil, desert and sand dunes, dry salt flats/pans, dried lake beds, mines.9Snow/IceLarge homogenous areas of permanent snow or ice, typically only in mountain areas or highest latitudes; examples: glaciers, permanent snowpack, snow fields.10CloudsNo land cover information due to persistent cloud cover.11RangelandOpen areas covered in homogenous grasses with little to no taller vegetation; wild cereals and grasses with no obvious human plotting (i.e., not a plotted field); examples: natural meadows and fields with sparse to no tree cover, open savanna with few to no trees, parks/golf courses/lawns, pastures. Mix of small clusters of plants or single plants dispersed on a landscape that shows exposed soil or rock; scrub-filled clearings within dense forests that are clearly not taller than trees; examples: moderate to sparse cover of bushes, shrubs and tufts of grass, savannas with very sparse grasses, trees or other plants.Classification ProcessThese maps include Version 003 of the global Sentinel-2 land use/land cover data product. It is produced by a deep learning model trained using over five billion hand-labeled Sentinel-2 pixels, sampled from over 20,000 sites distributed across all major biomes of the world.The underlying deep learning model uses 6-bands of Sentinel-2 L2A surface reflectance data: visible blue, green, red, near infrared, and two shortwave infrared bands. To create the final map, the model is run on multiple dates of imagery throughout the year, and the outputs are composited into a final representative map for each year.The input Sentinel-2 L2A data was accessed via Microsoft’s Planetary Computer and scaled using Microsoft Azure Batch.CitationKarra, Kontgis, et al. “Global land use/land cover with Sentinel-2 and deep learning.” IGARSS 2021-2021 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2021.AcknowledgementsTraining data for this project makes use of the National Geographic Society Dynamic World training dataset, produced for the Dynamic World Project by National Geographic Society in partnership with Google and the World Resources Institute.

  4. o

    Data from: Sentinel-2

    • registry.opendata.aws
    Updated Apr 19, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sinergise (2018). Sentinel-2 [Dataset]. https://registry.opendata.aws/sentinel-2/
    Explore at:
    Dataset updated
    Apr 19, 2018
    Dataset provided by
    <a href="https://www.sinergise.com/">Sinergise</a>
    Description

    The Sentinel-2 mission is a land monitoring constellation of two satellites that provide high resolution optical imagery and provide continuity for the current SPOT and Landsat missions. The mission provides a global coverage of the Earth's land surface every 5 days, making the data of great use in on-going studies. L1C data are available from June 2015 globally. L2A data are available from November 2016 over Europe region and globally since January 2017.

  5. r

    Sentinel-2 10m Land Use/Land Cover Map Blend-Copy

    • opendata.rcmrd.org
    Updated Nov 10, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    alvaroleal_eowilson (2023). Sentinel-2 10m Land Use/Land Cover Map Blend-Copy [Dataset]. https://opendata.rcmrd.org/maps/a155532815f64166820c9eef372df425
    Explore at:
    Dataset updated
    Nov 10, 2023
    Dataset authored and provided by
    alvaroleal_eowilson
    Area covered
    Description

    The Sentinel-2 10m Land Use/Land Cover Time Series displays a global map of land use/land cover (LULC) derived from ESA Sentinel-2 imagery at 10m resolution.The World Imagery (Firefly) map is designed to be used as a neutral imagery basemap, with de-saturated colors, that is useful for overlaying other brightly styled layers.

  6. Sentinel-2 Land Cover Explorer

    • climate.esri.ca
    • angola.africageoportal.com
    • +4more
    Updated Feb 7, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2023). Sentinel-2 Land Cover Explorer [Dataset]. https://climate.esri.ca/datasets/esri::sentinel-2-land-cover-explorer
    Explore at:
    Dataset updated
    Feb 7, 2023
    Dataset authored and provided by
    Esrihttp://esri.com/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    About the dataLand use land cover (LULC) maps are an increasingly important tool for decision-makers in many industry sectors and developing nations around the world. The information provided by these maps helps inform policy and land management decisions by better understanding and quantifying the impacts of earth processes and human activity.ArcGIS Living Atlas of the World provides a detailed, accurate, and timely LULC map of the world. The data is the result of a three-way collaboration among Esri, Impact Observatory, and Microsoft. For more information about the data, see Sentinel-2 10m Land Use/Land Cover Time Series.About the appOne of the foremost capabilities of this app is the dynamic change analysis. The app provides dynamic visual and statistical change by comparing annual slices of the Sentinel-2 10m Land Use/Land Cover data as you explore the map.Overview of capabilities:Visual change analysis with either 'Step Mode' or 'Swipe Mode'Dynamic statistical change analysis by year, map extent, and classFilter by selected land cover classRegional class statistics summarized by administrative boundariesImagery mode for visual investigation and validation of land coverSelect imagery renderings (e.g. SWIR to visualize forest burn scars)Data download for offline use

  7. v

    Landsat and Sentinel-2 satellite data fusion-derived evapotranspiration maps...

    • res1catalogd-o-tdatad-o-tgov.vcapture.xyz
    • data.usgs.gov
    • +1more
    Updated Jul 6, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Landsat and Sentinel-2 satellite data fusion-derived evapotranspiration maps of Palo Verde Irrigation District, California, USA [Dataset]. https://res1catalogd-o-tdatad-o-tgov.vcapture.xyz/dataset/landsat-and-sentinel-2-satellite-data-fusion-derived-evapotranspiration-maps-of-palo-verde
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    United States
    Description

    Three ET datasets were generated to evaluate the potential integration of Landsat and Sentinel-2 data for improved ET mapping. The first ET dataset was generated by linear interpolation (Lint) of Landsat-based ET fraction (ETf) images of before and after the selected image dates. The second ET dataset was generated using the regular SSEBop approach using the Landsat image only (Lonly). The third ET dataset was generated from the proposed Landsat-Sentinel data fusion (L-S) approach by applying ETf images from Landsat and Sentinel. The scripts (two) used to generate these three ET datasets are included – one script for processing SSEBop model to generate ET maps from Lonly and another script for generating ET maps from Lint and L-S approach.

  8. Sentinel-2 10-Meter Land Use/Land Cover Time Series

    • afrigeo.africageoportal.com
    • morocco.africageoportal.com
    • +8more
    Updated Feb 23, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2022). Sentinel-2 10-Meter Land Use/Land Cover Time Series [Dataset]. https://afrigeo.africageoportal.com/maps/739b8a9dcf4246d3af7197878b7ec052
    Explore at:
    Dataset updated
    Feb 23, 2022
    Dataset authored and provided by
    Esrihttp://esri.com/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This web map displays the land use/land cover (LULC) timeseries layer derived from ESA Sentinel-2 imagery at 10m resolution. The visualization uses blend modes and is best used in the new Map Viewer. The time slider can be used to advance through the five years of data from 2017-2021. There are also a series of bookmarks for the locations below:Urban growth examplesOuagadougouCairo/GizaDubai, UAEKaty, Texas, USALoudoun County, VirginiaInfrastructureIstanbul International Airport, TurkeyGrand Ethiopian Renaissance Dam, EthiopiaDeforestationBorder of Acre and Rondonia states, BrazilHarz Mountains, GermanyWetlands lossPantanal, BrazilParana river, ArgentinaVegetation changing after fireNorthern California: Paradise, Redding, Clear Lake, Santa Rosa, Mendocino National ForestKangaroo Island, AustraliaVictoria and NSW, AustraliaYakutia, RussiaHurricane ImpactAbaco Island, BahamasRecent Lava FlowHawaii IslandSurface MiningBrown Coal, Cottbus, GermanyLand ReclamationMarkermeer, NetherlandsEconomic DevelopmentNorth vs South Korea

  9. a

    Sentinel Imagery of Africa

    • rwanda-africa.hub.arcgis.com
    • rwanda.africageoportal.com
    • +4more
    Updated Jul 3, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Africa GeoPortal (2018). Sentinel Imagery of Africa [Dataset]. https://rwanda-africa.hub.arcgis.com/datasets/sentinel-imagery-of-africa
    Explore at:
    Dataset updated
    Jul 3, 2018
    Dataset authored and provided by
    Africa GeoPortal
    Area covered
    Description

    This web map features the Sentinel-2 imagery layer with a focus on Africa. The Sentinel-2 imagery layer is updated daily with new satellite imagery scenes that have been published to Sentinel-2 on AWS collections. Visit the Sentinel-2 imagery layer item for more details.

  10. Sentinel-2 UTM Tiling Grid (ESA)

    • catalogue.eatlas.org.au
    • researchdata.edu.au
    • +1more
    Updated Feb 1, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Australian Institute of Marine Science (AIMS) (2016). Sentinel-2 UTM Tiling Grid (ESA) [Dataset]. https://catalogue.eatlas.org.au/geonetwork/srv/api/records/f7468d15-12be-4e3f-a246-b2882a324f59
    Explore at:
    www:link-1.0-http--related, www:link-1.0-http--downloaddata, ogc:wms-1.1.1-http-get-mapAvailable download formats
    Dataset updated
    Feb 1, 2016
    Dataset provided by
    Australian Institute Of Marine Sciencehttp://www.aims.gov.au/
    Area covered
    Description

    This dataset shows the tiling grid and their IDs for Sentinel 2 satellite imagery. The tiling grid IDs are useful for selecting imagery of an area of interest.

    Sentinel 2 is an Earth observation satellite developed and operated by the European Space Agency (ESA). Its imagery has 13 bands in the visible, near infrared and short wave infrared part of the spectrum. It has a spatial resolution of 10 m, 20 m and 60 m depending on the spectral band.

    Sentinel-2 has a 290 km field of view when capturing its imagery. This imagery is then projected on to a UTM grid and made available publicly on 100x100 km2 tiles. Each tile has a unique ID. This ID scheme allows all imagery for a given tile to be located.

    Provenance:

    The ESA make the tiling grid available as a KML file (see links). We were, however, unable to convert this KML into a shapefile for deployment on the eAtlas. The shapefile used for this layer was sourced from the Git repository developed by Justin Meyers (https://github.com/justinelliotmeyers/Sentinel-2-Shapefile-Index).

    Why is this dataset in the eAtlas?:

    Sentinel 2 imagery is very useful for the studying and mapping of reef systems. Selecting imagery for study often requires knowing what the tile grid IDs are for the area of interest. This dataset is intended as a reference layer. The eAtlas is not a custodian of this dataset and copies of the data should be obtained from the original sources.

    Data Dictionary:

    • Name: UTM code associated with each tile. For example 55KDV
  11. u

    Data from: Sentinel2GlobalLULC: A dataset of Sentinel-2 georeferenced RGB...

    • observatorio-cientifico.ua.es
    • data.niaid.nih.gov
    • +1more
    Updated 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Benhammou, Yassir; Alcaraz-Segura, Domingo; Guirado, Emilio; Khaldi, Rohaifa; Tabik, Siham; Benhammou, Yassir; Alcaraz-Segura, Domingo; Guirado, Emilio; Khaldi, Rohaifa; Tabik, Siham (2022). Sentinel2GlobalLULC: A dataset of Sentinel-2 georeferenced RGB imagery annotated for global land use/land cover mapping with deep learning (License CC BY 4.0) [Dataset]. https://observatorio-cientifico.ua.es/documentos/668fc45eb9e7c03b01bdb38a
    Explore at:
    Dataset updated
    2022
    Authors
    Benhammou, Yassir; Alcaraz-Segura, Domingo; Guirado, Emilio; Khaldi, Rohaifa; Tabik, Siham; Benhammou, Yassir; Alcaraz-Segura, Domingo; Guirado, Emilio; Khaldi, Rohaifa; Tabik, Siham
    Description

    Sentinel2GlobalLULC is a deep learning-ready dataset of RGB images from the Sentinel-2 satellites designed for global land use and land cover (LULC) mapping. Sentinel2GlobalLULC v2.1 contains 194,877 images in GeoTiff and JPEG format corresponding to 29 broad LULC classes. Each image has 224 x 224 pixels at 10 m spatial resolution and was produced by assigning the 25th percentile of all available observations in the Sentinel-2 collection between June 2015 and October 2020 in order to remove atmospheric effects (i.e., clouds, aerosols, shadows, snow, etc.). A spatial purity value was assigned to each image based on the consensus across 15 different global LULC products available in Google Earth Engine (GEE). Our dataset is structured into 3 main zip-compressed folders, an Excel file with a dictionary for class names and descriptive statistics per LULC class, and a python script to convert RGB GeoTiff images into JPEG format. The first folder called "Sentinel2LULC_GeoTiff.zip" contains 29 zip-compressed subfolders where each one corresponds to a specific LULC class with hundreds to thousands of GeoTiff Sentinel-2 RGB images. The second folder called "Sentinel2LULC_JPEG.zip" contains 29 zip-compressed subfolders with a JPEG formatted version of the same images provided in the first main folder. The third folder called "Sentinel2LULC_CSV.zip" includes 29 zip-compressed CSV files with as many rows as provided images and with 12 columns containing the following metadata (this same metadata is provided in the image filenames): Land Cover Class ID: is the identification number of each LULC class Land Cover Class Short Name: is the short name of each LULC class Image ID: is the identification number of each image within its corresponding LULC class Pixel purity Value: is the spatial purity of each pixel for its corresponding LULC class calculated as the spatial consensus across up to 15 land-cover products GHM Value: is the spatial average of the Global Human Modification index (gHM) for each image Latitude: is the latitude of the center point of each image Longitude: is the longitude of the center point of each image Country Code: is the Alpha-2 country code of each image as described in the ISO 3166 international standard. To understand the country codes, we recommend the user to visit the following website where they present the Alpha-2 code for each country as described in the ISO 3166 international standard:https: //www.iban.com/country-codes Administrative Department Level1: is the administrative level 1 name to which each image belongs Administrative Department Level2: is the administrative level 2 name to which each image belongs Locality: is the name of the locality to which each image belongs Number of S2 images : is the number of found instances in the corresponding Sentinel-2 image collection between June 2015 and October 2020, when compositing and exporting its corresponding image tile For seven LULC classes, we could not export from GEE all images that fulfilled a spatial purity of 100% since there were millions of them. In this case, we exported a stratified random sample of 14,000 images and provided an additional CSV file with the images actually contained in our dataset. That is, for these seven LULC classes, we provide these 2 CSV files: A CSV file that contains all exported images for this class A CSV file that contains all images available for this class at spatial purity of 100%, both the ones exported and the ones not exported, in case the user wants to export them. These CSV filenames end with "including_non_downloaded_images". To clearly state the geographical coverage of images available in this dataset, we included in the version v2.1, a compressed folder called "Geographic_Representativeness.zip". This zip-compressed folder contains a csv file for each LULC class that provides the complete list of countries represented in that class. Each csv file has two columns, the first one gives the country code and the second one gives the number of images provided in that country for that LULC class. In addition to these 29 csv files, we provided another csv file that maps each ISO Alpha-2 country code to its original full country name. © Sentinel2GlobalLULC Dataset by Yassir Benhammou, Domingo Alcaraz-Segura, Emilio Guirado, Rohaifa Khaldi, Boujemâa Achchab, Francisco Herrera & Siham Tabik is marked with Attribution 4.0 International (CC-BY 4.0)

  12. s

    10m Annual Land Use Land Cover (9-class)

    • collections.sentinel-hub.com
    • registry.opendata.aws
    Updated Mar 2, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sentinel Hub (2023). 10m Annual Land Use Land Cover (9-class) [Dataset]. https://collections.sentinel-hub.com/impact-observatory-lulc-map/
    Explore at:
    Dataset updated
    Mar 2, 2023
    Dataset provided by
    <a href="https://www.sentinel-hub.com/">Sentinel Hub</a>
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The 10m Annual Land Use Land Cover (LULC) map is produced Impact Observatory, Microsoft, and Esri collaboratively. The data collection is derived from ESA Sentinel-2 imagery at 10m resolution globaly using Impact Ovservatory's state of the art deep learning AI land classification model which is trained by billions of human-labeled image pixels. There are 9 LULC classes generated by the algorithm, including Built, Crops, Trees, Water, Rangeland, Flooded Vegetation, Snow/Ice, Bare Ground, and Clouds.

  13. Land Cover Classification (Sentinel-2)

    • uneca.africageoportal.com
    • cacgeoportal.com
    • +8more
    Updated Feb 17, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2021). Land Cover Classification (Sentinel-2) [Dataset]. https://uneca.africageoportal.com/content/afd124844ba84da69c2c533d4af10a58
    Explore at:
    Dataset updated
    Feb 17, 2021
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    Land cover describes the surface of the earth. Land cover maps are useful in urban planning, resource management, change detection, agriculture, and a variety of other applications in which information related to earth surface is required. Land cover classification is a complex exercise and is hard to capture using traditional means. Deep learning models are highly capable of learning these complex semantics, giving superior results.Using the modelFollow the guide to use the model. Before using this model, ensure that the supported deep learning libraries are installed. For more details, check Deep Learning Libraries Installer for ArcGIS.Fine-tuning the modelThis model can be fine-tuned using the Train Deep Learning Model tool. Follow the guide to fine-tune this model.InputRaster, mosaic dataset, or image service. (Preferred cell size is 10 meters.)Note: This model is trained to work on Sentinel-2 Imagery datasets which are in WGS 1984 Web Mercator (auxiliary sphere) coordinate system (WKID 3857).OutputClassified raster with the same classes as in Corine Land Cover (CLC) 2018.Applicable geographiesThis model is expected to work well in Europe and the United States.Model architectureThis model uses the UNet model architecture implemented in ArcGIS API for Python.Accuracy metricsThis model has an overall accuracy of 82.41% with Level-1C imagery and 84.0% with Level-2A imagery, for CLC class level 2 classification (15 classes). The table below summarizes the precision, recall and F1-score of the model on the validation dataset.ClassLevel-2A ImageryLevel-1C ImageryPrecisionRecallF1 ScorePrecisionRecallF1 ScoreUrban fabric0.810.830.820.820.840.83Industrial, commercial and transport units0.740.650.690.730.660.7Mine, dump and construction sites0.630.520.570.690.550.61Artificial, non-agricultural vegetated areas0.700.460.550.670.470.55Arable land0.860.900.880.860.890.87Permanent crops0.760.730.740.750.710.73Pastures0.750.710.730.740.710.73Heterogeneous agricultural areas0.610.560.580.620.510.56Forests0.880.930.900.880.920.9Scrub and/or herbaceous vegetation associations0.740.690.720.730.670.7Open spaces with little or no vegetation0.870.840.850.850.820.84Inland wetlands0.810.780.800.820.770.79Maritime wetlands0.740.760.750.870.890.88Inland waters0.940.920.930.940.910.92Marine waters0.980.990.980.970.980.98This model has an overall accuracy of 90.79% with Level-2A imagery for CLC class level 1 classification (5 classes). The table below summarizes the precision, recall and F1-score of the model on the validation dataset.ClassPrecisionRecallF1 ScoreArtificial surfaces0.850.810.83Agricultural areas0.900.910.91Forest and semi natural areas0.910.920.92Wetlands0.770.700.73Water bodies0.960.970.96Training dataThis model has been trained on the Corine Land Cover (CLC) 2018 with the same Sentinel 2 scenes that were used to produce the database. Scene IDs for the imagery were available in the metadata of the dataset.Sample resultsHere are a few results from the model. To view more, see this story.

  14. RapidEye time series for Sentinel-2

    • earth.esa.int
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    European Space Agency, RapidEye time series for Sentinel-2 [Dataset]. https://earth.esa.int/eogateway/catalog/rapideye-time-series-for-sentinel-2
    Explore at:
    Dataset authored and provided by
    European Space Agencyhttp://www.esa.int/
    License

    http://inspire.ec.europa.eu/metadata-codelist/LimitationsOnPublicAccess/INSPIRE_Directive_Article13_1ahttp://inspire.ec.europa.eu/metadata-codelist/LimitationsOnPublicAccess/INSPIRE_Directive_Article13_1a

    Description

    The European Space Agency, in collaboration with BlackBridge collected two time series datasets with a five day revisit at high resolution: February to June 2013 over 14 selected sites around the world April to September 2015 over 10 selected sites around the world. The RapidEye Earth Imaging System provides data at 5 m spatial resolution (multispectral L3A orthorectified). The products are radiometrically and sensor corrected similar to the 1B Basic product, but have geometric corrections applied to the data during orthorectification using DEMs and GCPs. The product accuracy depends on the quality of the ground control and DEMs used. The imagery is delivered in GeoTIFF format with a pixel spacing of 5 metres. The dataset is composed of data over: 14 selected sites in 2013: Argentina, Belgium, Chesapeake Bay, China, Congo, Egypt, Ethiopia, Gabon, Jordan, Korea, Morocco, Paraguay, South Africa and Ukraine. 10 selected sites in 2015: Limburgerhof, Railroad Valley, Libya4, Algeria4, Figueres, Libya1, Mauritania1, Barrax, Esrin, Uyuni Salt Lake. Spatial coverage: Check the spatial coverage of the collection on a map available on the Third Party Missions Dissemination Service.

  15. Torres Strait Sentinel 2 Satellite Regional Maps and Imagery 2015 – 2021...

    • researchdata.edu.au
    Updated Oct 1, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lawrey, Eric (2022). Torres Strait Sentinel 2 Satellite Regional Maps and Imagery 2015 – 2021 (AIMS) [Dataset]. http://doi.org/10.26274/3CGE-NV85
    Explore at:
    Dataset updated
    Oct 1, 2022
    Dataset provided by
    Australian Institute Of Marine Sciencehttp://www.aims.gov.au/
    Australian Ocean Data Network
    Authors
    Lawrey, Eric
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Oct 1, 2015 - Mar 1, 2022
    Area covered
    Description

    This dataset contains both large (A0) printable maps of the Torres Strait broken into six overlapping regions, based on a clear sky, clear water composite Sentinel 2 composite imagery and the imagery used to create these maps. These maps show satellite imagery of the region, overlaid with reef and island boundaries and names. Not all features are named, just the more prominent features. This also includes a vector map of Ashmore Reef and Boot Reef in Coral Sea as these were used in the same discussions that these maps were developed for. The map of Ashmore Reef includes the atoll platform, reef boundaries and depth polygons for 5 m and 10 m.

    This dataset contains all working files used in the development of these maps. This includes all a copy of all the source datasets and all derived satellite image tiles and QGIS files used to create the maps. This includes cloud free Sentinel 2 composite imagery of the Torres Strait region with alpha blended edges to allow the creation of a smooth high resolution basemap of the region.

    The base imagery is similar to the older base imagery dataset: Torres Strait clear sky, clear water Landsat 5 satellite composite (NERP TE 13.1 eAtlas, AIMS, source: NASA).

    Most of the imagery in the composite imagery from 2017 - 2021.


    Method:
    The Sentinel 2 basemap was produced by processing imagery from the World_AIMS_Marine-satellite-imagery dataset (01-data/World_AIMS_Marine-satellite-imagery in the data download) for the Torres Strait region. The TrueColour imagery for the scenes covering the mapped area were downloaded. Both the reference 1 imagery (R1) and reference 2 imagery (R2) was copied for processing. R1 imagery contains the lowest noise, most cloud free imagery, while R2 contains the next best set of imagery. Both R1 and R2 are typically composite images from multiple dates.

    The R2 images were selectively blended using manually created masks with the R1 images. This was done to get the best combination of both images and typically resulted in a reduction in some of the cloud artefacts in the R1 images. The mask creation and previewing of the blending was performed in Photoshop. The created masks were saved in 01-data/R2-R1-masks. To help with the blending of neighbouring images a feathered alpha channel was added to the imagery. The processing of the merging (using the masks) and the creation of the feathered borders on the images was performed using a Python script (src/local/03-merge-R2-R1-images.py) using the Pillow library and GDAL. The neighbouring image blending mask was created by applying a blurring of the original hard image mask. This allowed neighbouring image tiles to merge together.

    The imagery and reference datasets (reef boundaries, EEZ) were loaded into QGIS for the creation of the printable maps.

    To optimise the matching of the resulting map slight brightness adjustments were applied to each scene tile to match its neighbours. This was done in the setup of each image in QGIS. This adjustment was imperfect as each tile was made from a different combinations of days (to remove clouds) resulting in each scene having a different tonal gradients across the scene then its neighbours. Additionally Sentinel 2 has slight stripes (at 13 degrees off the vertical) due to the swath of each sensor having a slight sensitivity difference. This effect was uncorrected in this imagery.


    Single merged composite GeoTiff:
    The image tiles with alpha blended edges work well in QGIS, but not in ArcGIS Pro. To allow this imagery to be used across tools that don't support the alpha blending we merged and flattened the tiles into a single large GeoTiff with no alpha channel. This was done by rendering the map created in QGIS into a single large image. This was done in multiple steps to make the process manageable.

    The rendered map was cut into twenty 1 x 1 degree georeferenced PNG images using the Atlas feature of QGIS. This process baked in the alpha blending across neighbouring Sentinel 2 scenes. The PNG images were then merged back into a large GeoTiff image using GDAL (via QGIS), removing the alpha channel. The brightness of the image was adjusted so that the darkest pixels in the image were 1, saving the value 0 for nodata masking and the boundary was clipped, using a polygon boundary, to trim off the outer feathering. The image was then optimised for performance by using internal tiling and adding overviews. A full breakdown of these steps is provided in the README.md in the 'Browse and download all data files' link.

    The merged final image is available in export\TS_AIMS_Torres Strait-Sentinel-2_Composite.tif.


    Source datasets:
    Complete Great Barrier Reef (GBR) Island and Reef Feature boundaries including Torres Strait Version 1b (NESP TWQ 3.13, AIMS, TSRA, GBRMPA), https://eatlas.org.au/data/uuid/d2396b2c-68d4-4f4b-aab0-52f7bc4a81f5

    Geoscience Australia (2014b), Seas and Submerged Lands Act 1973 - Australian Maritime Boundaries 2014a - Geodatabase [Dataset]. Canberra, Australia: Author. https://creativecommons.org/licenses/by/4.0/ [license]. Sourced on 12 July 2017, https://dx.doi.org/10.4225/25/5539DFE87D895

    Basemap/AU_GA_AMB_2014a/Exclusive_Economic_Zone_AMB2014a_Limit.shp
    The original data was obtained from GA (Geoscience Australia, 2014a). The Geodatabase was loaded in ArcMap. The Exclusive_Economic_Zone_AMB2014a_Limit layer was loaded and exported as a shapefile. Since this file was small no clipping was applied to the data.

    Geoscience Australia (2014a), Treaties - Australian Maritime Boundaries (AMB) 2014a [Dataset]. Canberra, Australia: Author. https://creativecommons.org/licenses/by/4.0/ [license]. Sourced on 12 July 2017, http://dx.doi.org/10.4225/25/5539E01878302
    Basemap/AU_GA_Treaties-AMB_2014a/Papua_New_Guinea_TSPZ_AMB2014a_Limit.shp
    The original data was obtained from GA (Geoscience Australia, 2014b). The Geodatabase was loaded in ArcMap. The Papua_New_Guinea_TSPZ_AMB2014a_Limit layer was loaded and exported as a shapefile. Since this file was small no clipping was applied to the data.

    AIMS Coral Sea Features (2022) - DRAFT
    This is a draft version of this dataset. The region for Ashmore and Boot reef was checked. The attributes in these datasets haven't been cleaned up. Note these files should not be considered finalised and are only suitable for maps around Ashmore Reef. Please source an updated version of this dataset for any other purpose.
    CS_AIMS_Coral-Sea-Features/CS_Names/Names.shp
    CS_AIMS_Coral-Sea-Features/CS_Platform_adj/CS_Platform.shp
    CS_AIMS_Coral-Sea-Features/CS_Reef_Boundaries_adj/CS_Reef_Boundaries.shp
    CS_AIMS_Coral-Sea-Features/CS_Depth/CS_AIMS_Coral-Sea-Features_Img_S2_R1_Depth5m_Coral-Sea.shp
    CS_AIMS_Coral-Sea-Features/CS_Depth/CS_AIMS_Coral-Sea-Features_Img_S2_R1_Depth10m_Coral-Sea.shp

    Murray Island 20 Sept 2011 15cm SISP aerial imagery, Queensland Spatial Imagery Services Program, Department of Resources, Queensland
    This is the high resolution imagery used to create the map of Mer.

    World_AIMS_Marine-satellite-imagery
    The base image composites used in this dataset were based on an early version of Lawrey, E., Hammerton, M. (2024). Marine satellite imagery test collections (AIMS) [Data set]. eAtlas. https://doi.org/10.26274/zq26-a956. A snapshot of the code at the time this dataset was developed is made available in the 01-data/World_AIMS_Marine-satellite-imagery folder of the download of this dataset.


    Data Location:
    This dataset is filed in the eAtlas enduring data repository at: data\custodian\2020-2029-AIMS\TS_AIMS_Torres-Strait-Sentinel-2-regional-maps. On the eAtlas server it is stored at eAtlas GeoServer\data\2020-2029-AIMS.


    Change Log:
    2025-05-12: Eric Lawrey
    Added Torres-Strait-Region-Map-Masig-Ugar-Erub-45k-A0 and Torres-Strait-Eastern-Region-Map-Landscape-A0. These maps have a brighten satellite imagery to allow easier reading of writing on the maps. They also include markers for geo-referencing the maps for digitisation.

    2025-02-04: Eric Lawrey
    Fixed up the reference to the World_AIMS_Marine-satellite-imagery dataset, clarifying where the source that was used in this dataset. Added ORCID and RORs to the record.

    2023-11-22: Eric Lawrey
    Added the data and maps for close up of Mer.
    - 01-data/TS_DNRM_Mer-aerial-imagery/
    - preview/Torres-Strait-Mer-Map-Landscape-A0.jpeg
    - exports/Torres-Strait-Mer-Map-Landscape-A0.pdf
    Updated 02-Torres-Strait-regional-maps.qgz to include the layout for the new map.

    2023-03-02: Eric Lawrey
    Created a merged version of the satellite imagery, with no alpha blending so that it can be used in ArcGIS Pro. It is now a single large GeoTiff image. The Google Earth Engine source code for the World_AIMS_Marine-satellite-imagery was included to improve the reproducibility and provenance of the dataset, along with a calculation of the distribution of image dates that went into the final composite image. A WMS service for the imagery was also setup and linked to from the metadata. A cross reference to the older Torres Strait clear sky clear water Landsat composite imagery was also added to the record.

  16. r

    Keppel Islands Regional Maps (satellite imagery, habitat mapping and A0...

    • researchdata.edu.au
    Updated Apr 8, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lawrey, Eric (2020). Keppel Islands Regional Maps (satellite imagery, habitat mapping and A0 maps) (AIMS) [Dataset]. http://doi.org/10.26274/MXKA-2B41
    Explore at:
    Dataset updated
    Apr 8, 2020
    Dataset provided by
    Australian Ocean Data Network
    Authors
    Lawrey, Eric
    License

    Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
    License information was derived automatically

    Time period covered
    May 27, 2016 - Jul 17, 2019
    Area covered
    Description

    This dataset collection contains A0 maps of the Keppel Island region based on satellite imagery and fine-scale habitat mapping of the islands and marine environment. This collection provides the source satellite imagery used to produce these maps and the habitat mapping data.

    The imagery used to produce these maps was developed by blending high-resolution imagery (1 m) from ArcGIS Online with a clear-sky composite derived from Sentinel 2 imagery (10 m). The Sentinel 2 imagery was used to achieve full coverage of the entire region, while the high-resolution was used to provide detail around island areas.

    The blended imagery is a derivative product of the Sentinel 2 imagery and ArcGIS Online imagery, using Photoshop to to manually blend the best portions of each imagery into the final product. The imagery is provided for the sole purpose of reproducing the A0 maps.

    Methods:

    The high resolution satellite composite composite was developed by manual masking and blending of a Sentinel 2 composite image and high resolution imagery from ArcGIS Online World Imagery (2019).

    The Sentinel 2 composite was produced by statistically combining the clearest 10 images from 2016 - 2019. These images were manually chosen based on their very low cloud cover, lack of sun glint and clear water conditions. These images were then combined together to remove clouds and reduce the noise in the image.

    The processing of the images was performed using a script in Google Earth Engine. The script combines the manually chosen imagery to estimate the clearest imagery. The dates of the images were chosen using the EOBrowser (https://www.sentinel-hub.com/explore/eobrowser) to preview all the Sentinel 2 imagery from 2015-2019. The images that were mostly free of clouds, with little or no sun glint, were recorded. Each of these dates was then viewed in Google Earth Engine with high contrast settings to identify images that had high water surface noise due to algal blooms, waves, or re-suspension. These were excluded from the list. All the images were then combined by applying a histogram analysis of each pixel, with the final image using the 40th percentile of the time series of the brightness of each pixel. This approach helps exclude effects from clouds.

    The contrast of the image was stretched to highlight the marine features, whilst retaining detail in the land features. This was done by choosing a black point for each channel that would provide a dark setting for deep clear water. Gamma correction was then used to lighten up the dark water features, whilst not ove- exposing the brighter shallow areas.

    Both the high resolution satellite imagery and Sentinel 2 imagery was combined at 1 m pixel resolution. The resolution of the Sentinel 2 tiles was up sampled to match the resolution of the high-resolution imagery. These two sets of imagery were then layered in Photoshop. The brightness of the high-resolution satellite imagery was then adjusting to match the Sentinel 2 imagery. A mask was then used to retain and blend the imagery that showed the best detail of each area. The blended tiles were then merged with the overall area imagery by performing a GDAL merge, resulting in an upscaling of the Sentinel 2 imagery to 1 m resolution.


    Habitat Mapping:

    A 5 m resolution habitat mapping was developed based on the satellite imagery, aerial imagery available, and monitoring site information. This habitat mapping was developed to help with monitoring site selection and for the mapping workshop with the Woppaburra TOs on North Keppel Island in Dec 2019.

    The habitat maps should be considered as draft as they don't consider all available in water observations. They are primarily based on aerial and satellite images.

    The habitat mapping includes: Asphalt, Buildings, Mangrove, Cabbage-tree palm, Sheoak, Other vegetation, Grass, Salt Flat, Rock, Beach Rock, Gravel, Coral, Sparse coral, Unknown not rock (macroalgae on rubble), Marine feature (rock).

    This assumed layers allowed the digitisation of these features to be sped up, so for example, if there was coral growing over a marine feature then the boundary of the marine feature would need to be digitised, then the coral feature, but not the boundary between the marine feature and the coral. We knew that the coral was going to cut out from the marine feature because the coral is on top of the marine feature, saving us time in digitising this boundary. Digitisation was performed on an iPad using Procreate software and an Apple pencil to draw the features as layers in a drawing. Due to memory limitations of the iPad the region was digitised using 6000x6000 pixel tiles. The raster images were converted back to polygons and the tiles merged together.

    A python script was then used to clip the layer sandwich so that there is no overlap between feature types.

    Habitat Validation:

    Only limited validation was performed on the habitat map. To assist in the development of the habitat mapping, nearly every YouTube video available, at the time of development (2019), on the Keppel Islands was reviewed and, where possible, georeferenced to provide a better understanding of the local habitats at the scale of the mapping, prior to the mapping being conducted. Several validation points were observed during the workshop. The map should be considered as largely unvalidated.

    data/coastline/Keppels_AIMS_Coastline_2017.shp:
    The coastline dataset was produced by starting with the Queensland coastline dataset by DNRME (Downloaded from http://qldspatial.information.qld.gov.au/catalogue/custom/detail.page?fid={369DF13C-1BF3-45EA-9B2B-0FA785397B34} on 31 Aug 2019). This was then edited to work at a scale of 1:5000, using the aerial imagery from Queensland Globe as a reference and a high-tide satellite image from 22 Feb 2015 from Google Earth Pro. The perimeter of each island was redrawn. This line feature was then converted to a polygon using the "Lines to Polygon" QGIS tool. The Keppel island features were then saved to a shapefile by exporting with a limited extent.

    data/labels/Keppel-Is-Map-Labels.shp:
    This contains 70 named places in the Keppel island region. These names were sourced from literature and existing maps. Unfortunately, no provenance of the names was recorded. These names are not official. This includes the following attributes:
    - Name: Name of the location. Examples Bald, Bluff
    - NameSuffix: End of the name which is often a description of the feature type: Examples: Rock, Point
    - TradName: Traditional name of the location
    - Scale: Map scale where the label should be displayed.

    data/lat/Keppel-Is-Sentinel2-2016-19_B4-LAT_Poly3m_V3.shp:
    This corresponds to a rough estimate of the LAT contours around the Keppel Islands. LAT was estimated from tidal differences in Sentinel-2 imagery and light penetration in the red channel. Note this is not very calibrated and should be used as a rough guide. Only one rough in-situ validation was performed at low tide on Ko-no-mie at the edge of the reef near the education centre. This indicated that the LAT estimate was within a depth error range of about +-0.5 m.

    data/habitat/Keppels_AIMS_Habitat-mapping_2019.shp:
    This shapefile contains the mapped land and marine habitats. The classification type is recorded in the Type attribute.

    Format:

    GeoTiff (Internal JPEG format - 538 MB)
    PDF (A0 regional maps - ~30MB each)
    Shapefile (Habitat map, Coastline, Labels, LAT estimate)

    Data Location:

    This dataset is filed in the eAtlas enduring data repository at: data\custodian\2020-2029-AIMS\Keppels_AIMS_Regional-maps

  17. C

    Sentinel 2 satellite image

    • ckan.mobidatalab.eu
    wms
    Updated Apr 29, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GeoDatiGovIt RNDT (2023). Sentinel 2 satellite image [Dataset]. https://ckan.mobidatalab.eu/dataset/satellite-image-sentinel-2
    Explore at:
    wmsAvailable download formats
    Dataset updated
    Apr 29, 2023
    Dataset provided by
    GeoDatiGovIt RNDT
    Description

    Mosaic of two images acquired by the Sentinel-2 satellite taken on 19 and 22 April 2016: the "Sentinels" are a fleet of satellites designed to return data and images deriving from Earth observation to the European Commission's Copernicus programme. The Sentinel 2 mission launched in June 2015, concerns land monitoring. The Sentinel-2 satellite image is also available as a background map from the Geoportal viewer. To use this service in other viewing software, copy the address from the "online resources" field. The version of the WMS is 1.3.0.

  18. Cropland and grassland map of Switzerland based on Sentinel-2 data

    • envidat.ch
    • data.europa.eu
    geotiff, js +2
    Updated May 29, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Robert Pazúr; Nica Huber; Dominique Weber; Christian Ginzler; Bronwyn Price (2025). Cropland and grassland map of Switzerland based on Sentinel-2 data [Dataset]. http://doi.org/10.16904/envidat.205
    Explore at:
    not available, geotiff, js, tiffAvailable download formats
    Dataset updated
    May 29, 2025
    Dataset provided by
    Swiss Federal Institute for Forest, Snow and Landscape Research
    Swiss Federal Research Institute WSL
    Authors
    Robert Pazúr; Nica Huber; Dominique Weber; Christian Ginzler; Bronwyn Price
    License

    Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
    License information was derived automatically

    Area covered
    Switzerland
    Dataset funded by
    WSL
    FOEN /BAFU
    Description

    We developed a map of cropland and grassland allocation for Switzerland based on several indices dominantly derived from Sentinel-2 satellite imagery captured over multiple growing seasons. The classification model was trained based on parcel-based data derived from landholder reporting. The mapping was conducted on Google Earth Engine platform using random forest classifier. Areas of high vegetation, shrubland, sealed surface and non-vegetated areas were masked out from the country-wide map. The resulting map has high accuracy in lowlands as well as mountainous areas.

  19. m

    Landcover classification map of Germany 2016 based on Sentinel-2 data

    • data.mundialis.de
    • data.opendatascience.eu
    • +1more
    Updated Dec 13, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2020). Landcover classification map of Germany 2016 based on Sentinel-2 data [Dataset]. https://data.mundialis.de/geonetwork/srv/search?keyword=MAJA
    Explore at:
    Dataset updated
    Dec 13, 2020
    Area covered
    Germany
    Description

    This landcover map was produced as an intermediate result in the course of the project incora (Inwertsetzung von Copernicus-Daten für die Raumbeobachtung, mFUND Förderkennzeichen: 19F2079C) in cooperation with ILS (Institut für Landes- und Stadtentwicklungsforschung gGmbH) and BBSR (Bundesinstitut für Bau-, Stadt- und Raumforschung) funded by BMVI (Federal Ministry of Transport and Digital Infrastructure). The goal of incora is an analysis of settlement and infrastructure dynamics in Germany based on Copernicus Sentinel data. This classification is based on a time-series of monthly averaged, atmospherically corrected Sentinel-2 tiles (MAJA L3A-WASP: https://geoservice.dlr.de/web/maps/sentinel2:l3a:wasp; DLR (2019): Sentinel-2 MSI - Level 2A (MAJA-Tiles)- Germany). It consists of the following landcover classes: 10: forest 20: low vegetation 30: water 40: built-up 50: bare soil 60: agriculture Potential training and validation areas were automatically extracted using spectral indices and their temporal variability from the Sentinel-2 data itself as well as the following auxiliary datasets: - OpenStreetMap (Map data copyrighted OpenStreetMap contributors and available from htttps://www.openstreetmap.org) - Copernicus HRL Imperviousness Status Map 2018 (© European Union, Copernicus Land Monitoring Service 2018, European Environment Agency (EEA)) - S2GLC Land Cover Map of Europe 2017 (Malinowski et al. 2020: Automated Production of Land Cover/Use Map of Europe Based on Sentinel-2 Imagery. Remote Sens. 2020, 12(21), 3523; https://doi.org/10.3390/rs12213523) - Germany NUTS administrative areas 1:250000 (© GeoBasis-DE / BKG 2020 / dl-de/by-2-0 / https://gdz.bkg.bund.de/index.php/default/nuts-gebiete-1-250-000-stand-31-12-nuts250-31-12.html) - Contains modified Copernicus Sentinel data (2016), processed by mundialis Processing was performed for blocks of federal states and individual maps were mosaicked afterwards. For each class 100,000 pixels from the potential training areas were extracted as training data. An exemplary validation of the classification results was perfomed for the federal state of North Rhine-Westphalia as its open data policy allows for direct access to official data to be used as reference. Rules to convert relevant ATKIS Basis-DLM object classes to the incora nomenclature were defined. Subsequently, 5.000 reference points were randomly sampled and their classification in each case visually examined and, if necessary, revised to obtain a robust reference data set. The comparison of this reference data set with the incora classification yielded the following results: overall accuracy: 88.4% class: user's accuracy / producer's accuracy (number of reference points n) forest: 96.7% / 94.3% (1410) low vegetation: 70.6% / 84.0% (844) water: 98.5% / 94.2% (69) built-up: 98.2% / 89.8% (983) bare soil: 19.7% / 58.5% (41) agriculture: 91.7% / 85.3% (1653) Incora report with details on methods and results: pending

  20. o

    Landcover classification map of Germany 2019 based on Sentinel-2 data

    • data.opendatascience.eu
    • ckan.mobidatalab.eu
    • +2more
    Updated Jan 2, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2021). Landcover classification map of Germany 2019 based on Sentinel-2 data [Dataset]. https://data.opendatascience.eu/geonetwork/srv/search?keyword=MAJA
    Explore at:
    Dataset updated
    Jan 2, 2021
    Area covered
    Germany
    Description

    This landcover map was produced as an intermediate result in the course of the project incora (Inwertsetzung von Copernicus-Daten für die Raumbeobachtung, mFUND Förderkennzeichen: 19F2079C) in cooperation with ILS (Institut für Landes- und Stadtentwicklungsforschung gGmbH) and BBSR (Bundesinstitut für Bau-, Stadt- und Raumforschung) funded by BMVI (Federal Ministry of Transport and Digital Infrastructure). The goal of incora is an analysis of settlement and infrastructure dynamics in Germany based on Copernicus Sentinel data. This classification is based on a time-series of monthly averaged, atmospherically corrected Sentinel-2 tiles (MAJA L3A-WASP: https://geoservice.dlr.de/web/maps/sentinel2:l3a:wasp; DLR (2019): Sentinel-2 MSI - Level 2A (MAJA-Tiles)- Germany). It consists of the following landcover classes: 10: forest 20: low vegetation 30: water 40: built-up 50: bare soil 60: agriculture Potential training and validation areas were automatically extracted using spectral indices and their temporal variability from the Sentinel-2 data itself as well as the following auxiliary datasets: - OpenStreetMap (Map data copyrighted OpenStreetMap contributors and available from htttps://www.openstreetmap.org) - Copernicus HRL Imperviousness Status Map 2018 (© European Union, Copernicus Land Monitoring Service 2018, European Environment Agency (EEA)) - S2GLC Land Cover Map of Europe 2017 (Malinowski et al. 2020: Automated Production of Land Cover/Use Map of Europe Based on Sentinel-2 Imagery. Remote Sens. 2020, 12(21), 3523; https://doi.org/10.3390/rs12213523) - Germany NUTS administrative areas 1:250000 (© GeoBasis-DE / BKG 2020 / dl-de/by-2-0 / https://gdz.bkg.bund.de/index.php/default/nuts-gebiete-1-250-000-stand-31-12-nuts250-31-12.html) - Contains modified Copernicus Sentinel data (2019), processed by mundialis Processing was performed for blocks of federal states and individual maps were mosaicked afterwards. For each class 100,000 pixels from the potential training areas were extracted as training data. An exemplary validation of the classification results was perfomed for the federal state of North Rhine-Westphalia as its open data policy allows for direct access to official data to be used as reference. Rules to convert relevant ATKIS Basis-DLM object classes to the incora nomenclature were defined. Subsequently, 5.000 reference points were randomly sampled and their classification in each case visually examined and, if necessary, revised to obtain a robust reference data set. The comparison of this reference data set with the incora classification yielded the following results: overall accurary: 91.9% class: user's accuracy / producer's accurary (number of reference points n) forest: 98.1% / 95.9% (1410) low vegetation: 76.4% / 91.5% (844) water: 98.4% / 92.8% (69) built-up: 99.2% / 97.4% (983) bare soil: 35.1% / 95.1% (41) agriculture: 95.9% / 85.3% (1653) Incora report with details on methods and results: pending

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Commonwealth of Australia (Geoscience Australia) (2021). Barest Earth Sentinel 2 Map Index [Dataset]. https://ecat.ga.gov.au/geonetwork/srv/api/records/3aac2af4-ed0b-420a-ac19-3fd748ac6629
Organization logo

Barest Earth Sentinel 2 Map Index

Explore at:
esri:map-service, ogc:wms, www:link-1.0-http--linkAvailable download formats
Dataset updated
Dec 3, 2021
Dataset provided by
Geoscience Australiahttp://ga.gov.au/
Time period covered
Nov 1, 2021
Area covered
Description

The Barest Earth Sentinel-2 Map Index dataset depicts the 1 to 250 000 maps sheet tile frames that have been used to generate individual tile downloads of the Barest Earth Sentinel-2 product. This web service is designed to be used in conjunction with the Barest Earth Sentinel-2 web service to provide users with direct links for imagery download.

Search
Clear search
Close search
Google apps
Main menu