100+ datasets found
  1. Barest Earth Sentinel 2 Map Index

    • ecat.ga.gov.au
    • researchdata.edu.au
    esri:map-service +2
    Updated Dec 3, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Commonwealth of Australia (Geoscience Australia) (2021). Barest Earth Sentinel 2 Map Index [Dataset]. https://ecat.ga.gov.au/geonetwork/srv/api/records/3aac2af4-ed0b-420a-ac19-3fd748ac6629
    Explore at:
    esri:map-service, ogc:wms, www:link-1.0-http--linkAvailable download formats
    Dataset updated
    Dec 3, 2021
    Dataset provided by
    Geoscience Australiahttp://ga.gov.au/
    Time period covered
    Nov 1, 2021
    Area covered
    Description

    The Barest Earth Sentinel-2 Map Index dataset depicts the 1 to 250 000 maps sheet tile frames that have been used to generate individual tile downloads of the Barest Earth Sentinel-2 product. This web service is designed to be used in conjunction with the Barest Earth Sentinel-2 web service to provide users with direct links for imagery download.

  2. d

    Global Sentinel-1 Burst ID Map

    • catalog.data.gov
    • data.nasa.gov
    • +4more
    Updated Apr 9, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ASF (2025). Global Sentinel-1 Burst ID Map [Dataset]. https://catalog.data.gov/dataset/global-sentinel-1-burst-id-map-7ce07
    Explore at:
    Dataset updated
    Apr 9, 2025
    Dataset provided by
    ASF
    Description

    Sentinel-1 performs systematic acquisition of bursts in both IW and EW modes. The bursts overlap almost perfectly between different passes and are always located at the same place. With the deployment of the SAR processor S1-IPF 3.4, a new element has been added to the products annotations: the Burst ID, which should help the end user to identify a burst area of interest and facilitate searches. The Burst ID map is a complementary auxiliary product. The maps have a validity that covers the entire time span of the mission and they are global, i.e., they include as well information where no SAR data is acquired. Each granule contains information about burst and sub-swath IDs, relative orbit and burst polygon, and should allow for an easier link between a certain burst ID in a product and its corresponding geographic location.

  3. a

    Sentinel-2 Views

    • hub.arcgis.com
    • cacgeoportal.com
    Updated Apr 2, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Central Asia and the Caucasus GeoPortal (2024). Sentinel-2 Views [Dataset]. https://hub.arcgis.com/maps/0d7870b282e345859ccf1a85af5cadc4
    Explore at:
    Dataset updated
    Apr 2, 2024
    Dataset authored and provided by
    Central Asia and the Caucasus GeoPortal
    Area covered
    Description

    This web map is a subset of Sentinel-2 Views. Sentinel-2, 10, 20, and 60m Multispectral, Multitemporal, 13-band imagery is rendered on-the-fly and available for visualization and analytics. This imagery layer pulls directly from the Sentinel-2 on AWS collection and is updated daily with new imagery.This imagery layer can be applied across a number of industries, scientific disciplines, and management practices. Some applications include, but are not limited to, land cover and environmental monitoring, climate change, deforestation, disaster and emergency management, national security, plant health and precision agriculture, forest monitoring, watershed analysis and runoff predictions, land-use planning, tracking urban expansion, highlighting burned areas and estimating fire severity.Geographic CoverageGlobalContinental land masses from 65.4° South to 72.1° North, with these special guidelines:All coastal waters up to 20 km from the shoreAll islands greater than 100 km2All EU islandsAll closed seas (e.g. Caspian Sea)The Mediterranean SeaNote: Areas of interest going beyond the Mission baseline (as laid out in the Mission Requirements Document) will be assessed, and may be added to the baseline if sufficient resources are identified.Temporal CoverageThe revisit time for each point on Earth is every 5 days.This layer is updated daily with new imagery.This imagery layer is designed to include imagery collected within the past 14 months. Custom Image Services can be created for access to images older than 14 months.The number of images available will vary depending on location.Image Selection/FilteringThe most recent and cloud free images are displayed by default.Any image available, within the past 14 months, can be displayed via custom filtering.Filtering can be done based on attributes such as Acquisition Date, Estimated Cloud Cover, and Tile ID.Tile_ID is computed as [year][month][day]T[hours][minutes][seconds]_[UTMcode][latitudeband][square]_[sequence]. More…NOTE: Not using filters, and loading the entire archive, may affect performance.Analysis ReadyThis imagery layer is analysis ready with TOA correction applied.Visual RenderingDefault rendering is Natural Color (bands 4,3,2) with Dynamic Range Adjustment (DRA).The DRA version of each layer enables visualization of the full dynamic range of the images.Rendering (or display) of band combinations and calculated indices is done on-the-fly from the source images via Raster Functions.Various pre-defined Raster Functions can be selected or custom functions created.Available renderings include: Agriculture with DRA, Bathymetric with DRA, Color-Infrared with DRA, Natural Color with DRA, Short-wave Infrared with DRA, Geology with DRA, NDMI Colorized, Normalized Difference Built-Up Index (NDBI), NDWI Raw, NDWI - with VRE Raw, NDVI – with VRE Raw (NDRE), NDVI - VRE only Raw, NDVI Raw, Normalized Burn Ratio, NDVI Colormap.Multispectral BandsBandDescriptionWavelength (µm)Resolution (m)1Coastal aerosol0.433 - 0.453602Blue0.458 - 0.523103Green0.543 - 0.578104Red0.650 - 0.680105Vegetation Red Edge0.698 - 0.713206Vegetation Red Edge0.733 - 0.748207Vegetation Red Edge0.773 - 0.793208NIR0.785 - 0.900108ANarrow NIR0.855 - 0.875209Water vapour0.935 - 0.9556010SWIR – Cirrus1.365 - 1.3856011SWIR-11.565 - 1.6552012SWIR-22.100 - 2.28020Additional NotesOverviews exist with a spatial resolution of 150m and are updated every quarter based on the best and latest imagery available at that time.To work with source images at all scales, the ‘Lock Raster’ functionality is available.NOTE: ‘Lock Raster’ should only be used on the layer for short periods of time, as the imagery and associated record Object IDs may change daily.This ArcGIS Server dynamic imagery layer can be used in Web Maps and ArcGIS Desktop as well as Web and Mobile applications using the REST based Image services API.Images can be exported up to a maximum of 4,000 columns x 4,000 rows per request.Data SourceSentinel-2 imagery is the result of close collaboration between the (European Space Agency) ESA, the European Commission and USGS. Data is hosted by the Amazon Web Services as part of their Registry of Open Data. Users can access the imagery from Sentinel-2 on AWS , or alternatively access Sentinel2Look Viewer, EarthExplorer or the Copernicus Open Access Hub to download the scenes.For information on Sentinel-2 imagery, see Sentinel-2.

  4. U

    Landsat and Sentinel-2 satellite data fusion-derived evapotranspiration maps...

    • data.usgs.gov
    • catalog.data.gov
    Updated Jan 28, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Khand Kul Bikram (2020). Landsat and Sentinel-2 satellite data fusion-derived evapotranspiration maps of Palo Verde Irrigation District, California, USA [Dataset]. http://doi.org/10.5066/P99ZBZ1S
    Explore at:
    Dataset updated
    Jan 28, 2020
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Authors
    Khand Kul Bikram
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Time period covered
    May 16, 2016 - Jul 25, 2018
    Area covered
    United States
    Description

    Three ET datasets were generated to evaluate the potential integration of Landsat and Sentinel-2 data for improved ET mapping. The first ET dataset was generated by linear interpolation (Lint) of Landsat-based ET fraction (ETf) images of before and after the selected image dates. The second ET dataset was generated using the regular SSEBop approach using the Landsat image only (Lonly). The third ET dataset was generated from the proposed Landsat-Sentinel data fusion (L-S) approach by applying ETf images from Landsat and Sentinel. The scripts (two) used to generate these three ET datasets are included – one script for processing SSEBop model to generate ET maps from Lonly and another script for generating ET maps from Lint and L-S approach.

  5. Sentinel-2 10-Meter Land Use/Land Cover Time Series

    • afrigeo.africageoportal.com
    • uneca.africageoportal.com
    • +7more
    Updated Feb 22, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2022). Sentinel-2 10-Meter Land Use/Land Cover Time Series [Dataset]. https://afrigeo.africageoportal.com/maps/739b8a9dcf4246d3af7197878b7ec052
    Explore at:
    Dataset updated
    Feb 22, 2022
    Dataset authored and provided by
    Esrihttp://esri.com/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This web map displays the land use/land cover (LULC) timeseries layer derived from ESA Sentinel-2 imagery at 10m resolution. The visualization uses blend modes and is best used in the new Map Viewer. The time slider can be used to advance through the five years of data from 2017-2021. There are also a series of bookmarks for the locations below:Urban growth examplesOuagadougouCairo/GizaDubai, UAEKaty, Texas, USALoudoun County, VirginiaInfrastructureIstanbul International Airport, TurkeyGrand Ethiopian Renaissance Dam, EthiopiaDeforestationBorder of Acre and Rondonia states, BrazilHarz Mountains, GermanyWetlands lossPantanal, BrazilParana river, ArgentinaVegetation changing after fireNorthern California: Paradise, Redding, Clear Lake, Santa Rosa, Mendocino National ForestKangaroo Island, AustraliaVictoria and NSW, AustraliaYakutia, RussiaHurricane ImpactAbaco Island, BahamasRecent Lava FlowHawaii IslandSurface MiningBrown Coal, Cottbus, GermanyLand ReclamationMarkermeer, NetherlandsEconomic DevelopmentNorth vs South Korea

  6. Sentinel-2 10m Land Use/Land Cover Time Series

    • cacgeoportal.com
    • colorado-river-portal.usgs.gov
    • +9more
    Updated Oct 19, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2022). Sentinel-2 10m Land Use/Land Cover Time Series [Dataset]. https://www.cacgeoportal.com/items/cfcb7609de5f478eb7666240902d4d3d
    Explore at:
    Dataset updated
    Oct 19, 2022
    Dataset authored and provided by
    Esrihttp://esri.com/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This layer displays a global map of land use/land cover (LULC) derived from ESA Sentinel-2 imagery at 10m resolution. Each year is generated with Impact Observatory’s deep learning AI land classification model, trained using billions of human-labeled image pixels from the National Geographic Society. The global maps are produced by applying this model to the Sentinel-2 Level-2A image collection on Microsoft’s Planetary Computer, processing over 400,000 Earth observations per year.The algorithm generates LULC predictions for nine classes, described in detail below. The year 2017 has a land cover class assigned for every pixel, but its class is based upon fewer images than the other years. The years 2018-2024 are based upon a more complete set of imagery. For this reason, the year 2017 may have less accurate land cover class assignments than the years 2018-2024. Key Properties Variable mapped: Land use/land cover in 2017, 2018, 2019, 2020, 2021, 2022, 2023, 2024Source Data Coordinate System: Universal Transverse Mercator (UTM) WGS84Service Coordinate System: Web Mercator Auxiliary Sphere WGS84 (EPSG:3857)Extent: GlobalSource imagery: Sentinel-2 L2ACell Size: 10-metersType: ThematicAttribution: Esri, Impact ObservatoryAnalysis: Optimized for analysisClass Definitions: ValueNameDescription1WaterAreas where water was predominantly present throughout the year; may not cover areas with sporadic or ephemeral water; contains little to no sparse vegetation, no rock outcrop nor built up features like docks; examples: rivers, ponds, lakes, oceans, flooded salt plains.2TreesAny significant clustering of tall (~15 feet or higher) dense vegetation, typically with a closed or dense canopy; examples: wooded vegetation, clusters of dense tall vegetation within savannas, plantations, swamp or mangroves (dense/tall vegetation with ephemeral water or canopy too thick to detect water underneath).4Flooded vegetationAreas of any type of vegetation with obvious intermixing of water throughout a majority of the year; seasonally flooded area that is a mix of grass/shrub/trees/bare ground; examples: flooded mangroves, emergent vegetation, rice paddies and other heavily irrigated and inundated agriculture.5CropsHuman planted/plotted cereals, grasses, and crops not at tree height; examples: corn, wheat, soy, fallow plots of structured land.7Built AreaHuman made structures; major road and rail networks; large homogenous impervious surfaces including parking structures, office buildings and residential housing; examples: houses, dense villages / towns / cities, paved roads, asphalt.8Bare groundAreas of rock or soil with very sparse to no vegetation for the entire year; large areas of sand and deserts with no to little vegetation; examples: exposed rock or soil, desert and sand dunes, dry salt flats/pans, dried lake beds, mines.9Snow/IceLarge homogenous areas of permanent snow or ice, typically only in mountain areas or highest latitudes; examples: glaciers, permanent snowpack, snow fields.10CloudsNo land cover information due to persistent cloud cover.11RangelandOpen areas covered in homogenous grasses with little to no taller vegetation; wild cereals and grasses with no obvious human plotting (i.e., not a plotted field); examples: natural meadows and fields with sparse to no tree cover, open savanna with few to no trees, parks/golf courses/lawns, pastures. Mix of small clusters of plants or single plants dispersed on a landscape that shows exposed soil or rock; scrub-filled clearings within dense forests that are clearly not taller than trees; examples: moderate to sparse cover of bushes, shrubs and tufts of grass, savannas with very sparse grasses, trees or other plants.NOTE: Land use focus does not provide the spatial detail of a land cover map. As such, for the built area classification, yards, parks, and groves will appear as built area rather than trees or rangeland classes.Usage Information and Best PracticesProcessing TemplatesThis layer includes a number of preconfigured processing templates (raster function templates) to provide on-the-fly data rendering and class isolation for visualization and analysis. Each processing template includes labels and descriptions to characterize the intended usage. This may include for visualization, for analysis, or for both visualization and analysis. VisualizationThe default rendering on this layer displays all classes.There are a number of on-the-fly renderings/processing templates designed specifically for data visualization.By default, the most recent year is displayed. To discover and isolate specific years for visualization in Map Viewer, try using the Image Collection Explorer. AnalysisIn order to leverage the optimization for analysis, the capability must be enabled by your ArcGIS organization administrator. More information on enabling this feature can be found in the ‘Regional data hosting’ section of this help doc.Optimized for analysis means this layer does not have size constraints for analysis and it is recommended for multisource analysis with other layers optimized for analysis. See this group for a complete list of imagery layers optimized for analysis.Prior to running analysis, users should always provide some form of data selection with either a layer filter (e.g. for a specific date range, cloud cover percent, mission, etc.) or by selecting specific images. To discover and isolate specific images for analysis in Map Viewer, try using the Image Collection Explorer.Zonal Statistics is a common tool used for understanding the composition of a specified area by reporting the total estimates for each of the classes. GeneralIf you are new to Sentinel-2 LULC, the Sentinel-2 Land Cover Explorer provides a good introductory user experience for working with this imagery layer. For more information, see this Quick Start Guide.Global land use/land cover maps provide information on conservation planning, food security, and hydrologic modeling, among other things. This dataset can be used to visualize land use/land cover anywhere on Earth. Classification ProcessThese maps include Version 003 of the global Sentinel-2 land use/land cover data product. It is produced by a deep learning model trained using over five billion hand-labeled Sentinel-2 pixels, sampled from over 20,000 sites distributed across all major biomes of the world.The underlying deep learning model uses 6-bands of Sentinel-2 L2A surface reflectance data: visible blue, green, red, near infrared, and two shortwave infrared bands. To create the final map, the model is run on multiple dates of imagery throughout the year, and the outputs are composited into a final representative map for each year.The input Sentinel-2 L2A data was accessed via Microsoft’s Planetary Computer and scaled using Microsoft Azure Batch. CitationKarra, Kontgis, et al. “Global land use/land cover with Sentinel-2 and deep learning.” IGARSS 2021-2021 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2021.AcknowledgementsTraining data for this project makes use of the National Geographic Society Dynamic World training dataset, produced for the Dynamic World Project by National Geographic Society in partnership with Google and the World Resources Institute.

  7. P

    Lombardia Sentinel-2 Image Time Series for Crop Mapping Dataset

    • paperswithcode.com
    Updated Dec 4, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ignazio Gallo; Luigi Ranghetti; Nicola Landro; Riccardo La Grassa; Mirco Boschetti (2022). Lombardia Sentinel-2 Image Time Series for Crop Mapping Dataset [Dataset]. https://paperswithcode.com/dataset/lombardia-sentinel-2-image-time-series-for
    Explore at:
    Dataset updated
    Dec 4, 2022
    Authors
    Ignazio Gallo; Luigi Ranghetti; Nicola Landro; Riccardo La Grassa; Mirco Boschetti
    Area covered
    Lombardy
    Description

    Usually, the information related to the crop types available in a given territory is annual information, that is, we only know the type of main crop grown over a year and we do not know any crops that have followed one another during the year and also we do not know when a particular crop is sown and when it is harvested. The main objective of this dataset is to create the basis for experimenting with suitable solutions to give a reliable answer to the above questions, or to propose models capable of producing dynamic segmentation maps that show when a crop begins to grow and when it is collected. Consequently, being able to understand if more than one crop has been grown in a territory within a year. In this dataset, we have 20 coverage classes as ground-truth values provided by Regine Lombardia. The mapping of the class labels used (see file lombardia-classes/classes25pc.txt) brings together some classes and provides the time intervals within which that category grows. The last two columns of the following table are respectively the date (month-day) of the start and end of the interval in which the class is visible during the construction of our dataset.

  8. s

    Sentinel-2 L2A

    • collections.sentinel-hub.com
    • collections.eurodatacube.com
    Updated Jan 15, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sentinel Hub (2017). Sentinel-2 L2A [Dataset]. https://collections.sentinel-hub.com/sentinel-2-l2a/
    Explore at:
    Dataset updated
    Jan 15, 2017
    Dataset provided by
    <a href="https://www.sentinel-hub.com/">Sentinel Hub</a>
    Description

    The Sentinel-2 mission is a land monitoring constellation of two satellites that provide high resolution optical imagery and provide continuity for the current SPOT and Landsat missions. The mission provides a global coverage of the Earth's land surface every 5 days, making the data of great use in on-going studies. L2A data are available from November 2016 over Europe region and globally since January 2017. L2A data provide Bottom of the atmosphere (BOA) reflectance.

  9. e

    Sentinel-2 Land Cover Explorer

    • climate.esri.ca
    • cacgeoportal.com
    • +3more
    Updated Feb 7, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2023). Sentinel-2 Land Cover Explorer [Dataset]. https://climate.esri.ca/datasets/esri::sentinel-2-land-cover-explorer
    Explore at:
    Dataset updated
    Feb 7, 2023
    Dataset authored and provided by
    Esri
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    About the dataLand use land cover (LULC) maps are an increasingly important tool for decision-makers in many industry sectors and developing nations around the world. The information provided by these maps helps inform policy and land management decisions by better understanding and quantifying the impacts of earth processes and human activity.ArcGIS Living Atlas of the World provides a detailed, accurate, and timely LULC map of the world. The data is the result of a three-way collaboration among Esri, Impact Observatory, and Microsoft. For more information about the data, see Sentinel-2 10m Land Use/Land Cover Time Series.About the appOne of the foremost capabilities of this app is the dynamic change analysis. The app provides dynamic visual and statistical change by comparing annual slices of the Sentinel-2 10m Land Use/Land Cover data as you explore the map.Overview of capabilities:Visual change analysis with either 'Step Mode' or 'Swipe Mode'Dynamic statistical change analysis by year, map extent, and classFilter by selected land cover classRegional class statistics summarized by administrative boundariesImagery mode for visual investigation and validation of land coverSelect imagery renderings (e.g. SWIR to visualize forest burn scars)Data download for offline use

  10. A

    Sentinel Imagery of the Caribbean

    • data.amerigeoss.org
    • caribbeangeoportal.com
    esri rest, html
    Updated Mar 20, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Caribbean GeoPortal (2020). Sentinel Imagery of the Caribbean [Dataset]. https://data.amerigeoss.org/tr/dataset/sentinel-imagery-of-the-caribbean
    Explore at:
    html, esri restAvailable download formats
    Dataset updated
    Mar 20, 2020
    Dataset provided by
    Caribbean GeoPortal
    Area covered
    Caribbean
    Description

    This web map features the Sentinel-2 imagery layer with a focus on the Caribbean. The Sentinel-2 imagery layer is updated daily with new satellite imagery scenes that have been published to Sentinel-2 on AWS collections. Visit the Sentinel-2 imagery layer item for more details.

  11. Torres Strait Sentinel 2 Satellite Regional Maps and Imagery 2015 – 2021...

    • researchdata.edu.au
    Updated Oct 1, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lawrey, Eric, Dr; Lawrey, Eric, Dr (2022). Torres Strait Sentinel 2 Satellite Regional Maps and Imagery 2015 – 2021 (AIMS) [Dataset]. http://doi.org/10.26274/3CGE-NV85
    Explore at:
    Dataset updated
    Oct 1, 2022
    Dataset provided by
    Australian Institute Of Marine Sciencehttp://www.aims.gov.au/
    Australian Ocean Data Network
    Authors
    Lawrey, Eric, Dr; Lawrey, Eric, Dr
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Oct 1, 2015 - Mar 1, 2022
    Area covered
    Description

    This dataset contains both large (A0) printable maps of the Torres Strait broken into six overlapping regions, based on a clear sky, clear water composite Sentinel 2 composite imagery and the imagery used to create these maps. These maps show satellite imagery of the region, overlaid with reef and island boundaries and names. Not all features are named, just the more prominent features. This also includes a vector map of Ashmore Reef and Boot Reef in Coral Sea as these were used in the same discussions that these maps were developed for. The map of Ashmore Reef includes the atoll platform, reef boundaries and depth polygons for 5 m and 10 m.

    This dataset contains all working files used in the development of these maps. This includes all a copy of all the source datasets and all derived satellite image tiles and QGIS files used to create the maps. This includes cloud free Sentinel 2 composite imagery of the Torres Strait region with alpha blended edges to allow the creation of a smooth high resolution basemap of the region.

    The base imagery is similar to the older base imagery dataset: Torres Strait clear sky, clear water Landsat 5 satellite composite (NERP TE 13.1 eAtlas, AIMS, source: NASA).

    Most of the imagery in the composite imagery from 2017 - 2021.

    Method: The Sentinel 2 basemap was produced by processing imagery from the World_AIMS_Marine-satellite-imagery dataset (not yet published) for the Torres Strait region. The TrueColour imagery for the scenes covering the mapped area were downloaded. Both the reference 1 imagery (R1) and reference 2 imagery (R2) was copied for processing. R1 imagery contains the lowest noise, most cloud free imagery, while R2 contains the next best set of imagery. Both R1 and R2 are typically composite images from multiple dates.

    The R2 images were selectively blended using manually created masks with the R1 images. This was done to get the best combination of both images and typically resulted in a reduction in some of the cloud artefacts in the R1 images. The mask creation and previewing of the blending was performed in Photoshop. The created masks were saved in 01-data/R2-R1-masks. To help with the blending of neighbouring images a feathered alpha channel was added to the imagery. The processing of the merging (using the masks) and the creation of the feathered borders on the images was performed using a Python script (src/local/03-merge-R2-R1-images.py) using the Pillow library and GDAL. The neighbouring image blending mask was created by applying a blurring of the original hard image mask. This allowed neighbouring image tiles to merge together.

    The imagery and reference datasets (reef boundaries, EEZ) were loaded into QGIS for the creation of the printable maps.

    To optimise the matching of the resulting map slight brightness adjustments were applied to each scene tile to match its neighbours. This was done in the setup of each image in QGIS. This adjustment was imperfect as each tile was made from a different combinations of days (to remove clouds) resulting in each scene having a different tonal gradients across the scene then its neighbours. Additionally Sentinel 2 has slight stripes (at 13 degrees off the vertical) due to the swath of each sensor having a slight sensitivity difference. This effect was uncorrected in this imagery.

    Single merged composite GeoTiff: The image tiles with alpha blended edges work well in QGIS, but not in ArcGIS Pro. To allow this imagery to be used across tools that don't support the alpha blending we merged and flattened the tiles into a single large GeoTiff with no alpha channel. This was done by rendering the map created in QGIS into a single large image. This was done in multiple steps to make the process manageable.

    The rendered map was cut into twenty 1 x 1 degree georeferenced PNG images using the Atlas feature of QGIS. This process baked in the alpha blending across neighbouring Sentinel 2 scenes. The PNG images were then merged back into a large GeoTiff image using GDAL (via QGIS), removing the alpha channel. The brightness of the image was adjusted so that the darkest pixels in the image were 1, saving the value 0 for nodata masking and the boundary was clipped, using a polygon boundary, to trim off the outer feathering. The image was then optimised for performance by using internal tiling and adding overviews. A full breakdown of these steps is provided in the README.md in the 'Browse and download all data files' link.

    The merged final image is available in export\TS_AIMS_Torres Strait-Sentinel-2_Composite.tif.

    Change Log: 2023-03-02: Eric Lawrey Created a merged version of the satellite imagery, with no alpha blending so that it can be used in ArcGIS Pro. It is now a single large GeoTiff image. The Google Earth Engine source code for the World_AIMS_Marine-satellite-imagery was included to improve the reproducibility and provenance of the dataset, along with a calculation of the distribution of image dates that went into the final composite image. A WMS service for the imagery was also setup and linked to from the metadata. A cross reference to the older Torres Strait clear sky clear water Landsat composite imagery was also added to the record.

    22 Nov 2023: Eric Lawrey Added the data and maps for close up of Mer. - 01-data/TS_DNRM_Mer-aerial-imagery/ - preview/Torres-Strait-Mer-Map-Landscape-A0.jpeg - exports/Torres-Strait-Mer-Map-Landscape-A0.pdf Updated 02-Torres-Strait-regional-maps.qgz to include the layout for the new map.

    Source datasets: Complete Great Barrier Reef (GBR) Island and Reef Feature boundaries including Torres Strait Version 1b (NESP TWQ 3.13, AIMS, TSRA, GBRMPA), https://eatlas.org.au/data/uuid/d2396b2c-68d4-4f4b-aab0-52f7bc4a81f5

    Geoscience Australia (2014b), Seas and Submerged Lands Act 1973 - Australian Maritime Boundaries 2014a - Geodatabase [Dataset]. Canberra, Australia: Author. https://creativecommons.org/licenses/by/4.0/ [license]. Sourced on 12 July 2017, https://dx.doi.org/10.4225/25/5539DFE87D895

    Basemap/AU_GA_AMB_2014a/Exclusive_Economic_Zone_AMB2014a_Limit.shp The original data was obtained from GA (Geoscience Australia, 2014a). The Geodatabase was loaded in ArcMap. The Exclusive_Economic_Zone_AMB2014a_Limit layer was loaded and exported as a shapefile. Since this file was small no clipping was applied to the data.

    Geoscience Australia (2014a), Treaties - Australian Maritime Boundaries (AMB) 2014a [Dataset]. Canberra, Australia: Author. https://creativecommons.org/licenses/by/4.0/ [license]. Sourced on 12 July 2017, http://dx.doi.org/10.4225/25/5539E01878302 Basemap/AU_GA_Treaties-AMB_2014a/Papua_New_Guinea_TSPZ_AMB2014a_Limit.shp The original data was obtained from GA (Geoscience Australia, 2014b). The Geodatabase was loaded in ArcMap. The Papua_New_Guinea_TSPZ_AMB2014a_Limit layer was loaded and exported as a shapefile. Since this file was small no clipping was applied to the data.

    AIMS Coral Sea Features (2022) - DRAFT This is a draft version of this dataset. The region for Ashmore and Boot reef was checked. The attributes in these datasets haven't been cleaned up. Note these files should not be considered finalised and are only suitable for maps around Ashmore Reef. Please source an updated version of this dataset for any other purpose. CS_AIMS_Coral-Sea-Features/CS_Names/Names.shp CS_AIMS_Coral-Sea-Features/CS_Platform_adj/CS_Platform.shp CS_AIMS_Coral-Sea-Features/CS_Reef_Boundaries_adj/CS_Reef_Boundaries.shp CS_AIMS_Coral-Sea-Features/CS_Depth/CS_AIMS_Coral-Sea-Features_Img_S2_R1_Depth5m_Coral-Sea.shp CS_AIMS_Coral-Sea-Features/CS_Depth/CS_AIMS_Coral-Sea-Features_Img_S2_R1_Depth10m_Coral-Sea.shp

    Murray Island 20 Sept 2011 15cm SISP aerial imagery, Queensland Spatial Imagery Services Program, Department of Resources, Queensland This is the high resolution imagery used to create the map of Mer.

    Marine satellite imagery (Sentinel 2 and Landsat 8) (AIMS), https://eatlas.org.au/data/uuid/5d67aa4d-a983-45d0-8cc1-187596fa9c0c - World_AIMS_Marine-satellite-imagery

    Data Location: This dataset is filed in the eAtlas enduring data repository at: data\custodian\2020-2029-AIMS\TS_AIMS_Torres-Strait-Sentinel-2-regional-maps. On the eAtlas server it is stored at eAtlas GeoServer\data\2020-2029-AIMS.

  12. Sentinel-2 10m Land Use/Land Cover Change from 2018 to 2021 (Mature Support)...

    • hub.arcgis.com
    • pacificgeoportal.com
    • +3more
    Updated Feb 10, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2022). Sentinel-2 10m Land Use/Land Cover Change from 2018 to 2021 (Mature Support) [Dataset]. https://hub.arcgis.com/datasets/30c4287128cc446b888ca020240c456b
    Explore at:
    Dataset updated
    Feb 10, 2022
    Dataset authored and provided by
    Esrihttp://esri.com/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    Important Note: This item is in mature support as of February 2023 and will be retired in December 2025. A new version of this item is available for your use. Esri recommends updating your maps and apps to use the new version. This layer displays change in pixels of the Sentinel-2 10m Land Use/Land Cover product developed by Esri, Impact Observatory, and Microsoft. Available years to compare with 2021 are 2018, 2019 and 2020. By default, the layer shows all comparisons together, in effect showing what changed 2018-2021. But the layer may be changed to show one of three specific pairs of years, 2018-2021, 2019-2021, or 2020-2021.Showing just one pair of years in ArcGIS Online Map ViewerTo show just one pair of years in ArcGIS Online Map viewer, create a filter. 1. Click the filter button. 2. Next, click add expression. 3. In the expression dialogue, specify a pair of years with the ProductName attribute. Use the following example in your expression dialogue to show only places that changed between 2020 and 2021:ProductNameis2020-2021By default, places that do not change appear as a transparent symbol in ArcGIS Pro. But in ArcGIS Online Map Viewer, a transparent symbol may need to be set for these places after a filter is chosen. To do this:4. Click the styles button. 5. Under unique values click style options. 6. Click the symbol next to No Change at the bottom of the legend. 7. Click the slider next to "enable fill" to turn the symbol off.Showing just one pair of years in ArcGIS ProTo show just one pair of years in ArcGIS Pro, choose one of the layer's processing templates to single out a particular pair of years. The processing template applies a definition query that works in ArcGIS Pro. 1. To choose a processing template, right click the layer in the table of contents for ArcGIS Pro and choose properties. 2. In the dialogue that comes up, choose the tab that says processing templates. 3. On the right where it says processing template, choose the pair of years you would like to display. The processing template will stay applied for any analysis you may want to perform as well.How the change layer was created, combining LULC classes from two yearsImpact Observatory, Esri, and Microsoft used artificial intelligence to classify the world in 10 Land Use/Land Cover (LULC) classes for the years 2017-2021. Mosaics serve the following sets of change rasters in a single global layer: Change between 2018 and 2021Change between 2019 and 2021Change between 2020 and 2021To make this change layer, Esri used an arithmetic operation combining the cells from a source year and 2021 to make a change index value. ((from year * 16) + to year) In the example of the change between 2020 and 2021, the from year (2020) was multiplied by 16, then added to the to year (2021). Then the combined number is served as an index in an 8 bit unsigned mosaic with an attribute table which describes what changed or did not change in that timeframe. Variable mapped: Change in land cover between 2018, 2019, or 2020 and 2021 Data Projection: Universal Transverse Mercator (UTM)Mosaic Projection: WGS84Extent: GlobalSource imagery: Sentinel-2Cell Size: 10m (0.00008983152098239751 degrees)Type: ThematicSource: Esri Inc.Publication date: January 2022What can you do with this layer?Global LULC maps provide information on conservation planning, food security, and hydrologic modeling, among other things. This dataset can be used to visualize land cover anywhere on Earth. This layer can also be used in analyses that require land cover input. For example, the Zonal Statistics tools allow a user to understand the composition of a specified area by reporting the total estimates for each of the classes. Land Cover processingThis map was produced by a deep learning model trained using over 5 billion hand-labeled Sentinel-2 pixels, sampled from over 20,000 sites distributed across all major biomes of the world. The underlying deep learning model uses 6 bands of Sentinel-2 surface reflectance data: visible blue, green, red, near infrared, and two shortwave infrared bands. To create the final map, the model is run on multiple dates of imagery throughout the year, and the outputs are composited into a final representative map. Processing platformSentinel-2 L2A/B data was accessed via Microsoft’s Planetary Computer and scaled using Microsoft Azure Batch.Class definitions1. WaterAreas where water was predominantly present throughout the year; may not cover areas with sporadic or ephemeral water; contains little to no sparse vegetation, no rock outcrop nor built up features like docks; examples: rivers, ponds, lakes, oceans, flooded salt plains.2. TreesAny significant clustering of tall (~15-m or higher) dense vegetation, typically with a closed or dense canopy; examples: wooded vegetation,
    clusters of dense tall vegetation within savannas, plantations, swamp or mangroves (dense/tall vegetation with ephemeral water or canopy too thick to detect water underneath).4. Flooded vegetationAreas of any type of vegetation with obvious intermixing of water throughout a majority of the year; seasonally flooded area that is a mix of grass/shrub/trees/bare ground; examples: flooded mangroves, emergent vegetation, rice paddies and other heavily irrigated and inundated agriculture.5. CropsHuman planted/plotted cereals, grasses, and crops not at tree height; examples: corn, wheat, soy, fallow plots of structured land.7. Built AreaHuman made structures; major road and rail networks; large homogenous impervious surfaces including parking structures, office buildings and residential housing; examples: houses, dense villages / towns / cities, paved roads, asphalt.8. Bare groundAreas of rock or soil with very sparse to no vegetation for the entire year; large areas of sand and deserts with no to little vegetation; examples: exposed rock or soil, desert and sand dunes, dry salt flats/pans, dried lake beds, mines.9. Snow/IceLarge homogenous areas of permanent snow or ice, typically only in mountain areas or highest latitudes; examples: glaciers, permanent snowpack, snow fields. 10. CloudsNo land cover information due to persistent cloud cover.11. Rangeland Open areas covered in homogenous grasses with little to no taller vegetation; wild cereals and grasses with no obvious human plotting (i.e., not a plotted field); examples: natural meadows and fields with sparse to no tree cover, open savanna with few to no trees, parks/golf courses/lawns, pastures. Mix of small clusters of plants or single plants dispersed on a landscape that shows exposed soil or rock; scrub-filled clearings within dense forests that are clearly not taller than trees; examples: moderate to sparse cover of bushes, shrubs and tufts of grass, savannas with very sparse grasses, trees or other plants.CitationKarra, Kontgis, et al. “Global land use/land cover with Sentinel-2 and deep learning.” IGARSS 2021-2021 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2021.AcknowledgementsTraining data for this project makes use of the National Geographic Society Dynamic World training dataset, produced for the Dynamic World Project by National Geographic Society in partnership with Google and the World Resources Institute.For questions please email environment@esri.com

  13. Data from: Sentinel2GlobalLULC: A dataset of Sentinel-2 georeferenced RGB...

    • zenodo.org
    • observatorio-cientifico.ua.es
    • +1more
    text/x-python, zip
    Updated Apr 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yassir Benhammou; Yassir Benhammou; Domingo Alcaraz-Segura; Domingo Alcaraz-Segura; Emilio Guirado; Emilio Guirado; Rohaifa Khaldi; Rohaifa Khaldi; Siham Tabik; Siham Tabik (2025). Sentinel2GlobalLULC: A dataset of Sentinel-2 georeferenced RGB imagery annotated for global land use/land cover mapping with deep learning (License CC BY 4.0) [Dataset]. http://doi.org/10.5281/zenodo.6941662
    Explore at:
    zip, text/x-pythonAvailable download formats
    Dataset updated
    Apr 24, 2025
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Yassir Benhammou; Yassir Benhammou; Domingo Alcaraz-Segura; Domingo Alcaraz-Segura; Emilio Guirado; Emilio Guirado; Rohaifa Khaldi; Rohaifa Khaldi; Siham Tabik; Siham Tabik
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Sentinel2GlobalLULC is a deep learning-ready dataset of RGB images from the Sentinel-2 satellites designed for global land use and land cover (LULC) mapping. Sentinel2GlobalLULC v2.1 contains 194,877 images in GeoTiff and JPEG format corresponding to 29 broad LULC classes. Each image has 224 x 224 pixels at 10 m spatial resolution and was produced by assigning the 25th percentile of all available observations in the Sentinel-2 collection between June 2015 and October 2020 in order to remove atmospheric effects (i.e., clouds, aerosols, shadows, snow, etc.). A spatial purity value was assigned to each image based on the consensus across 15 different global LULC products available in Google Earth Engine (GEE).

    Our dataset is structured into 3 main zip-compressed folders, an Excel file with a dictionary for class names and descriptive statistics per LULC class, and a python script to convert RGB GeoTiff images into JPEG format. The first folder called "Sentinel2LULC_GeoTiff.zip" contains 29 zip-compressed subfolders where each one corresponds to a specific LULC class with hundreds to thousands of GeoTiff Sentinel-2 RGB images. The second folder called "Sentinel2LULC_JPEG.zip" contains 29 zip-compressed subfolders with a JPEG formatted version of the same images provided in the first main folder. The third folder called "Sentinel2LULC_CSV.zip" includes 29 zip-compressed CSV files with as many rows as provided images and with 12 columns containing the following metadata (this same metadata is provided in the image filenames):

    • Land Cover Class ID: is the identification number of each LULC class
    • Land Cover Class Short Name: is the short name of each LULC class
    • Image ID: is the identification number of each image within its corresponding LULC class
    • Pixel purity Value: is the spatial purity of each pixel for its corresponding LULC class calculated as the spatial consensus across up to 15 land-cover products
    • GHM Value: is the spatial average of the Global Human Modification index (gHM) for each image
    • Latitude: is the latitude of the center point of each image
    • Longitude: is the longitude of the center point of each image
    • Country Code: is the Alpha-2 country code of each image as described in the ISO 3166 international standard. To understand the country codes, we recommend the user to visit the following website where they present the Alpha-2 code for each country as described in the ISO 3166 international standard:https: //www.iban.com/country-codes
    • Administrative Department Level1: is the administrative level 1 name to which each image belongs
    • Administrative Department Level2: is the administrative level 2 name to which each image belongs
    • Locality: is the name of the locality to which each image belongs
    • Number of S2 images : is the number of found instances in the corresponding Sentinel-2 image collection between June 2015 and October 2020, when compositing and exporting its corresponding image tile

    For seven LULC classes, we could not export from GEE all images that fulfilled a spatial purity of 100% since there were millions of them. In this case, we exported a stratified random sample of 14,000 images and provided an additional CSV file with the images actually contained in our dataset. That is, for these seven LULC classes, we provide these 2 CSV files:

    • A CSV file that contains all exported images for this class
    • A CSV file that contains all images available for this class at spatial purity of 100%, both the ones exported and the ones not exported, in case the user wants to export them. These CSV filenames end with "including_non_downloaded_images".

    To clearly state the geographical coverage of images available in this dataset, we included in the version v2.1, a compressed folder called "Geographic_Representativeness.zip". This zip-compressed folder contains a csv file for each LULC class that provides the complete list of countries represented in that class. Each csv file has two columns, the first one gives the country code and the second one gives the number of images provided in that country for that LULC class. In addition to these 29 csv files, we provided another csv file that maps each ISO Alpha-2 country code to its original full country name.

    © Sentinel2GlobalLULC Dataset by Yassir Benhammou, Domingo Alcaraz-Segura, Emilio Guirado, Rohaifa Khaldi, Boujemâa Achchab, Francisco Herrera & Siham Tabik is marked with Attribution 4.0 International (CC-BY 4.0)

  14. t

    European Sentinel-1 Forest Type and Tree Cover Density Maps

    • test.researchdata.tuwien.ac.at
    • researchdata.tuwien.ac.at
    • +1more
    Updated Jan 19, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Alena Dostalova; Senmao Cao; Wolfgang Wagner (2021). European Sentinel-1 Forest Type and Tree Cover Density Maps [Dataset]. http://doi.org/10.48436/tkkfs-11b75
    Explore at:
    Dataset updated
    Jan 19, 2021
    Dataset provided by
    datacite
    TU Wien
    Authors
    Alena Dostalova; Senmao Cao; Wolfgang Wagner
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Description

    This dataset was generated by the TU Wien Department of Geodesy and Geoinformation.European Sentinel-1 forest type and tree cover density maps represent first continental-scale forest layers based on Sentinel-1 C-Band Synthetic Aperture Radar (SAR) backscatter data. For the year 2017 they cover the majority of European continent with 10 m and 100 m sampling for forest type and tree cover density, respectively. The maps were derived using the method described in https://www.tandfonline.com/doi/full/10.1080/01431161.2018.1479788.The forest type map shows the dominant forest type class (coniferous, broadleaf). Tree cover density map shows the percentage of forest canopy cover within the 100 m pixel.Please be referred to our peer-reviewed article at https://doi.org/10.3390/rs13030337 for details and accuracy assessment accross Europe.Dataset RecordThe forest type and tree cover density maps are sampled at 10 m and 100 m pixel spacing respectively, georeferenced to the Equi7Grid and divided into square tiles of 100km extent ("T1"-tiles). With this setup, the forest maps consist of 728 tiles over the European continent, with data volumes of 3.12 GB and 378.3 MB.The tiles' file-format is a LZW-compressed GeoTIFF holding 16-bit integer values, with tagged metadata on encoding and georeference. Compatibility with common geographic information systems as QGIS or ArcGIS, and geodata libraries as GDAL is given.In this repository, we provide each forest map as tiles, whereas two zipped dataset-collections are available for download below.Code AvailabilityFor the usage of the Equi7Grid we provide data and tools via the python package available on GitHub at https://github.com/TUW-GEO/Equi7Grid. More details on the grid reference can be found in https://www.sciencedirect.com/science/article/pii/S0098300414001629.AcknowledgementsThe computational results presented have been achieved using the Vienna Scientific Cluster (VSC).

  15. a

    Digital Earth Africa's Sentinel-2 Annual GeoMAD

    • deafrica.africageoportal.com
    • africageoportal.com
    • +3more
    Updated Sep 23, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Africa GeoPortal (2021). Digital Earth Africa's Sentinel-2 Annual GeoMAD [Dataset]. https://deafrica.africageoportal.com/datasets/africageoportal::digital-earth-africas-sentinel-2-annual-geomad/about
    Explore at:
    Dataset updated
    Sep 23, 2021
    Dataset authored and provided by
    Africa GeoPortal
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    GeoMAD is the Digital Earth Africa (DE Africa) surface reflectance geomedian and triple Median Absolute Deviation data service. It is a cloud-free composite of satellite data compiled over specific timeframes. This service is ideal for longer-term time series analysis, cloudless imagery and statistical accuracy.

    GeoMAD has two main components: Geomedian and Median Absolute Deviations (MADs)

    The geomedian component combines measurements collected over the specified timeframe to produce one representative, multispectral measurement for every pixel unit of the African continent. The end result is a comprehensive dataset that can be used to generate true-colour images for visual inspection of anthropogenic or natural landmarks. The full spectral dataset can be used to develop more complex algorithms.

    For each pixel, invalid data is discarded, and remaining observations are mathematically summarised using the geomedian statistic. Flyover coverage provided by collecting data over a period of time also helps scope intermittently cloudy areas.

    Variations between the geomedian and the individual measurements are captured by the three Median Absolute Deviation (MAD) layers. These are higher-order statistical measurements calculating variation relative to the geomedian. The MAD layers can be used on their own or together with geomedian to gain insights about the land surface and understand change over time.Key PropertiesGeographic Coverage: Continental Africa - approximately 37° North to 35° SouthTemporal Coverage: 2017 – 2022*Spatial Resolution: 10 x 10 meterUpdate Frequency: Annual from 2017 - 2022Product Type: Surface Reflectance (SR)Product Level: Analysis Ready (ARD)Number of Bands: 14 BandsParent Dataset: Sentinel-2 Level-2A Surface ReflectanceSource Data Coordinate System: WGS 84 / NSIDC EASE-Grid 2.0 Global (EPSG:6933)Service Coordinate System: WGS 84 / NSIDC EASE-Grid 2.0 Global (EPSG:6933)*Time is enabled on this service using UTC – Coordinated Universal Time. To assure you are seeing the correct year for each annual slice of data, the time zone must be set specifically to UTC in the Map Viewer settings each time this layer is opened in a new map. More information on this setting can be found here: Set the map time zone.ApplicationsGeoMAD is the Digital Earth Africa (DE Africa) surface reflectance geomedian and triple Median Absolute Deviation data service. It is a cloud-free composite of satellite data compiled over specific timeframes. This service is ideal for:Longer-term time series analysisCloud-free imageryStatistical accuracyAvailable BandsBand IDDescriptionValue rangeData typeNo data valueB02Geomedian B02 (Blue)1 - 10000uint160B03Geomedian B03 (Green)1 - 10000uint160B04Geomedian B04 (Red)1 - 10000uint160B05Geomedian B05 (Red edge 1)1 - 10000uint160B06Geomedian B06 (Red edge 2)1 - 10000uint160B07Geomedian B07 (Red edge 3)1 - 10000uint160B08Geomedian B08 (Near infrared (NIR) 1)1 - 10000uint160B8AGeomedian B8A (NIR 2)1 - 10000uint160B11Geomedian B11 (Short-wave infrared (SWIR) 1)1 - 10000uint160B12Geomedian B12 (SWIR 2)1 - 10000uint160SMADSpectral Median Absolute Deviation0 - 1float32NaNEMADEuclidean Median Absolute Deviation0 - 31623float32NaNBCMADBray-Curtis Median Absolute Deviation0 - 1float32NaNCOUNTNumber of clear observations1 - 65535uint160Bands can be subdivided as follows:

    Geomedian — 10 bands: The geomedian is calculated using the spectral bands of data collected during the specified time period. Surface reflectance values have been scaled between 1 and 10000 to allow for more efficient data storage as unsigned 16-bit integers (uint16). Note parent datasets often contain more bands, some of which are not used in GeoMAD. The geomedian band IDs correspond to bands in the parent Sentinel-2 Level-2A data. For example, the Annual GeoMAD band B02 contains the annual geomedian of the Sentinel-2 B02 band. Median Absolute Deviations (MADs) — 3 bands: Deviations from the geomedian are quantified through median absolute deviation calculations. The GeoMAD service utilises three MADs, each stored in a separate band: Euclidean MAD (EMAD), spectral MAD (SMAD), and Bray-Curtis MAD (BCMAD). Each MAD is calculated using the same ten bands as in the geomedian. SMAD and BCMAD are normalised ratios, therefore they are unitless and their values always fall between 0 and 1. EMAD is a function of surface reflectance but is neither a ratio nor normalised, therefore its valid value range depends on the number of bands used in the geomedian calculation.Count — 1 band: The number of clear satellite measurements of a pixel for that calendar year. This is around 60 annually, but doubles at areas of overlap between scenes. “Count” is not incorporated in either the geomedian or MADs calculations. It is intended for metadata analysis and data validation.ProcessingAll clear observations for the given time period are collated from the parent dataset. Cloudy pixels are identified and excluded. The geomedian and MADs calculations are then performed by the hdstats package. Annual GeoMAD datasets for the period use hdstats version 0.2.More details on this dataset can be found here.

  16. Sentinel-2 UTM Tiling Grid (ESA)

    • catalogue.eatlas.org.au
    • researchdata.edu.au
    Updated Feb 1, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Australian Institute of Marine Science (AIMS) (2016). Sentinel-2 UTM Tiling Grid (ESA) [Dataset]. https://catalogue.eatlas.org.au/geonetwork/srv/api/records/f7468d15-12be-4e3f-a246-b2882a324f59
    Explore at:
    www:link-1.0-http--related, www:link-1.0-http--downloaddata, ogc:wms-1.1.1-http-get-mapAvailable download formats
    Dataset updated
    Feb 1, 2016
    Dataset provided by
    Australian Institute Of Marine Sciencehttp://www.aims.gov.au/
    Area covered
    Description

    This dataset shows the tiling grid and their IDs for Sentinel 2 satellite imagery. The tiling grid IDs are useful for selecting imagery of an area of interest.

    Sentinel 2 is an Earth observation satellite developed and operated by the European Space Agency (ESA). Its imagery has 13 bands in the visible, near infrared and short wave infrared part of the spectrum. It has a spatial resolution of 10 m, 20 m and 60 m depending on the spectral band.

    Sentinel-2 has a 290 km field of view when capturing its imagery. This imagery is then projected on to a UTM grid and made available publicly on 100x100 km2 tiles. Each tile has a unique ID. This ID scheme allows all imagery for a given tile to be located.

    Provenance:

    The ESA make the tiling grid available as a KML file (see links). We were, however, unable to convert this KML into a shapefile for deployment on the eAtlas. The shapefile used for this layer was sourced from the Git repository developed by Justin Meyers (https://github.com/justinelliotmeyers/Sentinel-2-Shapefile-Index).

    Why is this dataset in the eAtlas?:

    Sentinel 2 imagery is very useful for the studying and mapping of reef systems. Selecting imagery for study often requires knowing what the tile grid IDs are for the area of interest. This dataset is intended as a reference layer. The eAtlas is not a custodian of this dataset and copies of the data should be obtained from the original sources.

    Data Dictionary:

    • Name: UTM code associated with each tile. For example 55KDV
  17. High-Resolution Snow Freeboard Maps from Operation IceBridge (OIB) ATM...

    • zenodo.org
    bin, zip
    Updated Feb 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Siqi Liu; Wenkai Guo; Shiming Xu; Shiming Xu; Siqi Liu; Wenkai Guo (2025). High-Resolution Snow Freeboard Maps from Operation IceBridge (OIB) ATM Measurements and Sea Ice Type Products based on Sentinel-1 data [Dataset]. http://doi.org/10.5281/zenodo.14930672
    Explore at:
    zip, binAvailable download formats
    Dataset updated
    Feb 27, 2025
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Siqi Liu; Wenkai Guo; Shiming Xu; Shiming Xu; Siqi Liu; Wenkai Guo
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This record contains two datasets: 1 m resolution snow freeboard (Fs) maps and ice type products based on Sentinel-1 data, related to article "On the Statistical Relationship between Sea Ice Freeboard and C-Band Microwave Backscatter -- A Study with Sentinel-1 and Operation IceBridge".

    1. The first dataset contains processed Fs measurements derived from NASA's Airborne Topographic Mapper (ATM) observations during four April 2019 Arctic campaigns of Operation IceBridge (OIB), with particular focus on the April 8 and 12 flights which were organized into racetracks. This dataset related to article "On the Statistical Relationship between Sea Ice Topography and C-Band Microwave Backscatter – A Study with Sentinel-1 and Operation IceBridge." Specifically, two steps are carried out, as follows.

    (1) Construction of the per-pass 1m-scale Fs map

    As the first step, for each OIB pass, we converted OIB ATM samples into the Fs map. Both wide scan and the narrow scan of the OIB ATM are utilized. We first project each ATM sample under the polar stereographic projection according to its geolocation (i.e., its latitude and longitude). Then, we interpolate the samples into a 1m-scale elevation map, using linear interpolation. Afterwards, we apply corrections to the elevation, including the mean sea-surface height (DTU15 MSS model) and the atmospheric and tidal effects. Finally, we treat the corrected elevation as elevation anomalies, and apply the lowest elevation method to retrieve the freeboard. Specifically, the lowest 1‰ of elevation samples within each 10km segment are extracted and interpolated to construct the local water level (also at 1m-scale) using the Inverse Distance Weighting (IDW) method. The final 1m-scale Fs map is further validated with the standard 40m-scale Fs product from IDCSI.

    (2) Collocation between OIB passes and the construction of the merged Fs field

    We further merge the three OIB passes to form the Fs map that covers over 1.4km across the flight path. Since the central pass and the left pass were separated by 1∼2 hours, and the central pass and the right pass by 3∼4 hours, the sea ice cover potentially had undergone drift and deformation. Therefore, we first search for corrections between each of the two pairs of OIB passes. For each 3km segment, we maximize the correlation of the overlapping part of the Fs maps of the central and the left (or the right) pass, by adjusting the relative location of the left (or the right) pass with respect to the central pass. After the maximum correlation is attained, we record the corrections in both the along-track and the cross-track directions, and further merge the left and the right pass to the central pass, in order to form a unified Fs map.

    For detailed data descriptions, please refer to the manual document.

    2. The second dataset is about the sea ice classification based on S1 EW images.

    The sea ice classification algorithm used in this study is based on: Lohse et al. (2020, 2021); Guo et al. (2023). Lohse et al.(2020) developed a supervised algorithm that accounts for the class-dependent IA effects, known as the GIA classifier. While this classifier performs well in addressing IA sensitivity, some misclassifications and ambiguities remain. To address these issues, Lohse et al. (2021) and Guo et al. (2023) enhanced the algorithm by incorporating GLCM texture features, resulting in improved separation between classes. This study uses this classification approach to produce sea ice type maps on the selected S1 scenes. The cross-polarization channel (HV) of the selected S1 scenes are de-noised using an adapted version of the Kalman-filter-based noise removal algorithm developed by Iqbal et al. (2012).

    Lohse, J., Doulgeris, A. P., and Dierking, W.: Mapping sea-ice types from Sentinel-1 considering the surface-type dependent effect of incidence angle, Annals of Glaciology, 61, 260–270, https://doi.org/10.1017/aog.2020.45, 2020.

    Lohse, J., Doulgeris, A. P., and Dierking, W.: Incident Angle Dependence of Sentinel-1 Texture Features for Sea Ice Classification, RemoteSensing, 13, https://doi.org/10.3390/rs13040552, 2021.

    Guo, W., Itkin, P., Singha, S., Doulgeris, A. P., Johansson, M., and Spreen, G.: Sea ice classification of TerraSAR-X ScanSAR images for the MOSAiC expedition incorporating per-class incidence angle dependency of image texture, The Cryosphere, 17, 1279–1297, https://doi.org/10.5194/tc-17-1279-2023, 2023.

    Iqbal, M., Chen, J., Yang, W., Wang, P., and Sun, B.: Kalman filter for removal of scalloping and inter-scan banding in scansar images, Prog. Electromagn. Res., 132, pp. 443–461, 2012.

  18. C

    Landcover classification map of Germany 2020 based on Sentinel-2 data

    • ckan.mobidatalab.eu
    • data.opendatascience.eu
    • +2more
    html, tiff
    Updated Jun 17, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    mundialis GmbH & Co. KG (2023). Landcover classification map of Germany 2020 based on Sentinel-2 data [Dataset]. https://ckan.mobidatalab.eu/dataset/landcover-classification-map-of-germany-2020-based-on-sentinel-2-data
    Explore at:
    tiff, htmlAvailable download formats
    Dataset updated
    Jun 17, 2023
    Dataset provided by
    mundialis GmbH & Co. KG
    License

    Data licence Germany – Attribution – Version 2.0https://www.govdata.de/dl-de/by-2-0
    License information was derived automatically

    Time period covered
    Jan 1, 2020 - Dec 31, 2020
    Area covered
    Germany
    Description

    This landcover map was produced with a classification method developed in the project incora (Inwertsetzung von Copernicus-Daten für die Raumbeobachtung, mFUND Förderkennzeichen: 19F2079C) in cooperation with ILS (Institut für Landes- und Stadtentwicklungsforschung gGmbH) and BBSR (Bundesinstitut für Bau-, Stadt- und Raumforschung) funded by BMVI (Federal Ministry of Transport and Digital Infrastructure). The goal of incora is an analysis of settlement and infrastructure dynamics in Germany based on Copernicus Sentinel data. This classification is based on a time-series of monthly averaged, atmospherically corrected Sentinel-2 tiles (MAJA L3A-WASP: https://geoservice.dlr.de/web/maps/sentinel2:l3a:wasp; DLR (2019): Sentinel-2 MSI - Level 2A (MAJA-Tiles)- Germany). It consists of the following landcover classes: 10: forest 20: low vegetation 30: water 40: built-up 50: bare soil 60: agriculture Potential training and validation areas were automatically extracted using spectral indices and their temporal variability from the Sentinel-2 data itself as well as the following auxiliary datasets: - OpenStreetMap (Map data copyrighted OpenStreetMap contributors and available from htttps://www.openstreetmap.org) - Copernicus HRL Imperviousness Status Map 2018 (© European Union, Copernicus Land Monitoring Service 2018, European Environment Agency (EEA)) - S2GLC Land Cover Map of Europe 2017 (Malinowski et al. 2020: Automated Production of Land Cover/Use Map of Europe Based on Sentinel-2 Imagery. Remote Sens. 2020, 12(21), 3523; https://doi.org/10.3390/rs12213523) - Germany NUTS administrative areas 1:250000 (© GeoBasis-DE / BKG 2020 / dl-de/by-2-0 / https://gdz.bkg.bund.de/index.php/default/nuts-gebiete-1-250-000-stand-31-12-nuts250-31-12.html) - Contains modified Copernicus Sentinel data (2020), processed by mundialis Processing was performed for blocks of federal states and individual maps were mosaicked afterwards. For each class 100,000 pixels from the potential training areas were extracted as training data. An exemplary validation of the classification results was perfomed for the federal state of North Rhine-Westphalia as its open data policy allows for direct access to official data to be used as reference. Rules to convert relevant ATKIS Basis-DLM object classes to the incora nomenclature were defined. Subsequently, 5.000 reference points were randomly sampled and their classification in each case visually examined and, if necessary, revised to obtain a robust reference data set. The comparison of this reference data set with the incora classification yielded the following results: overall accuracy: 88.4% class: user's accuracy / producer's accuracy (number of reference points n) forest: 95.0% / 93.8% (1410) low vegetation: 73.4% / 86.5% (844) water: 98.5% / 92.8% (69) built-up: 98.9% / 95.8% (983) bare soil: 23.9% / 82.9% (41) agriculture: 94.6% / 83.2% (1653) Incora report with details on methods and results: pending

  19. G

    Satellite images - Sentinel-2 mosaics

    • ouvert.canada.ca
    • catalogue.arctic-sdi.org
    • +2more
    geotif, html
    Updated May 1, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government and Municipalities of Québec (2025). Satellite images - Sentinel-2 mosaics [Dataset]. https://ouvert.canada.ca/data/dataset/4bcc8076-f7f3-4798-9e61-be50b6f7f2b2
    Explore at:
    geotif, htmlAvailable download formats
    Dataset updated
    May 1, 2025
    Dataset provided by
    Government and Municipalities of Québec
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Time period covered
    Jan 1, 2018 - Jan 1, 2020
    Description

    These three satellite mosaics cover the entire territory of Quebec and include images taken in 2018, 2019 and 2020. The spectral bands are blue (band 2), near infrared (band 8), and short wave infrared (band 11). The Copernicus Sentinel-2 mission includes a constellation of two satellites in orbit that are in tandem and 180° apart from each other. The orbital configuration allows coverage with a revisit rate varying from two to ten days depending on the latitude. The Sentinel-2 constellation captures multispectral satellite images at a resolution of 10 m for the next generation of operational products, such as land use maps, land change detection maps, and geophysical variables. Technical characteristics of the product: https://sentinel.esa.int/web/sentinel/missions/sentinel-2**This third party metadata element was translated using an automated translation tool (Amazon Translate).**

  20. Z

    Data from: Agricultural land use (vector) : National-scale crop type maps...

    • data.niaid.nih.gov
    • openagrar.de
    • +1more
    Updated Mar 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Blickensdörfer, Lukas (2025). Agricultural land use (vector) : National-scale crop type maps for Germany from combined time series of Sentinel-1, Sentinel-2 and Landsat data (2017 to 2021) [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_10619782
    Explore at:
    Dataset updated
    Mar 21, 2025
    Dataset provided by
    Gocht, Alexander
    Schwieder, Marcel
    Tetteh, Gideon Okpoti
    Erasmi, Stefan
    Blickensdörfer, Lukas
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Germany
    Description

    The dataset contains maps of the main classes of agricultural land use (dominant crop types and other land use types) in Germany, which have been produced annually at the Thünen Institute beginning with the year 2017 on the basis of satellite data. The maps cover the entire open landscape, i.e., the agriculturally used area (UAA) and e.g., uncultivated areas. The map was derived from time series of Sentinel-1, Sentinel-2, Landsat 8 and additional environmental data. Map production is based on the methods described in Blickensdörfer et al. (2022).

    All optical satellite data were managed, pre-processed and structured in an analysis-ready data (ARD) cube using the open-source software FORCE - Framework for Operational Radiometric Correction for Environmental monitoring (Frantz, D., 2019), in which SAR and environmental data were integrated.

    The map extent covers all areas in Germany that are defined as agricultural land, grassland, small woody features, heathland, peatland or unvegetated areas according to ATKIS Basis-DLM (Geobasisdaten: © GeoBasis-DE / BKG, 2020).

    Version v201:Post-processing of the maps included a sieve filter as well as a ruleset for the reduction of non-plausible areas using the Basis-DLM and the digital terrain model of Germany (Geobasisdaten: © GeoBasis-DE / BKG, 2015). The final post-processing step comprises the aggregation of the gridded data to homogeneous objects (fields) based on the approach that is described in Tetteh et al. (2021) and Tetteh et al. (2023).

    The maps are available in FlatGeobuf format, which makes downloading the full dataset optional. All data can directly be accessed in QGIS, R, Python or any supported software of your choice using the provided URL to the datasets (right click on the respective data set --> “copy link address”). By doing so the entire map area or only the regions of interest can be accessed. QGIS legend files for data visualization can be downloaded separately.

    Class-specific accuracies for each year are proveded in the respective tables. We provide this dataset "as is" without any warranty regarding the accuracy or completeness and exclude all liability.

    Mailing list

    If you do not want to miss the latest updates, please enroll to our mailing list.

    References:Blickensdörfer, L., Schwieder, M., Pflugmacher, D., Nendel, C., Erasmi, S., & Hostert, P. (2022). Mapping of crop types and crop sequences with combined time series of Sentinel-1, Sentinel-2 and Landsat 8 data for Germany. Remote Sensing of Environment, 269, 112831.

    BKG, Bundesamt für Kartographie und Geodäsie (2015). Digitales Geländemodell Gitterweite 10 m. DGM10. https://sg.geodatenzentrum.de/web_public/gdz/dokumentation/deu/dgm10.pdf (last accessed: 28. April 2022).

    BKG, Bundesamt für Kartographie und Geodäsie (2020). Digitales Basis-Landschaftsmodell. https://sg.geodatenzentrum.de/web_public/gdz/dokumentation/deu/basis-dlm.pdf (last accessed: 28. April 2022).

    Frantz, D. (2019). FORCE—Landsat + Sentinel-2 Analysis Ready Data and Beyond. Remote Sensing, 11, 1124.

    Tetteh, G.O., Gocht, A., Erasmi, S., Schwieder, M., & Conrad, C. (2021). Evaluation of Sentinel-1 and Sentinel-2 Feature Sets for Delineating Agricultural Fields in Heterogeneous Landscapes. IEEE Access, 9, 116702-116719.

    Tetteh, G.O., Schwieder, M., Erasmi, S., Conrad, C., & Gocht, A. (2023). Comparison of an Optimised Multiresolution Segmentation Approach with Deep Neural Networks for Delineating Agricultural Fields from Sentinel-2 Images. PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation Science

    National-scale crop type maps for Germany from combined time series of Sentinel-1, Sentinel-2 and Landsat data (2017 to 2021) © 2024 by Schwieder, Marcel; Tetteh, Gideon Okpoti; Blickensdörfer, Lukas; Gocht, Alexander; Erasmi, Stefan; licensed under CC BY 4.0.

    Funding was provided by the German Federal Ministry of Food and Agriculture as part of the joint project “Monitoring der biologischen Vielfalt in Agrarlandschaften” (MonViA, Monitoring of biodiversity in agricultural landscapes).

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Commonwealth of Australia (Geoscience Australia) (2021). Barest Earth Sentinel 2 Map Index [Dataset]. https://ecat.ga.gov.au/geonetwork/srv/api/records/3aac2af4-ed0b-420a-ac19-3fd748ac6629
Organization logo

Barest Earth Sentinel 2 Map Index

Explore at:
esri:map-service, ogc:wms, www:link-1.0-http--linkAvailable download formats
Dataset updated
Dec 3, 2021
Dataset provided by
Geoscience Australiahttp://ga.gov.au/
Time period covered
Nov 1, 2021
Area covered
Description

The Barest Earth Sentinel-2 Map Index dataset depicts the 1 to 250 000 maps sheet tile frames that have been used to generate individual tile downloads of the Barest Earth Sentinel-2 product. This web service is designed to be used in conjunction with the Barest Earth Sentinel-2 web service to provide users with direct links for imagery download.

Search
Clear search
Close search
Google apps
Main menu