The Sentinel-2 mission is a land monitoring constellation of two satellites that provide high resolution optical imagery and provide continuity for the current SPOT and Landsat missions. The mission provides a global coverage of the Earth's land surface every 5 days, making the data of great use in on-going studies. L1C data are available from June 2015 globally. L2A data are available from November 2016 over Europe region and globally since January 2017.
Sentinel-1 is a pair of European radar imaging (SAR) satellites launched in 2014 and 2016. Its 6 days revisit cycle and ability to observe through clouds makes it perfect for sea and land monitoring, emergency response due to environmental disasters, and economic applications. This dataset represents the global Sentinel-1 GRD archive, from beginning to the present, converted to cloud-optimized GeoTIFF format.
High-frequency observations of surface water at fine spatial scales are critical to effectively manage aquatic habitat, flood risk and water quality. We developed inundation algorithms for Sentinel-1 and Sentinel-2 across 12 sites within the conterminous United States (CONUS) covering >536,000 km2 and representing diverse hydrologic and vegetation landscapes. These algorithms were trained on data from 13,412 points spread throughout the 12 sites. Each scene in the 5-year (2017-2021) time series was classified into open water, vegetated water, and non-water at 20 m resolution using variables not only from Sentinel-1 and Sentinel-2, but also variables derived from topographic and weather datasets. The Sentinel-1 model was developed distinct from the Sentinel-2 model to enable the two time series to be integrated into a single high-frequency time series, while open water and vegetated water were both mapped to retain mixed pixel inundation. Results were validated against 7,200 visually inspected points derived from WorldView and PlanetScope imagery. Classification accuracy for open water was high across the 5-year period, with an omission and commission error of only 3.1% and 0.9% for Sentinel-1 and 3.1% and 0.5% for Sentinel-2, respectively. Vegetated water accuracy was lower, as expected given that the class represents mixed pixels. Sentinel-2 showed higher accuracy (10.7% omission and 7.9% commission error) relative to Sentinel-1 (28.4% omission and 16.0% commission error). Our results demonstrated that Sentinel-1 and Sentinel-2 time series can be integrated to improve the temporal resolution when mapping open and vegetated waters, although sensor-specific differences, such as sensitivity to vegetation structure versus pixel color, complicate the data integration for subpixel, vegetated water compared with open water.
This database was generated by AGENIUM Space in the framework of the CORTEX project (https://esacortexproject.agenium-space.com/) funded by ESA.
The database was created using Sentinel-2 images distributed through the Copernicus open access hub (https://www.copernicus.eu/en, https://scihub.copernicus.eu/) and AIS (Automatic Identification System) data. Sentinel-2 images are all L1C products acquired in Danish sovereign waters in 2019. Danish government made available the AIS (Automatic Identification System) data around Denmark from 2009 until now ( https://www.dma.dk/SikkerhedTilSoes/Sejladsinformation/AIS/Sider/default.aspx ). More specifically, 14 tiles were selected, each of them with a cloud coverage below 10% according to the cloud mask products.
Three DBs are provided. Their description is given in S2-Ships-DB-description.pdf document attached to the DB.
This work is funded by a contract in the framework of the EO SCIENCE FOR SOCIETY PERMANENTLY OPEN CALL FOR PROPOSALS EOEP-5 BLOCK 4 issued by the European Space Agency.
The Sentinel-2 mission is a land monitoring constellation of two satellites that provide high resolution optical imagery and provide continuity for the current SPOT and Landsat missions. The mission provides a global coverage of the Earth's land surface every 5 days, making the data of great use in ongoing studies. This dataset is the same as the Sentinel-2 dataset, except the JP2K files were converted into Cloud-Optimized GeoTIFFs (COGs). Additionally, SpatioTemporal Asset Catalog metadata has were in a JSON file alongside the data, and a STAC API called Earth-search is freely available to search the archive. This dataset contains all of the scenes in the original Sentinel-2 Public Dataset and will grow as that does. L2A data are available from April 2017 over wider Europe region and globally since December 2018.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This layer displays a global map of land use/land cover (LULC) derived from ESA Sentinel-2 imagery at 10m resolution. Each year is generated with Impact Observatory’s deep learning AI land classification model, trained using billions of human-labeled image pixels from the National Geographic Society. The global maps are produced by applying this model to the Sentinel-2 Level-2A image collection on Microsoft’s Planetary Computer, processing over 400,000 Earth observations per year.The algorithm generates LULC predictions for nine classes, described in detail below. The year 2017 has a land cover class assigned for every pixel, but its class is based upon fewer images than the other years. The years 2018-2024 are based upon a more complete set of imagery. For this reason, the year 2017 may have less accurate land cover class assignments than the years 2018-2024. Key Properties Variable mapped: Land use/land cover in 2017, 2018, 2019, 2020, 2021, 2022, 2023, 2024Source Data Coordinate System: Universal Transverse Mercator (UTM) WGS84Service Coordinate System: Web Mercator Auxiliary Sphere WGS84 (EPSG:3857)Extent: GlobalSource imagery: Sentinel-2 L2ACell Size: 10-metersType: ThematicAttribution: Esri, Impact ObservatoryAnalysis: Optimized for analysisClass Definitions: ValueNameDescription1WaterAreas where water was predominantly present throughout the year; may not cover areas with sporadic or ephemeral water; contains little to no sparse vegetation, no rock outcrop nor built up features like docks; examples: rivers, ponds, lakes, oceans, flooded salt plains.2TreesAny significant clustering of tall (~15 feet or higher) dense vegetation, typically with a closed or dense canopy; examples: wooded vegetation, clusters of dense tall vegetation within savannas, plantations, swamp or mangroves (dense/tall vegetation with ephemeral water or canopy too thick to detect water underneath).4Flooded vegetationAreas of any type of vegetation with obvious intermixing of water throughout a majority of the year; seasonally flooded area that is a mix of grass/shrub/trees/bare ground; examples: flooded mangroves, emergent vegetation, rice paddies and other heavily irrigated and inundated agriculture.5CropsHuman planted/plotted cereals, grasses, and crops not at tree height; examples: corn, wheat, soy, fallow plots of structured land.7Built AreaHuman made structures; major road and rail networks; large homogenous impervious surfaces including parking structures, office buildings and residential housing; examples: houses, dense villages / towns / cities, paved roads, asphalt.8Bare groundAreas of rock or soil with very sparse to no vegetation for the entire year; large areas of sand and deserts with no to little vegetation; examples: exposed rock or soil, desert and sand dunes, dry salt flats/pans, dried lake beds, mines.9Snow/IceLarge homogenous areas of permanent snow or ice, typically only in mountain areas or highest latitudes; examples: glaciers, permanent snowpack, snow fields.10CloudsNo land cover information due to persistent cloud cover.11RangelandOpen areas covered in homogenous grasses with little to no taller vegetation; wild cereals and grasses with no obvious human plotting (i.e., not a plotted field); examples: natural meadows and fields with sparse to no tree cover, open savanna with few to no trees, parks/golf courses/lawns, pastures. Mix of small clusters of plants or single plants dispersed on a landscape that shows exposed soil or rock; scrub-filled clearings within dense forests that are clearly not taller than trees; examples: moderate to sparse cover of bushes, shrubs and tufts of grass, savannas with very sparse grasses, trees or other plants.NOTE: Land use focus does not provide the spatial detail of a land cover map. As such, for the built area classification, yards, parks, and groves will appear as built area rather than trees or rangeland classes.Usage Information and Best PracticesProcessing TemplatesThis layer includes a number of preconfigured processing templates (raster function templates) to provide on-the-fly data rendering and class isolation for visualization and analysis. Each processing template includes labels and descriptions to characterize the intended usage. This may include for visualization, for analysis, or for both visualization and analysis. VisualizationThe default rendering on this layer displays all classes.There are a number of on-the-fly renderings/processing templates designed specifically for data visualization.By default, the most recent year is displayed. To discover and isolate specific years for visualization in Map Viewer, try using the Image Collection Explorer. AnalysisIn order to leverage the optimization for analysis, the capability must be enabled by your ArcGIS organization administrator. More information on enabling this feature can be found in the ‘Regional data hosting’ section of this help doc.Optimized for analysis means this layer does not have size constraints for analysis and it is recommended for multisource analysis with other layers optimized for analysis. See this group for a complete list of imagery layers optimized for analysis.Prior to running analysis, users should always provide some form of data selection with either a layer filter (e.g. for a specific date range, cloud cover percent, mission, etc.) or by selecting specific images. To discover and isolate specific images for analysis in Map Viewer, try using the Image Collection Explorer.Zonal Statistics is a common tool used for understanding the composition of a specified area by reporting the total estimates for each of the classes. GeneralIf you are new to Sentinel-2 LULC, the Sentinel-2 Land Cover Explorer provides a good introductory user experience for working with this imagery layer. For more information, see this Quick Start Guide.Global land use/land cover maps provide information on conservation planning, food security, and hydrologic modeling, among other things. This dataset can be used to visualize land use/land cover anywhere on Earth. Classification ProcessThese maps include Version 003 of the global Sentinel-2 land use/land cover data product. It is produced by a deep learning model trained using over five billion hand-labeled Sentinel-2 pixels, sampled from over 20,000 sites distributed across all major biomes of the world.The underlying deep learning model uses 6-bands of Sentinel-2 L2A surface reflectance data: visible blue, green, red, near infrared, and two shortwave infrared bands. To create the final map, the model is run on multiple dates of imagery throughout the year, and the outputs are composited into a final representative map for each year.The input Sentinel-2 L2A data was accessed via Microsoft’s Planetary Computer and scaled using Microsoft Azure Batch. CitationKarra, Kontgis, et al. “Global land use/land cover with Sentinel-2 and deep learning.” IGARSS 2021-2021 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2021.AcknowledgementsTraining data for this project makes use of the National Geographic Society Dynamic World training dataset, produced for the Dynamic World Project by National Geographic Society in partnership with Google and the World Resources Institute.
1 Description
SEN2VENµS is an open dataset for the super-resolution of Sentinel-2 images by leveraging simultaneous acquisitions with the VENµS satellite. The dataset is composed of 10m and 20m cloud-free surface reflectance patches from Sentinel-2, with their reference spatially-registered surface reflectance patches at 5 meters resolution acquired on the same day by the VENµS satellite. This dataset covers 29 locations with a total of 132 955 patches of 256x256 pixels at 5 meters resolution, and can be used for the training of super-resolution algorithms to bring spatial resolution of 8 of the Sentinel-2 bands down to 5 meters.
Changelog with respect to version 1.0.0 (https://zenodo.org/records/6514159)
All patches are now stored in indivual geoTiFF files with proper geo-referencing, regrouped in zip files per site and per category,
The dataset now includes 20 meter resolution SWIR bands B11 and B12 from Sentinel-2 (L2A from Theia). Note that there is no HR reference for those bands, since the VENµS sensor has no SWIR band.
2 Files organization
The dataset is composed of separate sub-datasets embedded in separate zip files, one for each site, as described in table 1. Note that there might be slight variations in number of patches and number of pairs with respect to version 1.0.0, due do incorrect count of samples in previous version (an empty tensor was still accounted for).
Table 1: Number of patches and pairs for each site, along with VENµS viewing zenith angle
Site Number of patches Number of pairs VENµS Zenith Angle
FR-LQ1 4888 18 1.795402
NARYN 3813 24 5.010906
FGMANAUS 129 4 7.232127
MAD-AMBO 1442 18 14.788115
ARM 15859 39 15.160683
BAMBENW2 9018 34 17.766533
ES-IC3XG 8822 34 18.807686
ANJI 2312 14 19.310494
ATTO 2258 9 22.048651
ESGISB-3 6057 19 23.683871
ESGISB-1 2891 12 24.561609
FR-BIL 7105 30 24.802892
K34-AMAZ 1384 20 24.982675
ESGISB-2 3067 13 26.209776
ALSACE 2653 16 26.877071
LERIDA-1 2281 5 28.524780
ESTUAMAR 911 12 28.871947
SUDOUE-5 2176 20 29.170244
KUDALIAR 7269 20 29.180855
SUDOUE-6 2435 14 29.192055
SUDOUE-4 935 7 29.516127
SUDOUE-3 5363 14 29.998115
SO1 12018 36 30.255978
SUDOUE-2 9700 27 31.295256
ES-LTERA 1701 19 31.971764
FR-LAM 7299 22 32.054056
SO2 738 22 32.218481
BENGA 5857 28 32.587334
JAM2018 2564 18 33.718953
Each site zip file contains a subfolder with the site name. This subfolder contains secondary zip files for each date, following this naming convention as the pair id: {site_name}_{acquisition_date}_{mgrs_tile}. For each date, 5 zip files are available, as shown in table 2.Each zip file contain subfolder {bands}/{resolution}/ in which one GeoTiFF file per patch is stored, with the following naming convention: {site_name}_{idx}_{acquisition_date}_{mgr_tile}_{bands}_{resolution}.tif. Pixel values are encoded as 16 bits signed integers and should be converted back to floating point surface reflectance by dividing each and every value by 10 000 upon reading.
Table 2: Naming convention for zip files associated to each date.
File Content
{id}_05m_b2b3b4b8.zip 5m patches ((256\times256) pix.) for S2 B2, B3, B4 and B8 (from VENµS)
{id}_10m_b2b3b4b8.zip 10m patches ((128\times128) pix.) for S2 B2, B3, B4 and B8 (from Sentinel-2)
{id}_05m_b5b6b7b8a.zip 5m patches ((256\times256) pix.) for S2 B5, B6, B7 and B8A (from VENµS)
{id}_20m_b5b6b7b8a.zip 20m patches ((64\times64) pix.) for S2 B5, B6, B7 and B8A (from Sentinel-2)
{id}_20m_b11b12.zip 20m patches ((64\times64) pix.) for S2 B11 and B12 (from Sentinel-2)
Each file comes with a master index.csv CSV (Comma Separated Values) file, with one row for each pair sampled in the given site. Columns are named after the {bands}_{resolution} pattern, and contains the full path to the corresponding GeoTiFF wihin the corresponding zip file:
{site}_{acquisition_date}_{mgrs_tile}_{bands}_{resolution}.zip/{bands}/{resolution}/{site}_{idx}_{acquisition_date}_{mgrs_tile}_{bands}_{resolution}.tif
3 Licencing
3.1 Sentinel-2 patches
3.1.1 Copyright
Value-added data processed by CNES for the Theia data centre www.theia-land.fr using Copernicus products. The processing uses algorithms developed by Theia's Scientific Expertise Centres. Note: Copernicus Sentinel-2 Level 1C data is subject to this license: https://theia.cnes.fr/atdistrib/documents/TC_Sentinel_Data_31072014.pdf
3.1.2 Licence
Files *_b2b3b4b8_10m.tif, *_b5b6b7b8a_20m.tif and *_b11b12_20m.tif are distributed under the the original licence of the Sentinel-2 Theia L2A products, which is the Etalab Open Licence Version 2.0 2.
3.2 VENµS patches
3.2.1 Copyright
Value-added data processed by CNES for the Theia data centre www.theia-land.fr using VENµS satellite imagery from CNES and Israeli Space Agency. The processing uses algorithms developed by Theia's Scientific Expertise Centres.
3.2.2 Licence
Files *_b2b3b4b8_05m.tif and *_b5b6b7b8a_05m.tif are distributed under the original licence of the VENµS products, which is Creative Commons BY-NC 4.0 3.
3.3 Remaining files
All remaining files are distributed under the Creative Commons BY 4.0 4 licence.
4 Note to users
Note that even if the VenµS2 dataset is sorted by sites and by pairs, we strongly encourage users to apply the full set of machine learning best practices when using it : random keeping separate pairs (or even sites) for testing purpose, and randomization of patches accross sites and pairs in the training and validation sets.
5 Citing
Please cite the following data paper (preprint, submitted to MDPI Data) and zenodo link when publishing work derived from this dataset:
Michel, J.; Vinasco-Salinas, J.; Inglada, J.; Hagolle, O. SEN2VENµS, a Dataset for the Training of Sentinel-2 Super-Resolution Algorithms. Data 2022, 7, 96. https://doi.org/10.3390/data7070096
10.5281/zenodo.14603764
Footnotes:
1
2
https://theia.cnes.fr/atdistrib/documents/Licence-Theia-CNES-Sentinel-ETALAB-v2.0-en.pdf
3
https://creativecommons.org/licenses/by-nc/4.0/
4
Sentinel-2 Level-1C imagery with on-the-fly renderings for visualization. This imagery layer pulls directly from theSentinel-2 on AWScollection and is updated daily with new imagery.Sentinel-2 imagery can be applied across a number of industries, scientific disciplines, and management practices. Some applications include, but are not limited to, land cover and environmental monitoring, climate change, deforestation, disaster and emergency management, national security, plant health and precision agriculture, forest monitoring, watershed analysis and runoff predictions, land-use planning, tracking urban expansion, highlighting burned areas and estimating fire severity. Geographic Coverage GlobalContinental land masses from65.4° South to 72.1° North, with these special guidelines:All coastal waters up to 20 km from the shoreAll islands greater than 100 km2All EU islandsAll closed seas (e.g. Caspian Sea)The Mediterranean Sea Temporal Coverage This layer includes a rolling collection of Sentinel-2 imagery acquired within the past 14 months. This layer is updated daily with new imagery. The revisit time for each point on Earth is every 5 days. The number of images available will vary depending on location. Product Level This service provides Level-1C Top of Atmosphere imagery.Alternatively,Sentinel-2 Level-2A is also available. Image Selection/Filtering The most recent and cloud free images are displayed by default. Any image available within the past 14 months can be displayed via custom filtering. Filtering can be done based on attributes such as Acquisition Date, Estimated Cloud Cover, and Tile ID. Tile_ID is computed as [year][month][day]T[hours][minutes][seconds]_[UTMcode][latitudeband][square]_[sequence].More… Visual Rendering Default rendering is Natural Color (bands 4,3,2) with Dynamic Range Adjustment (DRA). The DRA version of each layer enables visualization of the full dynamic range of the images. Rendering (or display) of band combinations and calculated indices is done on-the-fly from the source images via Raster Functions. Various pre-defined Raster Functions can be selected or custom functions created. Available renderings include: Agriculture with DRA,Bathymetric with DRA,Color-Infrared with DRA,Natural Color with DRA,Short-wave Infrared with DRA,Geology with DRA,NDMI Colorized,Normalized Difference Built-Up Index (NDBI),NDWI Raw,NDWI - with VRE Raw,NDVI – with VRE Raw (NDRE),NDVI - VRE only Raw,NDVI Raw,Normalized Burn Ratio,NDVI Colormap. Multispectral Bands BandDescriptionWavelength (µm)Resolution (m)1Coastal aerosol0.433 - 0.453602Blue0.458 - 0.523103Green0.543 - 0.578104Red0.650 - 0.680105Vegetation Red Edge0.698 - 0.713206Vegetation Red Edge0.733 - 0.748207Vegetation Red Edge0.773 - 0.793208NIR0.785 - 0.900108ANarrow NIR0.855 - 0.875209Water vapour0.935 - 0.9556010SWIR – Cirrus1.365 - 1.3856011SWIR-11.565 - 1.6552012SWIR-22.100 - 2.28020Additional Notes Overviews exist with a spatial resolution of 150m and are updated every quarter based on the best and latest imagery available at that time.To work with source images at all scales, the ‘Lock Raster’ functionality is available. NOTE: ‘Lock Raster’ should only be used on the layer for short periods of time, as the imagery and associated record Object IDs may change daily.This ArcGIS Server dynamic imagery layer can be used in Web Maps and ArcGIS Desktop as well as Web and Mobile applications using the REST based Image services API.Images can be exported up to a maximum of 4,000 columns x 4,000 rows per request.Data SourceSentinel-2 imagery is the result of close collaboration between the (European Space Agency) ESA, the European Commission and USGS. Data is hosted by the Amazon Web Services as part of theirRegistry of Open Data. Users can access the imagery fromSentinel-2 on AWS, or alternatively accessEarthExploreror theCopernicus Data Space Ecosystemto download the scenes.For information on Sentinel-2 imagery, seeSentinel-2.
This web map is a subset of Sentinel-2 Views. Sentinel-2, 10, 20, and 60m Multispectral, Multitemporal, 13-band imagery is rendered on-the-fly and available for visualization and analytics. This imagery layer pulls directly from the Sentinel-2 on AWS collection and is updated daily with new imagery.This imagery layer can be applied across a number of industries, scientific disciplines, and management practices. Some applications include, but are not limited to, land cover and environmental monitoring, climate change, deforestation, disaster and emergency management, national security, plant health and precision agriculture, forest monitoring, watershed analysis and runoff predictions, land-use planning, tracking urban expansion, highlighting burned areas and estimating fire severity.Geographic CoverageGlobalContinental land masses from 65.4° South to 72.1° North, with these special guidelines:All coastal waters up to 20 km from the shoreAll islands greater than 100 km2All EU islandsAll closed seas (e.g. Caspian Sea)The Mediterranean SeaNote: Areas of interest going beyond the Mission baseline (as laid out in the Mission Requirements Document) will be assessed, and may be added to the baseline if sufficient resources are identified.Temporal CoverageThe revisit time for each point on Earth is every 5 days.This layer is updated daily with new imagery.This imagery layer is designed to include imagery collected within the past 14 months. Custom Image Services can be created for access to images older than 14 months.The number of images available will vary depending on location.Image Selection/FilteringThe most recent and cloud free images are displayed by default.Any image available, within the past 14 months, can be displayed via custom filtering.Filtering can be done based on attributes such as Acquisition Date, Estimated Cloud Cover, and Tile ID.Tile_ID is computed as [year][month][day]T[hours][minutes][seconds]_[UTMcode][latitudeband][square]_[sequence]. More…NOTE: Not using filters, and loading the entire archive, may affect performance.Analysis ReadyThis imagery layer is analysis ready with TOA correction applied.Visual RenderingDefault rendering is Natural Color (bands 4,3,2) with Dynamic Range Adjustment (DRA).The DRA version of each layer enables visualization of the full dynamic range of the images.Rendering (or display) of band combinations and calculated indices is done on-the-fly from the source images via Raster Functions.Various pre-defined Raster Functions can be selected or custom functions created.Available renderings include: Agriculture with DRA, Bathymetric with DRA, Color-Infrared with DRA, Natural Color with DRA, Short-wave Infrared with DRA, Geology with DRA, NDMI Colorized, Normalized Difference Built-Up Index (NDBI), NDWI Raw, NDWI - with VRE Raw, NDVI – with VRE Raw (NDRE), NDVI - VRE only Raw, NDVI Raw, Normalized Burn Ratio, NDVI Colormap.Multispectral BandsBandDescriptionWavelength (µm)Resolution (m)1Coastal aerosol0.433 - 0.453602Blue0.458 - 0.523103Green0.543 - 0.578104Red0.650 - 0.680105Vegetation Red Edge0.698 - 0.713206Vegetation Red Edge0.733 - 0.748207Vegetation Red Edge0.773 - 0.793208NIR0.785 - 0.900108ANarrow NIR0.855 - 0.875209Water vapour0.935 - 0.9556010SWIR – Cirrus1.365 - 1.3856011SWIR-11.565 - 1.6552012SWIR-22.100 - 2.28020Additional NotesOverviews exist with a spatial resolution of 150m and are updated every quarter based on the best and latest imagery available at that time.To work with source images at all scales, the ‘Lock Raster’ functionality is available.NOTE: ‘Lock Raster’ should only be used on the layer for short periods of time, as the imagery and associated record Object IDs may change daily.This ArcGIS Server dynamic imagery layer can be used in Web Maps and ArcGIS Desktop as well as Web and Mobile applications using the REST based Image services API.Images can be exported up to a maximum of 4,000 columns x 4,000 rows per request.Data SourceSentinel-2 imagery is the result of close collaboration between the (European Space Agency) ESA, the European Commission and USGS. Data is hosted by the Amazon Web Services as part of their Registry of Open Data. Users can access the imagery from Sentinel-2 on AWS , or alternatively access Sentinel2Look Viewer, EarthExplorer or the Copernicus Open Access Hub to download the scenes.For information on Sentinel-2 imagery, see Sentinel-2.
Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
What this collection is: A curated, binary-classified image dataset of grayscale (1 band) 400 x 400-pixel size, or image chips, in a JPEG format extracted from processed Sentinel-1 Synthetic Aperture Radar (SAR) satellite scenes acquired over various regions of the world, and featuring clear open ocean chips, look-alikes (wind or biogenic features) and oil slick chips.
This binary dataset contains chips labelled as: - "0" for chips not containing any oil features (look-alikes or clean seas) - "1" for those containing oil features.
This binary dataset is imbalanced, and biased towards "0" labelled chips (i.e., no oil features), which correspond to 66% of the dataset. Chips containing oil features, labelled "1", correspond to 34% of the dataset.
Why: This dataset can be used for training, validation and/or testing of machine learning, including deep learning, algorithms for the detection of oil features in SAR imagery. Directly applicable for algorithm development for the European Space Agency Sentinel-1 SAR mission (https://sentinel.esa.int/web/sentinel/missions/sentinel-1 ), it may be suitable for the development of detection algorithms for other SAR satellite sensors.
Overview of this dataset: Total number of chips (both classes) is N=5,630 Class \t 0\t 1 Total\t\t3,725\t1,905
Further information and description is found in the ReadMe file provided (ReadMe_Sentinel1_SAR_OilNoOil_20221215.txt)
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
LSD4WSD V2.0
Learning SAR Dataset for Wet Snow Detection - Full Analysis Version.
The aim of this dataset is to provide a basis for automatic learning to detect wet snow. It is based on Sentinel-1 SAR GRD satellite images acquired between August 2020 and August 2021 over the French Alps. The new version of this dataset is no longer simply restricted to a classification task, and provides a set of metadata for each sample.
Modification and improvements of the version 2.0.0 :
info.pdf
).topography
, metadata
and physics
.physics
: addition of direct information from the CROCUS model for 3 simulations: Liquid Water Content, snow height and minimum snowpack temperature.topography
: information on the slope, altitude and average orientation of the sample.metadata
: information on the date of the sample, the mountain massif and the run (ascending or descending).We leave it up to the user to use the Group Kfold method to validate the models using the alpine massif information.
Finally, it consists of 2467516 samples of size 15 by 15 by 9. For each sample, the 9 metadata are provided, using in particular the Crocus physical model:
The 9 channels are in the following order:
* The reference image selected is that of August 9th 2020, as a reference image without snow (cf. Nagler&al)
An overview of the distribution and a summary of the sample statistics can be found in the file info.pdf.
The data is stored in .hdf5 format with gzip compression. We provide a python script to read and request the data. The script is dataset_load.py. It is based on the h5py, numpy and pandas libraries. It allows to select a part or the whole dataset using requests on the metadata. The script is documented and can be used as described in the README.md file
The processing chain is available at the following Github address.
The authors would like to acknowledge the support from the National Centre for Space Studies (CNES) in providing computing facilities and access to SAR images via the PEPS platform.
The authors would like to deeply thank Mathieu Fructus for running the Crocus simulations.
Erratum :
In the dataloader file, the name of the "aquisition" column must be added twice, see the correction below.:
dtst_ld = Dataset_loader(path_dataset,shuffle=False,descrp=["date","massif","aquisition","aquisition","elevation","slope","orientation","tmin","hsnow","tel",],)
If you have any comments, questions or suggestions, please contact the authors:
The S2 cloud probability is created with the sentinel2-cloud-detector library (using LightGBM). All bands are upsampled using bilinear interpolation to 10m resolution before the gradient boost base algorithm is applied. The resulting 0..1 floating point probability is scaled to 0..100 and stored as an UINT8. Areas missing any or all …
The Sentinel 2 data (2019.01.25) for Northern South China Sea was downloaded from Sentinel open access hub of https://scihub.copernicus.eu/dhus/#/home.
In many uses of multispectral satellite imagery, clouds obscure what we really care about - for example, tracking wildfires, mapping deforestation, or monitoring crop health. Being able to more accurately remove clouds from satellite images filters out interference, unlocking the potential of a vast range of use cases. With this goal in mind, this training dataset was generated as part of crowdsourcing competition, and later on was validated using a team of expert annotators. The dataset consists of Sentinel-2 satellite imagery and corresponding cloudy labels stored as GeoTiffs. There are 22,728 chips in the training data, collected between 2018 and 2020.
Sentinel-2, 10m Multispectral 13-band imagery, rendered on-the-fly. Available for visualization and analytics, this Imagery Layer pulls directly from the Sentinel-2 on AWS collection and is updated daily with new imagery.This imagery layer can be used for multiple purposes including but not limited to vegetation, land cover, plant health, deforestation and environmental monitoring.Geographic CoverageGlobalContinental land masses from 65.4° South to 72.1° North, with these special guidelines:All coastal waters up to 20 km from the shoreAll islands greater than 100 km2All EU islandsAll closed seas (e.g. Caspian Sea)The Mediterranean SeaNote: Areas of interest going beyond the Mission baseline (as laid out in the Mission Requirements Document) will be assessed, and may be added to the baseline if sufficient resources are identified.Temporal CoverageThe revisit time for each point on Earth is every 5 days.This layer is updated daily with new imagery.This imagery layer is designed to include imagery collected within the past 14 months. Custom Image Services can be created for access to images older than 14 months.The number of images available will vary depending on location.Image Selection/FilteringThe most recent and cloud free image, for any location, is displayed by default.Any image available, within the past 14 months, can be displayed via custom filtering.Filtering can be done based on Acquisition Date, Estimated Cloud Cover, and Tile ID.Tile_ID is computed as [year][month][day]T[hours][minutes][seconds]_[UTMcode][latitudeband][square]_[sequence]. More…NOTE: Not using filters, and loading the entire archive, may affect performance.Analysis ReadyThis imagery layer is analysis ready with TOA correction applied.Visual RenderingDefault rendering is NDVI Colormap (Normalized Difference vegetation index with colormap) computed as NIR(Band8)-Red(Band4)/NIR(Band8)+Red(Band4) . The raw version of this layer is NDVI-Raw.Green represents vigorous vegetation and brown represents sparse vegetation.Rendering (or display) of band combinations and calculated indices is done on-the-fly from the source images via Raster Functions.Various pre-defined Raster Functions can be selected or custom functions created.Available renderings include: Agriculture with DRA, Bathymetric with DRA, Color-Infrared with DRA, Natural Color with DRA, Short-wave Infrared with DRA, Geology with DRA, NDMI Colorized, Normalized Difference Built-Up Index (NDBI), NDWI Raw, NDWI - with VRE Raw, NDVI – with VRE Raw (NDRE), NDVI - VRE only Raw, NDVI Raw, Normalized Burn RatioMultispectral BandsBandDescriptionWavelength (µm)Resolution (m)1Coastal aerosol0.433 - 0.453602Blue0.458 - 0.523103Green0.543 - 0.578104Red0.650 - 0.680105Vegetation Red Edge0.698 - 0.713206Vegetation Red Edge0.733 - 0.748207Vegetation Red Edge0.773 - 0.793208NIR0.785 - 0.900108ANarrow NIR0.855 - 0.875209Water vapour0.935 - 0.9556010SWIR – Cirrus1.365 - 1.3856011SWIR-11.565 - 1.6552012SWIR-22.100 - 2.28020Additional NotesOverviews exist with a spatial resolution of 150m and are updated every quarter based on the best and latest imagery available at that time.To work with source images at all scales, the ‘Lock Raster’ functionality is available.NOTE: ‘Lock Raster’ should only be used on the layer for short periods of time, as the imagery and associated record Object IDs may change daily.This ArcGIS Server dynamic imagery layer can be used in Web Maps and ArcGIS Desktop as well as Web and Mobile applications using the REST based Image services API.Images can be exported up to a maximum of 4,000 columns x 4,000 rows per request.Data SourceSentinel-2 imagery is the result of close collaboration between the (European Space Agency) ESA, the European Commission and USGS. Data is hosted by the Amazon Web Services as part of their Registry of Open Data. Users can access the imagery from Sentinel-2 on AWS , or alternatively access Sentinel2Look Viewer, EarthExplorer or the Copernicus Open Access Hub to download the scenes.For information on Sentinel-2 imagery, see Sentinel-2.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
most of the available annotated SAR datasets provide only the amplitude information (Only detected SAR data) and disregard the phase information. The lack of high-quality and large-scale annotated CV-SAR datasets is a significant challenge for developing CV deep learning algorithms in remote sensing.
Sentinel-2 Level-2A data is an open source 10-60 m/px spatial resolution satellite imagery product provided by the European Space Agency.
Land cover describes the surface of the earth. Land cover maps are useful in urban planning, resource management, change detection, agriculture, and a variety of other applications in which information related to earth surface is required. Land cover classification is a complex exercise and is hard to capture using traditional means. Deep learning models are highly capable of learning these complex semantics, giving superior results.Using the modelFollow the guide to use the model. Before using this model, ensure that the supported deep learning libraries are installed. For more details, check Deep Learning Libraries Installer for ArcGIS.Fine-tuning the modelThis model can be fine-tuned using the Train Deep Learning Model tool. Follow the guide to fine-tune this model.InputRaster, mosaic dataset, or image service. (Preferred cell size is 10 meters.)Note: This model is trained to work on Sentinel-2 Imagery datasets which are in WGS 1984 Web Mercator (auxiliary sphere) coordinate system (WKID 3857).OutputClassified raster with the same classes as in Corine Land Cover (CLC) 2018.Applicable geographiesThis model is expected to work well in Europe and the United States.Model architectureThis model uses the UNet model architecture implemented in ArcGIS API for Python.Accuracy metricsThis model has an overall accuracy of 82.41% with Level-1C imagery and 84.0% with Level-2A imagery, for CLC class level 2 classification (15 classes). The table below summarizes the precision, recall and F1-score of the model on the validation dataset.ClassLevel-2A ImageryLevel-1C ImageryPrecisionRecallF1 ScorePrecisionRecallF1 ScoreUrban fabric0.810.830.820.820.840.83Industrial, commercial and transport units0.740.650.690.730.660.7Mine, dump and construction sites0.630.520.570.690.550.61Artificial, non-agricultural vegetated areas0.700.460.550.670.470.55Arable land0.860.900.880.860.890.87Permanent crops0.760.730.740.750.710.73Pastures0.750.710.730.740.710.73Heterogeneous agricultural areas0.610.560.580.620.510.56Forests0.880.930.900.880.920.9Scrub and/or herbaceous vegetation associations0.740.690.720.730.670.7Open spaces with little or no vegetation0.870.840.850.850.820.84Inland wetlands0.810.780.800.820.770.79Maritime wetlands0.740.760.750.870.890.88Inland waters0.940.920.930.940.910.92Marine waters0.980.990.980.970.980.98This model has an overall accuracy of 90.79% with Level-2A imagery for CLC class level 1 classification (5 classes). The table below summarizes the precision, recall and F1-score of the model on the validation dataset.ClassPrecisionRecallF1 ScoreArtificial surfaces0.850.810.83Agricultural areas0.900.910.91Forest and semi natural areas0.910.920.92Wetlands0.770.700.73Water bodies0.960.970.96Training dataThis model has been trained on the Corine Land Cover (CLC) 2018 with the same Sentinel 2 scenes that were used to produce the database. Scene IDs for the imagery were available in the metadata of the dataset.Sample resultsHere are a few results from the model. To view more, see this story.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Site Description:
In this dataset, there are seventeen production crop fields in Bulgaria where winter rapeseed and wheat were grown and two research fields in France where winter wheat – rapeseed – barley – sunflower and winter wheat – irrigated maize crop rotation is used. The full description of those fields is in the database "In-situ crop phenology dataset from sites in Bulgaria and France" (doi.org/10.5281/zenodo.7875440).
Methodology and Data Description:
Remote sensing data is extracted from Sentinel-2 tiles 35TNJ for Bulgarian sites and 31TCJ for French sites on the day of the overpass since September 2015 for Sentinel-2 derived vegetation indices and since October 2016 for HR-VPP products. To suppress spectral mixing effects at the parcel boundaries, as highlighted by Meier et al., 2020, the values from all datasets were subgrouped per field and then aggregated to a single median value for further analysis.
Sentinel-2 data was downloaded for all test sites from CREODIAS (https://creodias.eu/) in L2A processing level using a maximum scene-wide cloudy cover threshold of 75%. Scenes before 2017 were available in L1C processing level only. Scenes in L1C processing level were corrected for atmospheric effects after downloading using Sen2Cor (v2.9) with default settings. This was the same version used for the L2A scenes obtained intermediately from CREODIAS.
Next, the data was extracted from the Sentinel-2 scenes for each field parcel where only SCL classes 4 (vegetation) and 5 (bare soil) pixels were kept. We resampled the 20m band B8A to match the spatial resolution of the green and red band (10m) using nearest neighbor interpolation. The entire image processing chain was carried out using the open-source Python Earth Observation Data Analysis Library (EOdal) (Graf et al., 2022).
Apart from the widely used Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI), we included two recently proposed indices that were reported to have a higher correlation with photosynthesis and drought response of vegetation: These were the Near-Infrared Reflection of Vegetation (NIRv) (Badgley et al., 2017) and Kernel NDVI (kNDVI) (Camps-Valls et al., 2021). We calculated the vegetation indices in two different ways:
First, we used B08 as near-infrared (NIR) band which comes in a native spatial resolution of 10 m. B08 (central wavelength 833 nm) has a relatively coarse spectral resolution with a bandwidth of 106 nm.
Second, we used B8A which is available at 20 m spatial resolution. B8A differs from B08 in its central wavelength (864 nm) and has a narrower bandwidth (21 nm or 22 nm in the case of Sentinel-2A and 2B, respectively) compared to B08.
The High Resolution Vegetation Phenology and Productivity (HR-VPP) dataset from Copernicus Land Monitoring Service (CLMS) has three 10-m set products of Sentinel-2: vegetation indices, vegetation phenology and productivity parameters and seasonal trajectories (Tian et al., 2021). Both vegetation indices, Normalized Vegetation Index (NDVI) and Plant Phenology (PPI) and plant parameters, Fraction of Absorbed Photosynthetic Active Radiation (FAPAR) and Leaf Area Index (LAI) were computed for the time of Sentinel-2 overpass by the data provider.
NDVI is computed directly from B04 and B08 and PPI is computed using Difference Vegetation Index (DVI = B08 - B04) and its seasonal maximum value per pixel. FAPAR and LAI are retrieved from B03 and B04 and B08 with neural network training on PROSAIL model simulations. The dataset has a quality flag product (QFLAG2) which is a 16-bit that extends the scene classification band (SCL) of the Sentinel-2 Level-2 products. A “medium” filter was used to mask out QFLAG2 values from 2 to 1022, leaving land pixels (bit 1) within or outside cloud proximity (bits 11 and 13) or cloud shadow proximity (bits 12 and 14).
The HR-VPP daily raw vegetation indices products are described in detail in the user manual (Smets et al., 2022) and the computations details of PPI are given by Jin and Eklundh (2014). Seasonal trajectories refer to the 10-daily smoothed time-series of PPI used for vegetation phenology and productivity parameters retrieval with TIMESAT (Jönsson and Eklundh 2002, 2004).
HR-VPP data was downloaded through the WEkEO Copernicus Data and Information Access Services (DIAS) system with a Python 3.8.10 harmonized data access (HDA) API 0.2.1. Zonal statistics [’min’, ’max’, ’mean’, ’median’, ’count’, ’std’, ’majority’] were computed on non-masked pixel values within field boundaries with rasterstats Python package 0.17.00.
The Start of season date (SOSD), end of season date (EOSD) and length of seasons (LENGTH) were extracted from the annual Vegetation Phenology and Productivity Parameters (VPP) dataset as an additional source for comparison. These data are a product of the Vegetation Phenology and Productivity Parameters, see (https://land.copernicus.eu/pan-european/biophysical-parameters/high-resolution-vegetation-phenology-and-productivity/vegetation-phenology-and-productivity) for detailed information.
File Description:
4 datasets:
1_senseco_data_S2_B08_Bulgaria_France; 1_senseco_data_S2_B8A_Bulgaria_France; 1_senseco_data_HR_VPP_Bulgaria_France; 1_senseco_data_phenology_VPP_Bulgaria_France
3 metadata:
2_senseco_metadata_S2_B08_B8A_Bulgaria_France; 2_senseco_metadata_HR_VPP_Bulgaria_France; 2_senseco_metadata_phenology_VPP_Bulgaria_France
The dataset files “1_senseco_data_S2_B8_Bulgaria_France” and “1_senseco_data_S2_B8A_Bulgaria_France” concerns all vegetation indices (EVI, NDVI, kNDVI, NIRv) data values and related information, and metadata file “2_senseco_metadata_S2_B08_B8A_Bulgaria_France” describes all the existing variables. Both “1_senseco_data_S2_B8_Bulgaria_France” and “1_senseco_data_S2_B8A_Bulgaria_France” have the same column variable names and for that reason, they share the same metadata file “2_senseco_metadata_S2_B08_B8A_Bulgaria_France”.
The dataset file “1_senseco_data_HR_VPP_Bulgaria_France” concerns vegetation indices (NDVI, PPI) and plant parameters (LAI, FAPAR) data values and related information, and metadata file “2_senseco_metadata_HRVPP_Bulgaria_France” describes all the existing variables.
The dataset file “1_senseco_data_phenology_VPP_Bulgaria_France” concerns the vegetation phenology and productivity parameters (LENGTH, SOSD, EOSD) values and related information, and metadata file “2_senseco_metadata_VPP_Bulgaria_France” describes all the existing variables.
Bibliography
G. Badgley, C.B. Field, J.A. Berry, Canopy near-infrared reflectance and terrestrial photosynthesis, Sci. Adv. 3 (2017) e1602244. https://doi.org/10.1126/sciadv.1602244.
G. Camps-Valls, M. Campos-Taberner, Á. Moreno-Martínez, S. Walther, G. Duveiller, A. Cescatti, M.D. Mahecha, J. Muñoz-Marí, F.J. García-Haro, L. Guanter, M. Jung, J.A. Gamon, M. Reichstein, S.W. Running, A unified vegetation index for quantifying the terrestrial biosphere, Sci. Adv. 7 (2021) eabc7447. https://doi.org/10.1126/sciadv.abc7447.
L.V. Graf, G. Perich, H. Aasen, EOdal: An open-source Python package for large-scale agroecological research using Earth Observation and gridded environmental data, Comput. Electron. Agric. 203 (2022) 107487. https://doi.org/10.1016/j.compag.2022.107487.
H. Jin, L. Eklundh, A physically based vegetation index for improved monitoring of plant phenology, Remote Sens. Environ. 152 (2014) 512–525. https://doi.org/10.1016/j.rse.2014.07.010.
P. Jonsson, L. Eklundh, Seasonality extraction by function fitting to time-series of satellite sensor data, IEEE Trans. Geosci. Remote Sens. 40 (2002) 1824–1832. https://doi.org/10.1109/TGRS.2002.802519.
P. Jönsson, L. Eklundh, TIMESAT—a program for analyzing time-series of satellite sensor data, Comput. Geosci. 30 (2004) 833–845. https://doi.org/10.1016/j.cageo.2004.05.006.
J. Meier, W. Mauser, T. Hank, H. Bach, Assessments on the impact of high-resolution-sensor pixel sizes for common agricultural policy and smart farming services in European regions, Comput. Electron. Agric. 169 (2020) 105205. https://doi.org/10.1016/j.compag.2019.105205.
B. Smets, Z. Cai, L. Eklund, F. Tian, K. Bonte, R. Van Hoost, R. Van De Kerchove, S. Adriaensen, B. De Roo, T. Jacobs, F. Camacho, J. Sánchez-Zapero, S. Else, H. Scheifinger, K. Hufkens, P. Jönsson, HR-VPP Product User Manual Vegetation Indices, 2022.
F. Tian, Z. Cai, H. Jin, K. Hufkens, H. Scheifinger, T. Tagesson, B. Smets, R. Van Hoolst, K. Bonte, E. Ivits, X. Tong, J. Ardö, L. Eklundh, Calibrating vegetation phenology from Sentinel-2 using eddy covariance, PhenoCam, and PEP725 networks across Europe, Remote Sens. Environ. 260 (2021) 112456. https://doi.org/10.1016/j.rse.2021.112456.
This data set consists of observations from the Sentinel-5 Precursor (Sentinel-5P) satellite of the European Commission’s Copernicus Earth Observation Programme. Sentinel-5P is a polar orbiting satellite that completes 14 orbits of the Earth a day. It carries the TROPOspheric Monitoring Instrument (TROPOMI) which is a spectrometer that senses ultraviolet (UV), visible (VIS), near (NIR) and short wave infrared (SWIR) to monitor ozone, methane, formaldehyde, aerosol, carbon monoxide, nitrogen dioxide and sulphur dioxide in the atmosphere. The satellite was launched in October 2017 and entered routine operational phase in March 2019. Data is available from July 2018 onwards.
The Sentinel-2 mission is a land monitoring constellation of two satellites that provide high resolution optical imagery and provide continuity for the current SPOT and Landsat missions. The mission provides a global coverage of the Earth's land surface every 5 days, making the data of great use in on-going studies. L1C data are available from June 2015 globally. L2A data are available from November 2016 over Europe region and globally since January 2017.