12 datasets found
  1. f

    217 shared genes in DEGs related to human age.

    • plos.figshare.com
    xlsx
    Updated Nov 26, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rong He; Qiang Zhang; Limei Wang; Yiwen Hu; Yue Qiu; Jia Liu; Dingyun You; Jishuai Cheng; Xue Cao (2024). 217 shared genes in DEGs related to human age. [Dataset]. http://doi.org/10.1371/journal.pone.0311374.s004
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Nov 26, 2024
    Dataset provided by
    PLOS ONE
    Authors
    Rong He; Qiang Zhang; Limei Wang; Yiwen Hu; Yue Qiu; Jia Liu; Dingyun You; Jishuai Cheng; Xue Cao
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    ObjectiveTo guide animal experiments, we investigated the similarities and differences between humans and mice in aging and Alzheimer’s disease (AD) at the single-nucleus RNA sequencing (snRNA-seq) or single-cell RNA sequencing (scRNA-seq) level.MethodsMicroglia cells were extracted from dataset GSE198323 of human post-mortem hippocampus. The distributions and proportions of microglia subpopulation cell numbers related to AD or age were compared. This comparison was done between GSE198323 for humans and GSE127892 for mice, respectively. The Seurat R package and harmony R package were used for data analysis and batch effect correction. Differentially expressed genes (DEGs) were identified by FindMarkers function with MAST test. Comparative analyses were conducted on shared genes in DEGs associated with age and AD. The analyses were done between human and mouse using various bioinformatics techniques. The analysis of genes in DEGs related to age was conducted. Similarly, the analysis of genes in DEGs related to AD was performed. Cross-species analyses were conducted using orthologous genes. Comparative analyses of pseudotime between humans and mice were performed using Monocle2.Results(1) Similarities: The proportion of microglial subpopulation Cell_APOE/Apoe shows consistent trends, whether in AD or normal control (NC) groups in both humans and mice. The proportion of Cell_CX3CR1/Cx3cr1, representing homeostatic microglia, remains stable with age in NC groups across species. Tuberculosis and Fc gamma R-mediated phagocytosis pathways are shared in microglia responses to age and AD across species, respectively. (2) Differences: IL1RAPL1 and SPP1 as marker genes are more identifiable in human microglia compared to their mouse counterparts. Most genes of DEGs associated with age or AD exhibit different trends between humans and mice. Pseudotime analyses demonstrate varying cell density trends in microglial subpopulations, depending on age or AD across species.ConclusionsMouse Apoe and Cell_Apoe maybe serve as proxies for studying human AD, while Cx3cr1 and Cell_Cx3cr1 are suitable for human aging studies. However, AD mouse models (App_NL_G_F) have limitations in studying human genes like IL1RAPL1 and SPP1 related to AD. Thus, mouse models cannot fully replace human samples for AD and aging research.

  2. Data from: Single cell multiomic analysis identifies key genes...

    • data.niaid.nih.gov
    • search.dataone.org
    • +1more
    zip
    Updated Jul 2, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Abhinav Kaushik; Kari Nadeau (2024). Single cell multiomic analysis identifies key genes differentially expressed in innate lymphoid cells from COVID-19 patients [Dataset]. http://doi.org/10.5061/dryad.8931zcrz4
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jul 2, 2024
    Dataset provided by
    National Institute of Allergy and Infectious Diseaseshttp://www.niaid.nih.gov/
    Authors
    Abhinav Kaushik; Kari Nadeau
    License

    https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html

    Description

    Innate lymphoid cells (ILCs) are enriched at mucosal surfaces where they respond rapidly to environmental stimuli and contribute to both tissue inflammation and healing. To gain insight into the role of ILCs in the pathology and recovery from COVID-19 infection, we employed a multi-omic approach consisting of Abseq and targeted mRNA sequencing to respectively probe the surface marker expression, transcriptional profile and heterogeneity of ILCs in peripheral blood of patients with COVID-19 compared with healthy controls. We found that the frequency of ILC1 and ILC2 cells was significantly increased in COVID-19 patients. Moreover, all ILC subsets displayed a significantly higher frequency of CD69-expressing cells, indicating a heightened state of activation. ILC2s from COVID-19 patients had the highest number of significantly differentially expressed (DE) genes. The most notable genes DE in COVID-19 vs healthy participants included a) genes associated with responses to virus infections and b) genes that support ILC self-proliferation, activation and homeostasis. In addition, differential gene regulatory network analysis revealed ILC-specific regulons and their interactions driving the differential gene expression in each ILC. Overall, this study provides mechanistic insights into the characteristics of ILC subsets activated during COVID-19 infection. Methods Study participants, blood draws and processing Participants were recruited as described previously from adults who had a positive SARS-COV-2 RT-PCR test at Stanford Health Care (NCT04373148). Collection of Covid samples occurred between May to December 2020. The cohort used in this study consisted of asymptomatic (n=2), mild (n=17), and moderate (n=3) COVID-19 infections, some of whom developed long term COVID-19 (n=15). The clinical case severities at the time of diagnosis were defined as asymptomatic, moderate or mild according to the guidelines released by NIH. Long term (LT) COVID was defined as symptoms occurring 30 or more days after infection, consistent with CDC guidelines. Some participants in our study continued to have LT COVID symptoms 90 days after diagnosis (n=12). Exclusion criteria for COVID sample study were NIH severity diagnosis of severe or critical at the time of positive covid test. Samples selected for this study were obtained within 76 days of positive PCR COVID-19 test date. Healthy controls were selected who had sample collection before 2020. Informed consent was obtained from all participants. All protocols were approved by the Stanford Administrative Panel on Human Subjects in Medical Research. Peripheral blood was drawn by venipuncture and using validated and published procedures, peripheral blood mononuclear cells (PBMCs) were isolated by Ficoll-based density gradient centrifugation, frozen in aliquots and stored in liquid nitrogen at -80°C , until thawing. A summary of participant demographics is presented in Supp. Table 1.
    ILC Enrichment, single cell captures for Abseq and targeted mRNAseq Participant PBMCs were thawed, and each sample stained with Sample Tag (BD #633781) at room temperature for 20 minutes. Samples were combined in healthy control or COVID-19 tubes. Cells were surface stained with a panel of fluorochrome-conjugated antibodies (Supp. Table 2) in buffer (PBS with 0.25% BSA and 1mM EDTA) for 20 minutes at room temperature prior to immunomagnetic negative selection for ILCs. Following ILC enrichment using the EasySep human Pan-ILC enrichment kit (StemCell Technologies #17975), cells from healthy and COVID-19 recovered participants were counted and normalized before combining. ILCs were sorted using a BD FACS Aria at the Stanford FACS facility prior to incubation with AbSeq oligo-linked mAbs (Supp. Table 3). Sorted cells were processed by the Stanford Human Immune Monitoring Center (HIMC) using the BD Rhapsody platform. Library was prepared using the BD Immune Response Targeting Panel (BD Kit #633750) with addition of custom gene panel reagents (Supp. Table 4) and sequenced on Illumina NovaSeq 6000 at Stanford Genomics Sequencing Center (SGSC). ILCs were identified as Lineageneg (CD3neg, CD14neg, CD34neg, CD19neg), NKG2Aneg, CD45+ and ILCs further defined as CD127+CD161+ and as subsets: ILC1 (CD117negCRTH2neg), ILC2 (CRTH2+) and ILCp (CD117+CRTH2neg) (Supp. Fig. 1). Computational data analysis The above multi-modal setup allowed paired measurements of cellular transcriptome and cell surface protein abundance. The ILC1, ILC2 and ILCp cells were manually gated based on the abundance profile of CD127, CD117, CD161 and CRTH2 (Supp. Fig. 1). Before the integrative analysis, the complete multi-modal single cell dataset containing ILC subsets was converted into single Seurat object. All the subsequent protein-level and gene-level analyses were performed using multimodal data analysis pipeline of Seurat R package version 4.0. The normalized and scaled protein abundance profile was used for estimating the integrated harmony dimensions using runHarmony function in Seurat R package (reduction= ‘apca’ and group.by.vars = ‘batch’) . The batch corrected harmony embeddings were then used for computing the Uniform Manifold Approximation and Projection (UMAP) dimensions to visualize the clusters of ILC subsets. Differential marker analysis of surface proteins, between two groups of cells (COVID-19 and Healthy cohort), from abseq panels was computed with normalized and scaled expression values using FindMarkers function from Seurat R package (test.use=’wilcox’). Similarly, differential gene expression was performed on normalized and scaled gene expression values from between two groups of cells (COVID-19 and Healthy cohort) using the FindMarkers function from Seurat R package (test.use=’MAST’ and latent.vars=’batch’). Genes with log-fold change > 0.5 and adjusted p-value < 0.05 (method: Benjamini-Hochberg) (were considered as significant for further evaluation. The resulting adjusted p-values box-plots were plotted using ggplot2 R package (version 3.4.2) after computing the number of cells expressing a given protein or gene in each sample. Pathway enrichment analysis of DE genes was performed using web-server metascape (version 3.5). The AUCells score and gene regulatory network analysis was performed using pySCENIC pipeline (version 0.12.1). Gene regulatory network was reconstructed using GRNBoost2 algorithm and the list of TFs in humans (genome version: hg38) were obtained from cisTarget database. (https://resources.aertslab.org/cistarget). Cellular enrichment (aka AUCell) analysis that measures the activity of TF or gene signatures across all single cells was performed using aucell function in pySCENIC python library. The ggplot2 R package (version 3.4.2) was used for boxplot visualization. The differential gene co-expression analysis was performed using scSFMnet R package. Circular plots were generated using the R package circlize (version 0.4.15).

  3. f

    Skin sc-RNASeq from seven body sites (face, scalp, axilla, palmoplantar,...

    • plus.figshare.com
    bin
    Updated Mar 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lam C Tsoi; Rachael Bogle; Johann Gudjonsson; Meri Oliva; Bridget Riley-Gillis (2025). Skin sc-RNASeq from seven body sites (face, scalp, axilla, palmoplantar, arm, leg, and back) [Dataset]. http://doi.org/10.25452/figshare.plus.25696620.v2
    Explore at:
    binAvailable download formats
    Dataset updated
    Mar 11, 2025
    Dataset provided by
    Figshare+
    Authors
    Lam C Tsoi; Rachael Bogle; Johann Gudjonsson; Meri Oliva; Bridget Riley-Gillis
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    This sc-RNAseq dataset is composed of disease-unaffected epidermal samples from 96 skin biopsies: 18 from published datasets - GSE173706, GSE249279 – and 78 newly generated ones. Biopsy sample and protocol details, and curated cell-type signature genes, are available in the scRNASeq_source_info_FigShare spreadsheet of this dataset. Processed Seurat object are provided herein. Raw data are available in SRA (id PRJNA1054546). Biopsies originated from seven body sites (face, scalp, axilla, palmoplantar, arm, leg, and back). The skin biopsies were separated into epidermis and dermis before dissociated and enriched for various cell fractions (keratinocytes, fibroblasts, and endothelial cells) and immune cells (myeloid and lymphoid cells) to up sample rare cell types. In total, across body sites, 274,834 cells were profiled, including 96,194 keratinocytes. Seurat v3.0. was utilized to normalize, scale, and reduce the dimensionality of the data. Low quality cells containing less than 200 genes per cell as well as greater than 5,000 genes per cell were filtered out. Cells containing more mitochondrial genes than the permitted quantile of 0.05 were removed. Ambient RNA was removed using R package SoupX v1.6.2. Doublets were removed using scDblFinder v1.12.0. Principal components (PC) were obtained from the topmost 2,000 variable genes, and the Uniform Manifold Approximation and Projection (UMAP) dimensional reduction technique was applied to the 30 topmost variable PC-reduced dataset. Batch effect correction was performed utilizing harmony v1.0, using donor as batch. After batch correction, cells were clustered using shared nearest neighbor modularity optimization-based clustering. Cluster marker genes were identified with FindAllMarkers; cluster corresponding cell type was identified by comparing marker genes to curated cell-type signature genes. Differential expression by keratinocyte subtype was performed with Seurat (v4.3.0) FindMarkers function by comparing keratinocyte subtype to non-keratinocyte clusters. The log fold-change of the average expression between a keratinocyte subtype cluster compared to the rest of clusters is utilized as keratinocyte-subtype gene expression statistic.

  4. d

    Data from: Continuous expression of TOX safeguards exhausted CD8 T cell...

    • search.dataone.org
    • data.niaid.nih.gov
    • +1more
    Updated Mar 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yinghui Jane Huang; John Wherry; Sasikanth Manne (2025). Continuous expression of TOX safeguards exhausted CD8 T cell epigenetic fate [Dataset]. http://doi.org/10.5061/dryad.8kprr4xx9
    Explore at:
    Dataset updated
    Mar 15, 2025
    Dataset provided by
    Dryad Digital Repository
    Authors
    Yinghui Jane Huang; John Wherry; Sasikanth Manne
    Description

    CD8 T cell exhaustion is a major barrier limiting anti-tumor therapy. Though checkpoint blockade temporarily improves exhausted CD8 T cell (Tex) function, the underlying epigenetic landscape of Tex remains largely unchanged, preventing their durable “reinvigoration.†Whereas the transcription factor (TF) TOX has been identified as a critical initiator of Tex epigenetic programming, it remains unclear whether TOX plays an ongoing role in preserving Tex biology after cells commit to exhaustion. Here, we decoupled the role of TOX in the initiation versus maintenance of CD8 T cell exhaustion by temporally deleting TOX in established Tex. Induced TOX ablation in committed Tex resulted in apoptotic-driven loss of Tex, reduced expression of inhibitory receptors including PD-1, and a pronounced decrease in terminally differentiated subsets of Tex cells. Simultaneous gene expression and epigenetic profiling revealed a critical role for TOX in ensuring ongoing chromatin accessibility and transcri..., Cells from inducible-Cre (Rosa26CreERT2/+Toxfl/fl P14) mice where TOX was temporally deleted from mature populations of LCMV-specific T exhausted cells after establishment of chronic LCMV infection 5 days post infection were subjected to scRNA and scATACseq coassay,naive cells and WT cells were used as controls. Analysis pipeline developed by Josephine Giles and vignettes published by Satija and Stuart labs.Transcript count and peak accessibility matrices deposited in GSE255042,GSE255043. Seurat/Signac was used to process the scRNA and scATACseq coassay data The processed Seurat/Signac object above was subsequently used for downstream RNA and ATAC analyses as described below: DEGs between TOX WT and iKO cells within each subset were identified using FindMarkers (Seurat, Signac), with a log2-fold-change threshold of 0, using the SCT assay. DACRs were identified using FindMarkers using the "LR" test, with a log2-fold-change threshold of 0.1, a min.pct of 0.05, and included the number of c..., , # Continuous expression of TOX safeguards exhausted CD8 T cell epigenetic fate

    https://doi.org/10.5061/dryad.8kprr4xx9

    Seurat/Signac pipeline for multiomic scRNA-seq and scATAC-seq dataset, generated following inducible TOX deletion in LCMV-Cl13

    Author

    Yinghui Jane Huang

    Script information

    Purpose: Generate and process Seurat/Signac object for downstream analyses Written: Nov 2021 through Oct 2022 Adapted from: Analysis pipeline developed by Josephine Giles and vignettes published by Satija and Stuart labs Input dataset: Transcript count and peak accessibility matrices deposited in GSE255042,GSE255043

    Signac Object Generation

    1) Create individual signac objects for each sample from the raw 10x cellranger output.

    2) Merge individual objects to create one seurat object.

    3) Add metadata to merged seurat object.

    Following are the steps in the attached html file for analysis of the paired data (ATAC+RNA)

    • Load fr...,
  5. Development of Ferret Reference Resources and Profiling Assays.

    • data.niaid.nih.gov
    url
    Updated Mar 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Xinxia Peng (2025). Development of Ferret Reference Resources and Profiling Assays. [Dataset]. http://doi.org/10.21430/M3KVP4YEVN
    Explore at:
    urlAvailable download formats
    Dataset updated
    Mar 27, 2025
    Dataset provided by
    National Institute of Allergy and Infectious Diseaseshttp://www.niaid.nih.gov/
    Authors
    Xinxia Peng
    License

    https://www.immport.org/agreementhttps://www.immport.org/agreement

    Description

    This study designed new ferret-specific immune repertoire profiling assays by targeting positions in constant regions without allelic diversity. Transcriptome sequencing of ferret splenocyte and lymph node samples was perfomed to obtain Ig and T cell receptor transcripts. These improved resources and assays enables further studies to capture ferret immune diversity.

  6. f

    Pathways from KEGG enrichment analysis with genes of cluster2 in the heatmap...

    • plos.figshare.com
    xlsx
    Updated Nov 26, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rong He; Qiang Zhang; Limei Wang; Yiwen Hu; Yue Qiu; Jia Liu; Dingyun You; Jishuai Cheng; Xue Cao (2024). Pathways from KEGG enrichment analysis with genes of cluster2 in the heatmap for humans (Fig 7C). [Dataset]. http://doi.org/10.1371/journal.pone.0311374.s013
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Nov 26, 2024
    Dataset provided by
    PLOS ONE
    Authors
    Rong He; Qiang Zhang; Limei Wang; Yiwen Hu; Yue Qiu; Jia Liu; Dingyun You; Jishuai Cheng; Xue Cao
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Pathways from KEGG enrichment analysis with genes of cluster2 in the heatmap for humans (Fig 7C).

  7. f

    Pathways from KEGG enrichment analysis with genes of cluster1 in the heatmap...

    • plos.figshare.com
    xlsx
    Updated Nov 26, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rong He; Qiang Zhang; Limei Wang; Yiwen Hu; Yue Qiu; Jia Liu; Dingyun You; Jishuai Cheng; Xue Cao (2024). Pathways from KEGG enrichment analysis with genes of cluster1 in the heatmap for humans (Fig 7C). [Dataset]. http://doi.org/10.1371/journal.pone.0311374.s012
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Nov 26, 2024
    Dataset provided by
    PLOS ONE
    Authors
    Rong He; Qiang Zhang; Limei Wang; Yiwen Hu; Yue Qiu; Jia Liu; Dingyun You; Jishuai Cheng; Xue Cao
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Pathways from KEGG enrichment analysis with genes of cluster1 in the heatmap for humans (Fig 7C).

  8. f

    Pathways from KEGG enrichment analysis with genes of cluster2 in the heatmap...

    • plos.figshare.com
    xlsx
    Updated Nov 26, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rong He; Qiang Zhang; Limei Wang; Yiwen Hu; Yue Qiu; Jia Liu; Dingyun You; Jishuai Cheng; Xue Cao (2024). Pathways from KEGG enrichment analysis with genes of cluster2 in the heatmap for mice (Fig 7H). [Dataset]. http://doi.org/10.1371/journal.pone.0311374.s015
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Nov 26, 2024
    Dataset provided by
    PLOS ONE
    Authors
    Rong He; Qiang Zhang; Limei Wang; Yiwen Hu; Yue Qiu; Jia Liu; Dingyun You; Jishuai Cheng; Xue Cao
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Pathways from KEGG enrichment analysis with genes of cluster2 in the heatmap for mice (Fig 7H).

  9. f

    Pathways from KEGG enrichment analysis with genes of cluster3 in the heatmap...

    • figshare.com
    • plos.figshare.com
    xlsx
    Updated Nov 26, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rong He; Qiang Zhang; Limei Wang; Yiwen Hu; Yue Qiu; Jia Liu; Dingyun You; Jishuai Cheng; Xue Cao (2024). Pathways from KEGG enrichment analysis with genes of cluster3 in the heatmap for humans (Fig 6C). [Dataset]. http://doi.org/10.1371/journal.pone.0311374.s010
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Nov 26, 2024
    Dataset provided by
    PLOS ONE
    Authors
    Rong He; Qiang Zhang; Limei Wang; Yiwen Hu; Yue Qiu; Jia Liu; Dingyun You; Jishuai Cheng; Xue Cao
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Pathways from KEGG enrichment analysis with genes of cluster3 in the heatmap for humans (Fig 6C).

  10. f

    Pathways from KEGG enrichment analysis with genes of cluster1 in the heatmap...

    • plos.figshare.com
    xlsx
    Updated Nov 26, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rong He; Qiang Zhang; Limei Wang; Yiwen Hu; Yue Qiu; Jia Liu; Dingyun You; Jishuai Cheng; Xue Cao (2024). Pathways from KEGG enrichment analysis with genes of cluster1 in the heatmap for humans (Fig 6C). [Dataset]. http://doi.org/10.1371/journal.pone.0311374.s008
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Nov 26, 2024
    Dataset provided by
    PLOS ONE
    Authors
    Rong He; Qiang Zhang; Limei Wang; Yiwen Hu; Yue Qiu; Jia Liu; Dingyun You; Jishuai Cheng; Xue Cao
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Pathways from KEGG enrichment analysis with genes of cluster1 in the heatmap for humans (Fig 6C).

  11. Pathways from KEGG enrichment analysis with genes of cluster3 in the heatmap...

    • plos.figshare.com
    xlsx
    Updated Nov 26, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rong He; Qiang Zhang; Limei Wang; Yiwen Hu; Yue Qiu; Jia Liu; Dingyun You; Jishuai Cheng; Xue Cao (2024). Pathways from KEGG enrichment analysis with genes of cluster3 in the heatmap for mice (Fig 7H). [Dataset]. http://doi.org/10.1371/journal.pone.0311374.s016
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Nov 26, 2024
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Rong He; Qiang Zhang; Limei Wang; Yiwen Hu; Yue Qiu; Jia Liu; Dingyun You; Jishuai Cheng; Xue Cao
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Pathways from KEGG enrichment analysis with genes of cluster3 in the heatmap for mice (Fig 7H).

  12. DEGs caused by Six3 and Six6 dual deficiency in combined clusters 3 and 9.

    • plos.figshare.com
    csv
    Updated Oct 24, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Alexander Ferrena; Xusheng Zhang; Rupendra Shrestha; Deyou Zheng; Wei Liu (2024). DEGs caused by Six3 and Six6 dual deficiency in combined clusters 3 and 9. [Dataset]. http://doi.org/10.1371/journal.pone.0308839.s011
    Explore at:
    csvAvailable download formats
    Dataset updated
    Oct 24, 2024
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Alexander Ferrena; Xusheng Zhang; Rupendra Shrestha; Deyou Zheng; Wei Liu
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Related to Fig 2. These DEGs were identified using the function FindMarkers in Seurat when DKO_CrePos cells and control cells in combined clusters 3 and 9 were compared. (CSV)

  13. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Rong He; Qiang Zhang; Limei Wang; Yiwen Hu; Yue Qiu; Jia Liu; Dingyun You; Jishuai Cheng; Xue Cao (2024). 217 shared genes in DEGs related to human age. [Dataset]. http://doi.org/10.1371/journal.pone.0311374.s004

217 shared genes in DEGs related to human age.

Related Article
Explore at:
xlsxAvailable download formats
Dataset updated
Nov 26, 2024
Dataset provided by
PLOS ONE
Authors
Rong He; Qiang Zhang; Limei Wang; Yiwen Hu; Yue Qiu; Jia Liu; Dingyun You; Jishuai Cheng; Xue Cao
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

ObjectiveTo guide animal experiments, we investigated the similarities and differences between humans and mice in aging and Alzheimer’s disease (AD) at the single-nucleus RNA sequencing (snRNA-seq) or single-cell RNA sequencing (scRNA-seq) level.MethodsMicroglia cells were extracted from dataset GSE198323 of human post-mortem hippocampus. The distributions and proportions of microglia subpopulation cell numbers related to AD or age were compared. This comparison was done between GSE198323 for humans and GSE127892 for mice, respectively. The Seurat R package and harmony R package were used for data analysis and batch effect correction. Differentially expressed genes (DEGs) were identified by FindMarkers function with MAST test. Comparative analyses were conducted on shared genes in DEGs associated with age and AD. The analyses were done between human and mouse using various bioinformatics techniques. The analysis of genes in DEGs related to age was conducted. Similarly, the analysis of genes in DEGs related to AD was performed. Cross-species analyses were conducted using orthologous genes. Comparative analyses of pseudotime between humans and mice were performed using Monocle2.Results(1) Similarities: The proportion of microglial subpopulation Cell_APOE/Apoe shows consistent trends, whether in AD or normal control (NC) groups in both humans and mice. The proportion of Cell_CX3CR1/Cx3cr1, representing homeostatic microglia, remains stable with age in NC groups across species. Tuberculosis and Fc gamma R-mediated phagocytosis pathways are shared in microglia responses to age and AD across species, respectively. (2) Differences: IL1RAPL1 and SPP1 as marker genes are more identifiable in human microglia compared to their mouse counterparts. Most genes of DEGs associated with age or AD exhibit different trends between humans and mice. Pseudotime analyses demonstrate varying cell density trends in microglial subpopulations, depending on age or AD across species.ConclusionsMouse Apoe and Cell_Apoe maybe serve as proxies for studying human AD, while Cx3cr1 and Cell_Cx3cr1 are suitable for human aging studies. However, AD mouse models (App_NL_G_F) have limitations in studying human genes like IL1RAPL1 and SPP1 related to AD. Thus, mouse models cannot fully replace human samples for AD and aging research.

Search
Clear search
Close search
Google apps
Main menu