Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
ObjectiveTo guide animal experiments, we investigated the similarities and differences between humans and mice in aging and Alzheimer’s disease (AD) at the single-nucleus RNA sequencing (snRNA-seq) or single-cell RNA sequencing (scRNA-seq) level.MethodsMicroglia cells were extracted from dataset GSE198323 of human post-mortem hippocampus. The distributions and proportions of microglia subpopulation cell numbers related to AD or age were compared. This comparison was done between GSE198323 for humans and GSE127892 for mice, respectively. The Seurat R package and harmony R package were used for data analysis and batch effect correction. Differentially expressed genes (DEGs) were identified by FindMarkers function with MAST test. Comparative analyses were conducted on shared genes in DEGs associated with age and AD. The analyses were done between human and mouse using various bioinformatics techniques. The analysis of genes in DEGs related to age was conducted. Similarly, the analysis of genes in DEGs related to AD was performed. Cross-species analyses were conducted using orthologous genes. Comparative analyses of pseudotime between humans and mice were performed using Monocle2.Results(1) Similarities: The proportion of microglial subpopulation Cell_APOE/Apoe shows consistent trends, whether in AD or normal control (NC) groups in both humans and mice. The proportion of Cell_CX3CR1/Cx3cr1, representing homeostatic microglia, remains stable with age in NC groups across species. Tuberculosis and Fc gamma R-mediated phagocytosis pathways are shared in microglia responses to age and AD across species, respectively. (2) Differences: IL1RAPL1 and SPP1 as marker genes are more identifiable in human microglia compared to their mouse counterparts. Most genes of DEGs associated with age or AD exhibit different trends between humans and mice. Pseudotime analyses demonstrate varying cell density trends in microglial subpopulations, depending on age or AD across species.ConclusionsMouse Apoe and Cell_Apoe maybe serve as proxies for studying human AD, while Cx3cr1 and Cell_Cx3cr1 are suitable for human aging studies. However, AD mouse models (App_NL_G_F) have limitations in studying human genes like IL1RAPL1 and SPP1 related to AD. Thus, mouse models cannot fully replace human samples for AD and aging research.
This record includes training materials associated with the Australian BioCommons workshop 'Single cell RNAseq analysis in R'. This workshop took place over two, 3.5 hour sessions on 26 and 27 October 2023. Event description Analysis and interpretation of single cell RNAseq (scRNAseq) data requires dedicated workflows. In this hands-on workshop we will show you how to perform single cell analysis using Seurat - an R package for QC, analysis, and exploration of single-cell RNAseq data. We will discuss the 'why' behind each step and cover reading in the count data, quality control, filtering, normalisation, clustering, UMAP layout and identification of cluster markers. We will also explore various ways of visualising single cell expression data. This workshop is presented by the Australian BioCommons, Queensland Cyber Infrastructure Foundation (QCIF) and the Monash Genomics and Bioinformatics Platform with the assistance of a network of facilitators from the national Bioinformatics Training Cooperative. Lead trainers: Sarah Williams, Adele Barugahare, Paul Harrison, Laura Perlaza Jimenez Facilitators: Nick Matigan, Valentine Murigneux, Magdalena (Magda) Antczak Infrastructure provision: Uwe Winter Coordinator: Melissa Burke Training materials Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event. Files and materials included in this record: Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc. Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file. scRNAseq_Schedule (PDF): A breakdown of the topics and timings for the workshop Materials shared elsewhere: This workshop follows the tutorial 'scRNAseq Analysis in R with Seurat' https://swbioinf.github.io/scRNAseqInR_Doco/index.html Slides used to introduce key topics are available via GitHub https://github.com/swbioinf/scRNAseqInR_Doco/tree/main/slides This material is based on the introductory Guided Clustering Tutorial tutorial from Seurat. It is also drawing from a similar workshop held by Monash Bioinformatics Platform Single-Cell-Workshop, with material here.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This archive contains 10x matrix data (processed with cellranger) used for the Introduction to single cell RNAseq analysis workshop taught by the Danish National Sandbox for Health Data Science. The course repo can be found on Github.
Data.zip contains 6 runs on Spermatogonia development. 3 from healthy individuals and 3 from azoospermic individuals. Data has been already preprocessed using cellranger and can be loaded using Seurat (R) or scanpy (python).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Necessary datasets to run the Immcantation 10x Tutorial. Below is the description of the files in the data set.
BCR_data_sample1.tsv: data corresponding to the first sample (sample 1) of the two samples analyzed in the 10x tutorial. This is the sample used to show the Change-O steps.
filtered_contig_annotations.csv: filtered contig annotations file for sample 1, output of cellranger vdj.
filtered_contig.fasta: sequence fasta file for sample 1, output of cellranger vdj.
BCR_data.tsv: AIRR rearrangement file containing the data for both samples 1 and 2 used in the 10x tutorial.
BCR.data_08112023.rds: R dataframe object containing the single-cell BCR sequencing data for both samples 1 and 2 used in the 10x tutorial.
GEX.data_08112023.rds: Seurat object containing the single-cell gene expression data used in the 10x tutorial.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Pathways from KEGG enrichment analysis with genes of cluster3 in the heatmap for mice (Fig 7H).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Pathways from KEGG enrichment analysis with genes of cluster3 in the heatmap for humans (Fig 6C).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Pathways from KEGG enrichment analysis with genes of cluster1 in the heatmap for humans (Fig 6C).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Pathways from KEGG enrichment analysis with genes of cluster2 in the heatmap for humans (Fig 7C).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Pathways from KEGG enrichment analysis with genes of cluster2 in the heatmap for mice (Fig 7H).
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
ObjectiveTo guide animal experiments, we investigated the similarities and differences between humans and mice in aging and Alzheimer’s disease (AD) at the single-nucleus RNA sequencing (snRNA-seq) or single-cell RNA sequencing (scRNA-seq) level.MethodsMicroglia cells were extracted from dataset GSE198323 of human post-mortem hippocampus. The distributions and proportions of microglia subpopulation cell numbers related to AD or age were compared. This comparison was done between GSE198323 for humans and GSE127892 for mice, respectively. The Seurat R package and harmony R package were used for data analysis and batch effect correction. Differentially expressed genes (DEGs) were identified by FindMarkers function with MAST test. Comparative analyses were conducted on shared genes in DEGs associated with age and AD. The analyses were done between human and mouse using various bioinformatics techniques. The analysis of genes in DEGs related to age was conducted. Similarly, the analysis of genes in DEGs related to AD was performed. Cross-species analyses were conducted using orthologous genes. Comparative analyses of pseudotime between humans and mice were performed using Monocle2.Results(1) Similarities: The proportion of microglial subpopulation Cell_APOE/Apoe shows consistent trends, whether in AD or normal control (NC) groups in both humans and mice. The proportion of Cell_CX3CR1/Cx3cr1, representing homeostatic microglia, remains stable with age in NC groups across species. Tuberculosis and Fc gamma R-mediated phagocytosis pathways are shared in microglia responses to age and AD across species, respectively. (2) Differences: IL1RAPL1 and SPP1 as marker genes are more identifiable in human microglia compared to their mouse counterparts. Most genes of DEGs associated with age or AD exhibit different trends between humans and mice. Pseudotime analyses demonstrate varying cell density trends in microglial subpopulations, depending on age or AD across species.ConclusionsMouse Apoe and Cell_Apoe maybe serve as proxies for studying human AD, while Cx3cr1 and Cell_Cx3cr1 are suitable for human aging studies. However, AD mouse models (App_NL_G_F) have limitations in studying human genes like IL1RAPL1 and SPP1 related to AD. Thus, mouse models cannot fully replace human samples for AD and aging research.