Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains all the Seurat objects that were used for generating all the figures in Pal et al. 2021 (https://doi.org/10.15252/embj.2020107333). All the Seurat objects were created under R v3.6.1 using the Seurat package v3.1.1. The detailed information of each object is listed in a table in Chen et al. 2021.
https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
These datasets are generated by ReapTEC (read-level pre-filtering and transcribed enhancer call) using 5' single-cell RNA-seq data on human heterogenous CD4+ T cells. By taking advantage of a unique “cap signature” derived from the 5′-end of a transcript, ReapTEC simultaneously profiles gene expression and enhancer activity at nucleotide resolution using 5′-end single-cell RNA-sequencing (5′ scRNA-seq). The detail of ReapTEC pipeline is described in https://github.com/MurakawaLab/ReapTEC.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Scripts used for analysis of V1 and V2 Datasets.seurat_v1.R - initialize seurat object from 10X Genomics cellranger outputs. Includes filtering, normalization, regression, variable gene identification, PCA analysis, clustering, tSNE visualization. Used for v1 datasets. merge_seurat.R - merge two or more seurat objects into one seurat object. Perform linear regression to remove batch effects from separate objects. Used for v1 datasets. subcluster_seurat_v1.R - subcluster clusters of interest from Seurat object. Determine variable genes, perform regression and PCA. Used for v1 datasets.seurat_v2.R - initialize seurat object from 10X Genomics cellranger outputs. Includes filtering, normalization, regression, variable gene identification, and PCA analysis. Used for v2 datasets. clustering_markers_v2.R - clustering and tSNE visualization for v2 datasets. subcluster_seurat_v2.R - subcluster clusters of interest from Seurat object. Determine variable genes, perform regression and PCA analysis. Used for v2 datasets.seurat_object_analysis_v1_and_v2.R - downstream analysis and plotting functions for seurat object created by seurat_v1.R or seurat_v2.R. merge_clusters.R - merge clusters that do not meet gene threshold. Used for both v1 and v2 datasets. prepare_for_monocle_v1.R - subcluster cells of interest and perform linear regression, but not scaling in order to input normalized, regressed values into monocle with monocle_seurat_input_v1.R monocle_seurat_input_v1.R - monocle script using seurat batch corrected values as input for v1 merged timecourse datasets. monocle_lineage_trace.R - monocle script using nUMI as input for v2 lineage traced dataset. monocle_object_analysis.R - downstream analysis for monocle object - BEAM and plotting. CCA_merging_v2.R - script for merging v2 endocrine datasets with canonical correlation analysis and determining the number of CCs to include in downstream analysis. CCA_alignment_v2.R - script for downstream alignment, clustering, tSNE visualization, and differential gene expression analysis.
The dataset contains an integrated, annotated Seurat v4 object. One can load the dataset into the R environment using the code below:
seurat_obj <- readRDS('PATH/TO/DOWNLOAD/seurat.rds')
The object has three assays: (I) RNA, (II) SCT and (III) integrated.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Single cell RNA-sequencing dataset of peripheral blood mononuclear cells (pbmc: T, B, NK and monocytes) extracted from two healthy donors.
Cells labeled as C26 come from a 30 years old female and cells labeled as C27 come from a 53 years old male. Cells have been isolated from blood using ficoll. Samples were sequenced using standard 3' v3 chemistry protocols by 10x genomics. Cellranger v4.0.0 was used for the processing, and reads were aligned to the ensembl GRCg38 human genome (GRCg38_r98-ensembl_Sept2019). QC metrics were calculated on the count matrix generated by cellranger (filtered_feature_bc_matrix). Cells with less than 3 genes per cells, less than 500 reads per cell and more than 20% of mithocondrial genes were discarded.
The processing steps was performed with the R package Seurat (https://satijalab.org/seurat/), including sample integration, data normalisation and scaling, dimensional reduction, and clustering. SCTransform method was adopted for the normalisation and scaling steps. The clustered cells were manually annotated using known cell type markers.
Files content:
- raw_dataset.csv: raw gene counts
- normalized_dataset.csv: normalized gene counts (single cell matrix)
- cell_types.csv: cell types identified from annotated cell clusters
- cell_types_macro.csv: cell macro types
- UMAP_coordinates.csv: 2d cell coordinates computed with UMAP algorithm in Seurat
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Processed hematopoietic stem and progenitor cell (HSPC) single-cell RNAseq data from human samples. The file contains a Seurat object stored as an .rds file which can be read into R with the readRDS() function. It was generated using the raw data of similar name in this project, as well as the code stored here: https://github.com/dtm2451/ProgressiveHematopoiesis
Single-cell RNAseq dataset to demonstrate the use of NicheNet directly on a Seurat object. The data came from "Medaglia et al. Spatial reconstruction of immune niches by combining photoactivatable reporters and scRNA-seq, Science 2017". This data was generated via the NICHE-seq method to characterize immune cell composition in the T cell area of inguinal lymph nodes, both in steady-state and 72 hours after lymphocytic choriomeningitis virus (LCMV) infection. The Seurat objects contain the aggregated data after applying the Seurat alignment pipeline. seuratObj.rds: full dataset seuratObj_test.rds: dataset with reduced size (only highly variable genes and CD8 T cells and monocytes) {"references": ["Medaglia et al. Spatial reconstruction of immune niches by combining photoactivatable reporters and scRNA-seq, Science 2017"]}
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Seurat matrix referring to scRNA-seq of Mm1 mouse tumors in CyC manuscript
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This data is used for the Seurat version of the batch correction and integration tutorial on the Galaxy Training Network. The input data was provided by Seurat in the 'Integrative Analysis in Seurat v5' tutorial. The input dataset provided here has been filtered to include only cells for which nFeature_RNA > 1000. The other datasets were produced on Galaxy. The original dataset was published as: Ding, J., Adiconis, X., Simmons, S.K. et al. Systematic comparison of single-cell and single-nucleus RNA-sequencing methods. Nat Biotechnol 38, 737–746 (2020). https://doi.org/10.1038/s41587-020-0465-8.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Processed naive CD4 and CD8 T cell single-cell RNAseq data from human samples. The file contains a Seurat object stored as an .rds file which can be read into R with the readRDS() function. It was generated using the raw data of similar name in this project, as well as the code stored here: https://github.com/dtm2451/ProgressiveHematopoiesis
The provided datasets correspond to the analyses of individual donor single-cell RNA Sequencing (scRNA-Seq) datasets, before their integration. The datasets have been saved as Seurat v4.0.5 objects. For clustering, we used default settings in Seurat 4.0.5 (resolution 0.8) and increased resolution, if necessary, to separate epithelium in proximal and distal. The *_clusters.pdf files show the suggested clusters in the individual datasets and the _indiv_anno1.pdf files show the cell annotations according to the 84 cell states, described in the study with title "Developmental origins of cell heterogeneity in the human lung" (1st preprint version doi: https://doi.org/10.1101/2022.01.11.475631). The "_cluster_annotations.csv" files provide information about the suggested annotations of the clusters. The "*_object_raw_and_log_counts.RData" objects contain the metadata and the UMI-counts [raw and log2(counts+1)] for each donor scRNA-Seq dataset.
Skeletal muscle repair is driven by the coordinated self-renewal and fusion of myogenic stem and progenitor cells. Single-cell gene expression analyses of myogenesis have been hampered by the poor sampling of rare and transient cell states that are critical for muscle repair, and do not inform the spatial context that is important for myogenic differentiation. Here, we demonstrate how large-scale integration of single-cell and spatial transcriptomic data can overcome these limitations. We created a single-cell transcriptomic dataset of mouse skeletal muscle by integration, consensus annotation, and analysis of 23 newly collected scRNAseq datasets and 88 publicly available single-cell (scRNAseq) and single-nucleus (snRNAseq) RNA-sequencing datasets. The resulting dataset includes more than 365,000 cells and spans a wide range of ages, injury, and repair conditions. Together, these data enabled identification of the predominant cell types in skeletal muscle, and resolved cell subtypes, in...
SIB course on single cell transcriptomics by mostly using the Seurat pipeline
Table of Contents
Main Description File Descriptions Linked Files Installation and Instructions
This is the Zenodo repository for the manuscript titled "A TCR β chain-directed antibody-fusion molecule that activates and expands subsets of T cells and promotes antitumor activity.". The code included in the file titled marengo_code_for_paper_jan_2023.R
was used to generate the figures from the single-cell RNA sequencing data.
The following libraries are required for script execution:
Seurat scReportoire ggplot2 stringr dplyr ggridges ggrepel ComplexHeatmap
The code can be downloaded and opened in RStudios. The "marengo_code_for_paper_jan_2023.R" contains all the code needed to reproduce the figues in the paper The "Marengo_newID_March242023.rds" file is available at the following address: https://zenodo.org/badge/DOI/10.5281/zenodo.7566113.svg (Zenodo DOI: 10.5281/zenodo.7566113). The "all_res_deg_for_heat_updated_march2023.txt" file contains the unfiltered results from DGE anlaysis, also used to create the heatmap with DGE and volcano plots. The "genes_for_heatmap_fig5F.xlsx" contains the genes included in the heatmap in figure 5F.
This repository contains code for the analysis of single cell RNA-seq dataset. The dataset contains raw FASTQ files, as well as, the aligned files that were deposited in GEO. The "Rdata" or "Rds" file was deposited in Zenodo. Provided below are descriptions of the linked datasets:
Gene Expression Omnibus (GEO) ID: GSE223311(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE223311)
Title: Gene expression profile at single cell level of CD4+ and CD8+ tumor infiltrating lymphocytes (TIL) originating from the EMT6 tumor model from mSTAR1302 treatment. Description: This submission contains the "matrix.mtx", "barcodes.tsv", and "genes.tsv" files for each replicate and condition, corresponding to the aligned files for single cell sequencing data. Submission type: Private. In order to gain access to the repository, you must use a reviewer token (https://www.ncbi.nlm.nih.gov/geo/info/reviewer.html).
Sequence read archive (SRA) repository ID: SRX19088718 and SRX19088719
Title: Gene expression profile at single cell level of CD4+ and CD8+ tumor infiltrating lymphocytes (TIL) originating from the EMT6 tumor model from mSTAR1302 treatment.
Description: This submission contains the raw sequencing or .fastq.gz
files, which are tab delimited text files.
Submission type: Private. In order to gain access to the repository, you must use a reviewer token (https://www.ncbi.nlm.nih.gov/geo/info/reviewer.html).
Zenodo DOI: 10.5281/zenodo.7566113(https://zenodo.org/record/7566113#.ZCcmvC2cbrJ)
Title: A TCR β chain-directed antibody-fusion molecule that activates and expands subsets of T cells and promotes antitumor activity. Description: This submission contains the "Rdata" or ".Rds" file, which is an R object file. This is a necessary file to use the code. Submission type: Restricted Acess. In order to gain access to the repository, you must contact the author.
The code included in this submission requires several essential packages, as listed above. Please follow these instructions for installation:
Ensure you have R version 4.1.2 or higher for compatibility.
Although it is not essential, you can use R-Studios (Version 2022.12.0+353 (2022.12.0+353)) for accessing and executing the code.
marengo_code_for_paper_jan_2023.R Install_Packages.R Marengo_newID_March242023.rds genes_for_heatmap_fig5F.xlsx all_res_deg_for_heat_updated_march2023.txt
You can use the following code to set the working directory in R:
setwd(directory)
Dataset created in the study "A Spatial Transcriptomics Atlas of the Malaria-infected Liver Indicates a Crucial Role for Lipid Metabolism and Hotspots of Inflammatory Cell Infiltration"
Structure
ST_berghei_liver
contains data generated during stpipeline analysis and imaging on 2k arrays Spatial Transcriptomics platform as well as data necessary for and from hepaquery analysis. These samples include 38 sections in total of which 8 are from mice (n=4) infected with sporozoites for 12h, 5 sections from control mice (n=3) at 12h, 7 sections from mice (n=4) infected with sporozoites for 24h and 4 sections from control mice (n=3) for 24 as well as 8 samples of mice (n=2) infected with sporozoites for 38h and control mice (n =2) for 38h.
STUtiility_mus_pb_ST.RDS describes seurat object generated using the STUtility package using ST data of the 38 liver sections of which the data is stored in ST_berghei_liver
visium_berghei_liver
contains data generated with the spaceranger pipeline and imaging using the Visium spatial transcriptomics platform. These samples include 8 sections in total, of which 1 was infected with sporozoites for 12h, 1 control section at 12h, 1 section infected with sporozoites for 24h and 1 control section at 24 as well as 2 sporozoite infected sections, and 2 control sections at 38h.
V10S29-135_B1 contains spaceranger output for section 1 for infected and control sections at 12h post-infection
V10S29-135_C1 contains spaceranger output for section 1 for infected and control sections at 24h post-infection
V10S29-135_D1 contains spaceranger output for section 2 for infected and control sections at 38h post-infection
se_visium.RDS describes seurat object generated using the STUtility package using ST data of the 38 liver sections of which the data is stored in visium_berghei_liver
snSeq_berghei_liver
contains data generated with the cellranger pipeline and imaging using the Visium spatial transcriptomics platform. These samples include single nuclei of 2 infected and control mice after 12h, 2 infected and control mice after 24h, 2 infected and control mice after 38h, and 2 uninfected mice prior to a challenge.
cellranger_cnt_out contains feature count matrix information from cell ranger output
final_merged_curated_annotations_270623.RDS describes seurat object generated using the STUtility package using ST data of the 38 liver sections of which the data is stored in snSeq_berghei_liver.tar.gz
raw images.zip contains raw images for supplementary figures 20-22
adjusted images.zip contains brightness and contrast adjusted images for supplementary figures 20-22
This record includes training materials associated with the Australian BioCommons workshop 'Single cell RNAseq analysis in R'. This workshop took place over two, 3.5 hour sessions on 26 and 27 October 2023. Event description Analysis and interpretation of single cell RNAseq (scRNAseq) data requires dedicated workflows. In this hands-on workshop we will show you how to perform single cell analysis using Seurat - an R package for QC, analysis, and exploration of single-cell RNAseq data. We will discuss the 'why' behind each step and cover reading in the count data, quality control, filtering, normalisation, clustering, UMAP layout and identification of cluster markers. We will also explore various ways of visualising single cell expression data. This workshop is presented by the Australian BioCommons, Queensland Cyber Infrastructure Foundation (QCIF) and the Monash Genomics and Bioinformatics Platform with the assistance of a network of facilitators from the national Bioinformatics Training Cooperative. Lead trainers: Sarah Williams, Adele Barugahare, Paul Harrison, Laura Perlaza Jimenez Facilitators: Nick Matigan, Valentine Murigneux, Magdalena (Magda) Antczak Infrastructure provision: Uwe Winter Coordinator: Melissa Burke Training materials Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event. Files and materials included in this record: Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc. Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file. scRNAseq_Schedule (PDF): A breakdown of the topics and timings for the workshop Materials shared elsewhere: This workshop follows the tutorial 'scRNAseq Analysis in R with Seurat' https://swbioinf.github.io/scRNAseqInR_Doco/index.html Slides used to introduce key topics are available via GitHub https://github.com/swbioinf/scRNAseqInR_Doco/tree/main/slides This material is based on the introductory Guided Clustering Tutorial tutorial from Seurat. It is also drawing from a similar workshop held by Monash Bioinformatics Platform Single-Cell-Workshop, with material here.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Summary: Dendritic cells (DCs) orchestrate innate and adaptive immunity, by translating the sensing of distinct danger signals into the induction of different effector lymphocyte responses, to induce different defense mechanisms suited to face distinct types of threats. Hence, DCs are very plastic, which results from two key characteristics. First, DCs encompass distinct cell types specialized in different functions. Second, each DC type can undergo different activation states, fine-tuning its functions depending on its tissue microenvironment and the pathophysiological context, by adapting the output signals it delivers to the input signals it receives. Hence, to better understand DC biology and harness it in the clinic, we must determine which combinations of DC types and activation states mediate which functions, and how.
To decipher the nature, functions and regulation of DC types and their physiological activation states, one of the methods that can be harnessed most successfully is ex vivo single cell RNA sequencing (scRNAseq). However, for new users of this approach, determining which analytics strategy and computational tools to choose can be quite challenging, considering the rapid evolution and broad burgeoning of the field. In addition, awareness must be raised on the need for specific, robust and tractable strategies to annotate cells for cell type identity and activation states. It is also important to emphasize the necessity of examining whether similar cell activation trajectories are inferred by using different, complementary methods. In this chapter, we take these issues into account for providing a pipeline for scRNAseq analysis and illustrating it with a tutorial reanalyzing a public dataset of mononuclear phagocytes isolated from the lungs of naïve or tumor-bearing mice. We describe this pipeline step-by-step, including data quality controls, dimensionality reduction, cell clustering, cell cluster annotation, inference of the cell activation trajectories and investigation of the underpinning molecular regulation. It is accompanied with a more complete tutorial on Github. We anticipate that this method will be helpful for both wet lab and bioinformatics researchers interested in harnessing scRNAseq data for deciphering the biology of DCs or other cell types, and that it will contribute to establishing high standards in the field.
Data:
1. negative_cDC1_relative_signatures.csv : Negative signatures for performing Connectivity Map (cMAP) Analysis
2. positive_cDC1_relative_signatures.csv : Positive signatures for performing Connectivity Map (cMAP) Analysis
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This page includes the data and code necessary to reproduce the results of the following paper: Yang Liao, Dinesh Raghu, Bhupinder Pal, Lisa Mielke and Wei Shi. cellCounts: fast and accurate quantification of 10x Chromium single-cell RNA sequencing data. Under review. A Linux computer running an operating system of CentOS 7 (or later) or Ubuntu 20.04 (or later) is recommended for running this analysis. The computer should have >2 TB of disk space and >64 GB of RAM. The following software packages need to be installed before running the analysis. Software executables generated after installation should be included in the $PATH environment variable.
R (v4.0.0 or newer) https://www.r-project.org/ Rsubread (v2.12.2 or newer) http://bioconductor.org/packages/3.16/bioc/html/Rsubread.html CellRanger (v6.0.1) https://support.10xgenomics.com/single-cell-gene-expression/software/overview/welcome STARsolo (v2.7.10a) https://github.com/alexdobin/STAR sra-tools (v2.10.0 or newer) https://github.com/ncbi/sra-tools Seurat (v3.0.0 or newer) https://satijalab.org/seurat/ edgeR (v3.30.0 or newer) https://bioconductor.org/packages/edgeR/ limma (v3.44.0 or newer) https://bioconductor.org/packages/limma/ mltools (v0.3.5 or newer) https://cran.r-project.org/web/packages/mltools/index.html
Reference packages generated by 10x Genomics are also required for this analysis and they can be downloaded from the following link (2020-A version for individual human and mouse reference packages should be selected): https://support.10xgenomics.com/single-cell-gene-expression/software/downloads/latest After all these are done, you can simply run the shell script ‘test-all-new.bash’ to perform all the analyses carried out in the paper. This script will automatically download the mixture scRNA-seq data from the SRA database, and it will output a text file called ‘test-all.log’ that contains all the screen outputs and speed/accuracy results of CellRanger, STARsolo and cellCounts.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
QC filtered using EmptyDropsIndividually scaledMerged then Integrated with HarmonyClustered with SeuratSubclustered with SeuratManually Annotated
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
ObjectiveTo guide animal experiments, we investigated the similarities and differences between humans and mice in aging and Alzheimer’s disease (AD) at the single-nucleus RNA sequencing (snRNA-seq) or single-cell RNA sequencing (scRNA-seq) level.MethodsMicroglia cells were extracted from dataset GSE198323 of human post-mortem hippocampus. The distributions and proportions of microglia subpopulation cell numbers related to AD or age were compared. This comparison was done between GSE198323 for humans and GSE127892 for mice, respectively. The Seurat R package and harmony R package were used for data analysis and batch effect correction. Differentially expressed genes (DEGs) were identified by FindMarkers function with MAST test. Comparative analyses were conducted on shared genes in DEGs associated with age and AD. The analyses were done between human and mouse using various bioinformatics techniques. The analysis of genes in DEGs related to age was conducted. Similarly, the analysis of genes in DEGs related to AD was performed. Cross-species analyses were conducted using orthologous genes. Comparative analyses of pseudotime between humans and mice were performed using Monocle2.Results(1) Similarities: The proportion of microglial subpopulation Cell_APOE/Apoe shows consistent trends, whether in AD or normal control (NC) groups in both humans and mice. The proportion of Cell_CX3CR1/Cx3cr1, representing homeostatic microglia, remains stable with age in NC groups across species. Tuberculosis and Fc gamma R-mediated phagocytosis pathways are shared in microglia responses to age and AD across species, respectively. (2) Differences: IL1RAPL1 and SPP1 as marker genes are more identifiable in human microglia compared to their mouse counterparts. Most genes of DEGs associated with age or AD exhibit different trends between humans and mice. Pseudotime analyses demonstrate varying cell density trends in microglial subpopulations, depending on age or AD across species.ConclusionsMouse Apoe and Cell_Apoe maybe serve as proxies for studying human AD, while Cx3cr1 and Cell_Cx3cr1 are suitable for human aging studies. However, AD mouse models (App_NL_G_F) have limitations in studying human genes like IL1RAPL1 and SPP1 related to AD. Thus, mouse models cannot fully replace human samples for AD and aging research.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains all the Seurat objects that were used for generating all the figures in Pal et al. 2021 (https://doi.org/10.15252/embj.2020107333). All the Seurat objects were created under R v3.6.1 using the Seurat package v3.1.1. The detailed information of each object is listed in a table in Chen et al. 2021.