100+ datasets found
  1. Scripts for Analysis

    • figshare.com
    txt
    Updated Jul 18, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sneddon Lab UCSF (2018). Scripts for Analysis [Dataset]. http://doi.org/10.6084/m9.figshare.6783569.v2
    Explore at:
    txtAvailable download formats
    Dataset updated
    Jul 18, 2018
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Sneddon Lab UCSF
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    Scripts used for analysis of V1 and V2 Datasets.seurat_v1.R - initialize seurat object from 10X Genomics cellranger outputs. Includes filtering, normalization, regression, variable gene identification, PCA analysis, clustering, tSNE visualization. Used for v1 datasets. merge_seurat.R - merge two or more seurat objects into one seurat object. Perform linear regression to remove batch effects from separate objects. Used for v1 datasets. subcluster_seurat_v1.R - subcluster clusters of interest from Seurat object. Determine variable genes, perform regression and PCA. Used for v1 datasets.seurat_v2.R - initialize seurat object from 10X Genomics cellranger outputs. Includes filtering, normalization, regression, variable gene identification, and PCA analysis. Used for v2 datasets. clustering_markers_v2.R - clustering and tSNE visualization for v2 datasets. subcluster_seurat_v2.R - subcluster clusters of interest from Seurat object. Determine variable genes, perform regression and PCA analysis. Used for v2 datasets.seurat_object_analysis_v1_and_v2.R - downstream analysis and plotting functions for seurat object created by seurat_v1.R or seurat_v2.R. merge_clusters.R - merge clusters that do not meet gene threshold. Used for both v1 and v2 datasets. prepare_for_monocle_v1.R - subcluster cells of interest and perform linear regression, but not scaling in order to input normalized, regressed values into monocle with monocle_seurat_input_v1.R monocle_seurat_input_v1.R - monocle script using seurat batch corrected values as input for v1 merged timecourse datasets. monocle_lineage_trace.R - monocle script using nUMI as input for v2 lineage traced dataset. monocle_object_analysis.R - downstream analysis for monocle object - BEAM and plotting. CCA_merging_v2.R - script for merging v2 endocrine datasets with canonical correlation analysis and determining the number of CCs to include in downstream analysis. CCA_alignment_v2.R - script for downstream alignment, clustering, tSNE visualization, and differential gene expression analysis.

  2. d

    Transcription start site analysis for heterogenous CD4+ T cells using 5′...

    • datadryad.org
    • data.niaid.nih.gov
    zip
    Updated Apr 22, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Akiko Oguchi; Yasuhiro Murakawa (2024). Transcription start site analysis for heterogenous CD4+ T cells using 5′ scRNA-seq [Dataset]. http://doi.org/10.5061/dryad.gtht76hv9
    Explore at:
    zipAvailable download formats
    Dataset updated
    Apr 22, 2024
    Dataset provided by
    Dryad
    Authors
    Akiko Oguchi; Yasuhiro Murakawa
    Time period covered
    Apr 14, 2024
    Description

    README: Transcription start site analysis for heterogenous CD4+ T cells using 5′ scRNA-seq

    https://doi.org/10.5061/dryad.gtht76hv9

    Description of the data and file structure

    Data_summary.xlsx.zip: Summary of single-cell experiments in this study.

    5scCTSSbed_All.zip: There are 102 files containing count data for analyzing transcription start site (TSS) signals. Details are as follows.

    Our original raw sequencing data and processed data of 5′ scRNA-seq have been deposited to National Bioscience Database Center (NBDC) Human Database (accession code: hum0350). Raw sequencing data originated from human subjects have been deposited to Japanese Genotype-phenotype Archive (JGA, accession code: JGAS000689). We retrieved 5′ scRNA-seq data for human memory CD4+ T cells stimulated with viral antigens from the Gene Expression Omnibus database (accession number GSE152522). In total, 102 5′ scRNA-seq datasets were processed by ReapTEC pipeline (https://github.com/MurakawaLab/ReapTEC)....

  3. Data, R code and output Seurat Objects for single cell RNA-seq analysis of...

    • figshare.com
    application/gzip
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yunshun Chen; Gordon Smyth (2023). Data, R code and output Seurat Objects for single cell RNA-seq analysis of human breast tissues [Dataset]. http://doi.org/10.6084/m9.figshare.17058077.v1
    Explore at:
    application/gzipAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Yunshun Chen; Gordon Smyth
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset contains all the Seurat objects that were used for generating all the figures in Pal et al. 2021 (https://doi.org/10.15252/embj.2020107333). All the Seurat objects were created under R v3.6.1 using the Seurat package v3.1.1. The detailed information of each object is listed in a table in Chen et al. 2021.

  4. Z

    Processed, annotated, seurat object

    • data.niaid.nih.gov
    • zenodo.org
    Updated Nov 16, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cenk Celik (2023). Processed, annotated, seurat object [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_7608211
    Explore at:
    Dataset updated
    Nov 16, 2023
    Dataset provided by
    Cenk Celik
    Guillaume Thibault
    Description

    The dataset contains an integrated, annotated Seurat v4 object. One can load the dataset into the R environment using the code below:

    seurat_obj <- readRDS('PATH/TO/DOWNLOAD/seurat.rds')

    The object has three assays: (I) RNA, (II) SCT and (III) integrated.

  5. d

    Data from: Large-scale integration of single-cell transcriptomic data...

    • dataone.org
    • data.niaid.nih.gov
    • +1more
    Updated May 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    David McKellar; Iwijn De Vlaminck; Benjamin Cosgrove (2025). Large-scale integration of single-cell transcriptomic data captures transitional progenitor states in mouse skeletal muscle regeneration [Dataset]. http://doi.org/10.5061/dryad.t4b8gtj34
    Explore at:
    Dataset updated
    May 2, 2025
    Dataset provided by
    Dryad Digital Repository
    Authors
    David McKellar; Iwijn De Vlaminck; Benjamin Cosgrove
    Time period covered
    Oct 22, 2021
    Description

    Skeletal muscle repair is driven by the coordinated self-renewal and fusion of myogenic stem and progenitor cells. Single-cell gene expression analyses of myogenesis have been hampered by the poor sampling of rare and transient cell states that are critical for muscle repair, and do not inform the spatial context that is important for myogenic differentiation. Here, we demonstrate how large-scale integration of single-cell and spatial transcriptomic data can overcome these limitations. We created a single-cell transcriptomic dataset of mouse skeletal muscle by integration, consensus annotation, and analysis of 23 newly collected scRNAseq datasets and 88 publicly available single-cell (scRNAseq) and single-nucleus (snRNAseq) RNA-sequencing datasets. The resulting dataset includes more than 365,000 cells and spans a wide range of ages, injury, and repair conditions. Together, these data enabled identification of the predominant cell types in skeletal muscle, and resolved cell subtypes, in...

  6. f

    Processed HSPCs single-cell RNA-seq, Seurat object

    • figshare.com
    application/gzip
    Updated Jan 5, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Daniel Bunis (2021). Processed HSPCs single-cell RNA-seq, Seurat object [Dataset]. http://doi.org/10.6084/m9.figshare.11894691.v2
    Explore at:
    application/gzipAvailable download formats
    Dataset updated
    Jan 5, 2021
    Dataset provided by
    figshare
    Authors
    Daniel Bunis
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Processed hematopoietic stem and progenitor cell (HSPC) single-cell RNAseq data from human samples. The file contains a Seurat object stored as an .rds file which can be read into R with the readRDS() function. It was generated using the raw data of similar name in this project, as well as the code stored here: https://github.com/dtm2451/ProgressiveHematopoiesis

  7. Seurat objects associated with the tonsil cell atlas

    • zenodo.org
    application/gzip, bin +1
    Updated Sep 28, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ramon Massoni-Badosa; Ramon Massoni-Badosa (2023). Seurat objects associated with the tonsil cell atlas [Dataset]. http://doi.org/10.5281/zenodo.8373756
    Explore at:
    bin, application/gzip, csvAvailable download formats
    Dataset updated
    Sep 28, 2023
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Ramon Massoni-Badosa; Ramon Massoni-Badosa
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    In the context of the Human Cell Atlas, we have created a single-cell-driven taxonomy of cell types and states in human tonsils. This repository contains the Seurat objects derived from this effort. In particular, we have datasets for each modality (scRNA-seq, scATAC-seq, CITE-seq, spatial transcriptomics), as well as cell type-specific datasets. Most importantly, this is the input that we used to create the HCATonsilData package, which allows programmatic access to all this datasets within R.

    Version 2 of this repository includes cells from 7 additional donors, which we used as a validation cohort to validate the cell types and states defined in the atlas. In addition, in this version we also provide the Seurat object associated with the spatial transcriptomics data (10X Visium), as well as the fragments files for scATAC-seq and Multiome

  8. f

    Seurat object with cell type annotation and UMAP coordinates for zebrafish...

    • figshare.com
    application/gzip
    Updated Nov 28, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Gangcai Xie (2024). Seurat object with cell type annotation and UMAP coordinates for zebrafish testis single cell RNA sequencing datasets [Dataset]. http://doi.org/10.6084/m9.figshare.27922725.v1
    Explore at:
    application/gzipAvailable download formats
    Dataset updated
    Nov 28, 2024
    Dataset provided by
    figshare
    Authors
    Gangcai Xie
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This is the Seurat object in .rds format with the raw matrix information (after filtering) , cell type annotation information and the UMAP coordinates. Users can use R readRDS function to load this .rds file. If you are using this dataset, please cite our paper: Qian, Peipei, Jiahui Kang, Dong Liu, and Gangcai Xie. "Single cell transcriptome sequencing of Zebrafish testis revealed novel spermatogenesis marker genes and stronger Leydig-germ cell paracrine interactions." Frontiers in genetics 13 (2022): 851719.

  9. Mm1 tumor single cell RNA-seq data

    • figshare.com
    application/gzip
    Updated Jun 13, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sam Kleeman (2022). Mm1 tumor single cell RNA-seq data [Dataset]. http://doi.org/10.6084/m9.figshare.20063402.v1
    Explore at:
    application/gzipAvailable download formats
    Dataset updated
    Jun 13, 2022
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Sam Kleeman
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Seurat matrix referring to scRNA-seq of Mm1 mouse tumors in CyC manuscript

  10. PBMC CITE-seq reference

    • zenodo.org
    • data.niaid.nih.gov
    bin
    Updated Mar 29, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Satija Lab; Satija Lab (2023). PBMC CITE-seq reference [Dataset]. http://doi.org/10.5281/zenodo.7779017
    Explore at:
    binAvailable download formats
    Dataset updated
    Mar 29, 2023
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Satija Lab; Satija Lab
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This PBMC CITE-seq reference object was constructed using Seurat v5.

  11. pbmc single cell RNA-seq matrix

    • zenodo.org
    csv
    Updated May 4, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Samuel Buchet; Samuel Buchet; Francesco Carbone; Morgan Magnin; Morgan Magnin; Mickaël Ménager; Olivier Roux; Olivier Roux; Francesco Carbone; Mickaël Ménager (2021). pbmc single cell RNA-seq matrix [Dataset]. http://doi.org/10.5281/zenodo.4730807
    Explore at:
    csvAvailable download formats
    Dataset updated
    May 4, 2021
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Samuel Buchet; Samuel Buchet; Francesco Carbone; Morgan Magnin; Morgan Magnin; Mickaël Ménager; Olivier Roux; Olivier Roux; Francesco Carbone; Mickaël Ménager
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Single cell RNA-sequencing dataset of peripheral blood mononuclear cells (pbmc: T, B, NK and monocytes) extracted from two healthy donors.

    Cells labeled as C26 come from a 30 years old female and cells labeled as C27 come from a 53 years old male. Cells have been isolated from blood using ficoll. Samples were sequenced using standard 3' v3 chemistry protocols by 10x genomics. Cellranger v4.0.0 was used for the processing, and reads were aligned to the ensembl GRCg38 human genome (GRCg38_r98-ensembl_Sept2019). QC metrics were calculated on the count matrix generated by cellranger (filtered_feature_bc_matrix). Cells with less than 3 genes per cells, less than 500 reads per cell and more than 20% of mithocondrial genes were discarded.

    The processing steps was performed with the R package Seurat (https://satijalab.org/seurat/), including sample integration, data normalisation and scaling, dimensional reduction, and clustering. SCTransform method was adopted for the normalisation and scaling steps. The clustered cells were manually annotated using known cell type markers.

    Files content:

    - raw_dataset.csv: raw gene counts

    - normalized_dataset.csv: normalized gene counts (single cell matrix)

    - cell_types.csv: cell types identified from annotated cell clusters

    - cell_types_macro.csv: cell macro types

    - UMAP_coordinates.csv: 2d cell coordinates computed with UMAP algorithm in Seurat

  12. o

    Course material Single cell transcriptomics

    • explore.openaire.eu
    Updated Jul 6, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tania Wyss; Rachel Marcone; Geert van Geest; Patricia Palagi (2023). Course material Single cell transcriptomics [Dataset]. http://doi.org/10.5281/zenodo.10124290
    Explore at:
    Dataset updated
    Jul 6, 2023
    Authors
    Tania Wyss; Rachel Marcone; Geert van Geest; Patricia Palagi
    Description

    SIB course on single cell transcriptomics by mostly using the Seurat pipeline

  13. d

    Transcription start site analysis for heterogenous CD4+ T cells using 5′...

    • search.dataone.org
    Updated Jul 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Akiko Oguchi; Yasuhiro Murakawa (2025). Transcription start site analysis for heterogenous CD4+ T cells using 5′ scRNA-seq [Dataset]. http://doi.org/10.5061/dryad.gtht76hv9
    Explore at:
    Dataset updated
    Jul 30, 2025
    Dataset provided by
    Dryad Digital Repository
    Authors
    Akiko Oguchi; Yasuhiro Murakawa
    Description

    These datasets are generated by ReapTEC (read-level pre-filtering and transcribed enhancer call) using 5' single-cell RNA-seq data on human heterogenous CD4+ T cells. By taking advantage of a unique “cap signature†derived from the 5′-end of a transcript, ReapTEC simultaneously profiles gene expression and enhancer activity at nucleotide resolution using 5′-end single-cell RNA-sequencing (5′ scRNA-seq). The detail of ReapTEC pipeline is described in https://github.com/MurakawaLab/ReapTEC., , , README: Transcription start site analysis for heterogenous CD4+ T cells using 5′ scRNA-seq

    https://doi.org/10.5061/dryad.gtht76hv9

    Description of the data and file structure

    Data_summary.xlsx.zip: Summary of single-cell experiments in this study.

    5scCTSSbed_All.zip: There are 102 files containing count data for analyzing transcription start site (TSS) signals. Details are as follows.

    Our original raw sequencing data and processed data of 5′ scRNA-seq have been deposited to National Bioscience Database Center (NBDC) Human Database (accession code: hum0350). Raw sequencing data originated from human subjects have been deposited to Japanese Genotype-phenotype Archive (JGA, accession code: JGAS000689). We retrieved 5′ scRNA-seq data for human memory CD4+ T cells stimulated with viral antigens from the Gene Expression Omnibus database (accession number GSE152522). In total, 102 5′ scRNA-seq datasets were processed by ReapTEC pipeline (https://github.com/MurakawaLab/ReapTEC)....

  14. l

    cellCounts

    • opal.latrobe.edu.au
    • researchdata.edu.au
    bin
    Updated Dec 19, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yang Liao; Dinesh Raghu; Bhupinder Pal; Lisa Mielke; Wei Shi (2022). cellCounts [Dataset]. http://doi.org/10.26181/21588276.v3
    Explore at:
    binAvailable download formats
    Dataset updated
    Dec 19, 2022
    Dataset provided by
    La Trobe
    Authors
    Yang Liao; Dinesh Raghu; Bhupinder Pal; Lisa Mielke; Wei Shi
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This page includes the data and code necessary to reproduce the results of the following paper: Yang Liao, Dinesh Raghu, Bhupinder Pal, Lisa Mielke and Wei Shi. cellCounts: fast and accurate quantification of 10x Chromium single-cell RNA sequencing data. Under review. A Linux computer running an operating system of CentOS 7 (or later) or Ubuntu 20.04 (or later) is recommended for running this analysis. The computer should have >2 TB of disk space and >64 GB of RAM. The following software packages need to be installed before running the analysis. Software executables generated after installation should be included in the $PATH environment variable.

    R (v4.0.0 or newer) https://www.r-project.org/ Rsubread (v2.12.2 or newer) http://bioconductor.org/packages/3.16/bioc/html/Rsubread.html CellRanger (v6.0.1) https://support.10xgenomics.com/single-cell-gene-expression/software/overview/welcome STARsolo (v2.7.10a) https://github.com/alexdobin/STAR sra-tools (v2.10.0 or newer) https://github.com/ncbi/sra-tools Seurat (v3.0.0 or newer) https://satijalab.org/seurat/ edgeR (v3.30.0 or newer) https://bioconductor.org/packages/edgeR/ limma (v3.44.0 or newer) https://bioconductor.org/packages/limma/ mltools (v0.3.5 or newer) https://cran.r-project.org/web/packages/mltools/index.html

    Reference packages generated by 10x Genomics are also required for this analysis and they can be downloaded from the following link (2020-A version for individual human and mouse reference packages should be selected): https://support.10xgenomics.com/single-cell-gene-expression/software/downloads/latest After all these are done, you can simply run the shell script ‘test-all-new.bash’ to perform all the analyses carried out in the paper. This script will automatically download the mixture scRNA-seq data from the SRA database, and it will output a text file called ‘test-all.log’ that contains all the screen outputs and speed/accuracy results of CellRanger, STARsolo and cellCounts.

  15. Single-cell Atlas Reveals Diagnostic Features Predicting Progressive Drug...

    • zenodo.org
    • explore.openaire.eu
    • +1more
    Updated Sep 7, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Vaidehi Krishnan; Florian Schmidt; Florian Schmidt; Zahid Nawaz; Prasanna Nori Venkatesh; Lee Kian Leong; Chan Zhu En; Alice Man Sze Cheung; Sudipto Bari; Meera Makheja; Ahmad Lajam; Pavanish Kumar; John Ouyang; Owen Rackham; William Ying Khee Hwang; Salvatore Albani; Charles Chuah; Shyam Prabhakar; Sin Tiong Ong; Vaidehi Krishnan; Zahid Nawaz; Prasanna Nori Venkatesh; Lee Kian Leong; Chan Zhu En; Alice Man Sze Cheung; Sudipto Bari; Meera Makheja; Ahmad Lajam; Pavanish Kumar; John Ouyang; Owen Rackham; William Ying Khee Hwang; Salvatore Albani; Charles Chuah; Shyam Prabhakar; Sin Tiong Ong (2023). Single-cell Atlas Reveals Diagnostic Features Predicting Progressive Drug Resistance in Chronic Myeloid Leukemia [Dataset]. http://doi.org/10.5281/zenodo.5118611
    Explore at:
    Dataset updated
    Sep 7, 2023
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Vaidehi Krishnan; Florian Schmidt; Florian Schmidt; Zahid Nawaz; Prasanna Nori Venkatesh; Lee Kian Leong; Chan Zhu En; Alice Man Sze Cheung; Sudipto Bari; Meera Makheja; Ahmad Lajam; Pavanish Kumar; John Ouyang; Owen Rackham; William Ying Khee Hwang; Salvatore Albani; Charles Chuah; Shyam Prabhakar; Sin Tiong Ong; Vaidehi Krishnan; Zahid Nawaz; Prasanna Nori Venkatesh; Lee Kian Leong; Chan Zhu En; Alice Man Sze Cheung; Sudipto Bari; Meera Makheja; Ahmad Lajam; Pavanish Kumar; John Ouyang; Owen Rackham; William Ying Khee Hwang; Salvatore Albani; Charles Chuah; Shyam Prabhakar; Sin Tiong Ong
    Description

    This archive contains data of scRNAseq and CyTOF in form of Seurat objects, txt and csv files as well as R scripts for data analysis and Figure generation.

    A summary of the content is provided in the following.

    R scripts

    Script to run Machine learning models predicting group specific marker genes: CML_Find_Markers_Zenodo.R
    Script to reproduce the majority of Main and Supplementary Figures shown in the manuscript: CML_Paper_Figures_Zenodo.R
    Script to run inferCNV analysis: inferCNV_Zenodo.R Script to plot NATMI analysis results:NATMI_CvsA_FC0.32_Updown_Column_plot_Zenodo.R Script to conduct sub-clustering and filtering of NK cells NK_Marker_Detection_Zenodo.R

    Helper scripts for plotting and DEG calculation:ComputePairWiseDE_v2.R, Seurat_DE_Heatmap_RCA_Style.R

    RDS files

    General scRNA-seq Seurat objects:

    • scRNA-seq seurat object after QC, and cell type annotation used for most analysis in the manuscript: DUKE_DataSet_Doublets_Removed_Relabeled.RDS
    • scRNA-seq including findings e.g. from NK analysis used in the shiny app: DUKE_final_for_Shiny_App.rds
    • Neighborhood enrichment score computed for group A across all HSPCs: Enrichment_score_global_groupA.RDS
    • UMAP coordinates used in the article: Layout_2D_nNeighbours_25_Metric_cosine_TCU_removed.RDS

    SCENIC files:

    • Regulon set used in SCENIC: 2.6_regulons_asGeneSet.Rds
    • AUC values computed for regulons: 3.4_regulonAUC.Rds
    • MetaData used in SCENIC cellInfo.Rds
    • Group specific regulons for LCS: groupSpecificRegulonsBCRAblP.RDS
    • Patient specific regulons for LSC: patientSpecificRegulonsBCRAblP.RDS
    • Patient specificity score for LSC: PatientSpecificRegulonSpecificityScoreBCRAblP.RDS
    • Regulon specificty score for LSC: RegulonSpecificityScoreBCRAblP.RDS

    BCR-ABL1 inference:

    • HSC with inferred BCR-ABL1 label: HSCs_CML_with_BCR-Abl_label.RDS
    • UMAP for HSC with inferred BCR-ABL1 label: HSCs_CML_with_BCR-Abl_label_UMAP.RDS
    • HSPCs with BCR-ABL1 module scores: HSPC_metacluster_74K_with_modscore_27thmay.RDS

    NK sub-clustering and filtering:

    • NK object with module scores: NK_8617cells_with_modscore_1stjune.RDS
    • Feature genes for NK cells computed with DubStepR: NK_Cells_DubStepR
    • NK cells Seurat object excluding contaminating T and B cells: NK_cells_T_B_17_removed.RDS
    • NK Seurat object including neighbourhood enrichment score calculations: NK_seurat_object_with_enrichment_labels_V2.RDS

    txt and csv files:

    • Proportions per cluster calculated from CyTOF: CyTOF_Proportions.txt
    • Correlation between scRNAseq and CyTOF cell type abundance: scRNAseq_Cor_Cytof.txt
    • Correlation between manual gating and FlowSOM clustering: Manual_vs_FlowSOM.txt
    • GSEA results:
      • HSPC, HSC and LSC results: FINAL_GSEA_DATA_For_GGPLOT.txt
      • NK: NK_For_Plotting.txt
    • TFRC and HLA expression: TFRC_and_HLA_Values.txt
    • NATMI result files:
      • UP-regulated_mean.csv
      • DOWN-regulated_mean.csv
    • Gene position file used in inferCNV: inferCNV_gene_positions_hg38.txt
    • Module scores for NK subclusters per cell: NK_Supplementary_Module_Scores.csv

    Compressed folders:

    • All CyTOF raw data files: CyTOF_Data_raw.zip
    • Results of the patient-based classifier: PatientwiseClassifier.zip
    • Results of the single-cell based classifier: SingleCellClassifierResults.zip

    For general new data analysis approaches, we recommend the readers to use the Seruat object stored in DUKE_final_for_Shiny_App.rds or to use the shiny app(http://scdbm.ddnetbio.com/) and perform further analysis from there.

    RAW data is available at EGA upon request using Study ID: EGAS00001005509

  16. Data used in SeuratIntegrate paper

    • zenodo.org
    application/gzip, bin +2
    Updated May 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Florian Specque; Florian Specque; Macha Nikolski; Macha Nikolski; Domitille Chalopin; Domitille Chalopin (2025). Data used in SeuratIntegrate paper [Dataset]. http://doi.org/10.5281/zenodo.15496601
    Explore at:
    bin, pdf, txt, application/gzipAvailable download formats
    Dataset updated
    May 23, 2025
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Florian Specque; Florian Specque; Macha Nikolski; Macha Nikolski; Domitille Chalopin; Domitille Chalopin
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This repository gathers the data and code used to generate hepatocellular carcinoma analyses in the paper presenting SeuratIntegrate. It contains the scripts to reproduce the figures presented in the article. Some figures are also available as pdf files.

    To be able to fully reproduce the results from the paper, one shoud:

    • download all the files
    • install R 4.3.3, with correspondig base R packages (stats, graphics, grDevices, utils, datasets, methods and base)
    • install R packages listed in the file sessionInfo.txt
    • install the provided version of SeuratIntegrate. In an R session, run:
    remotes::install_local("path/to/SeuratIntegrate_0.4.1.tar.gz")
    • install (mini)conda if necessary (we used miniconda version 23.11.0)
    • install the conda environments (if it fails with the *package-list.yml files, use the *package-list-from-history.yml files instead):
    conda env create --file SeuratIntegrate_bbknn_package-list.yml
    conda env create --file SeuratIntegrate_scanorama_package-list.yml
    conda env create --file SeuratIntegrate_scvi-tools_package-list.yml
    conda env create --file SeuratIntegrate_trvae_package-list.yml
    • open an R session to make the conda environments usable by SeuratIntegrate:
    library(SeuratIntegrate)
    
    UpdateEnvCache("bbknn", conda.env = "SeuratIntegrate_bbknn", conda.env.is.path = FALSE)
    UpdateEnvCache("scanorama", conda.env = "SeuratIntegrate_scanorama", conda.env.is.path = FALSE)
    UpdateEnvCache("scvi", conda.env = "SeuratIntegrate_scvi-tools", conda.env.is.path = FALSE)
    UpdateEnvCache("trvae", conda.env = "SeuratIntegrate_trvae", conda.env.is.path = FALSE)

    Once done, running the code in integrate.R should produce reproducible results. Note that lines 3 to 6 from integrate.R should be adapted to the user's setup.
    integrate.R is subdivided into six main parts:

    1. Preparation: lines 1-56
    2. Preprocessing: lines 58-74
    3. Integration: lines 76-121
    4. Processing of integration outputs: lines 126-267
    5. Scoring of integration outputs: lines 269-353
    6. Plotting: lines 380-507

    Intermediate SeuratObjects have been saved between steps 3 and 4 and 5 and 6 (liver10k_integrated_object.RDS and liver10k_integrated_scored_object.RDS respectively). It is possible to start with these intermediate SeuratObjects to avoid the preceding steps, given that the Preparation step is always run before.

  17. m

    Seurat objects for multiome analysis of neuroblastoma cell lines - 3/4

    • data.mendeley.com
    Updated Jul 25, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Richard Guyer (2024). Seurat objects for multiome analysis of neuroblastoma cell lines - 3/4 [Dataset]. http://doi.org/10.17632/9yc8d8bnss.1
    Explore at:
    Dataset updated
    Jul 25, 2024
    Authors
    Richard Guyer
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    RDS files containing processed Seurat objects for multiome analysis of neuroblastoma cell lines. File names reflect the cell line.

  18. Dataset to demonstrate the use of NicheNet on a Seurat object

    • zenodo.org
    • explore.openaire.eu
    bin
    Updated Jan 24, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Robin Browaeys; Wouter Saelens; Yvan Saeys; Robin Browaeys; Wouter Saelens; Yvan Saeys (2020). Dataset to demonstrate the use of NicheNet on a Seurat object [Dataset]. http://doi.org/10.5281/zenodo.3531889
    Explore at:
    binAvailable download formats
    Dataset updated
    Jan 24, 2020
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Robin Browaeys; Wouter Saelens; Yvan Saeys; Robin Browaeys; Wouter Saelens; Yvan Saeys
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Single-cell RNAseq dataset to demonstrate the use of NicheNet directly on a Seurat object. The data came from "Medaglia et al. Spatial reconstruction of immune niches by combining photoactivatable reporters and scRNA-seq, Science 2017". This data was generated via the NICHE-seq method to characterize immune cell composition in the T cell area of inguinal lymph nodes, both in steady-state and 72 hours after lymphocytic choriomeningitis virus (LCMV) infection. The Seurat objects contain the aggregated data after applying the Seurat alignment pipeline.

    seuratObj.rds: full dataset

    seuratObj_test.rds: dataset with reduced size (only highly variable genes and CD8 T cells and monocytes)

  19. Z

    Repository for Single Cell RNA Sequencing Analysis of The EMT6 Dataset

    • data.niaid.nih.gov
    • zenodo.org
    Updated Nov 20, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stoop, Allart (2023). Repository for Single Cell RNA Sequencing Analysis of The EMT6 Dataset [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_10011621
    Explore at:
    Dataset updated
    Nov 20, 2023
    Dataset provided by
    Stoop, Allart
    Hsu, Jonathan
    Description

    Table of Contents

    Main Description File Descriptions Linked Files Installation and Instructions

    1. Main Description

    This is the Zenodo repository for the manuscript titled "A TCR β chain-directed antibody-fusion molecule that activates and expands subsets of T cells and promotes antitumor activity.". The code included in the file titled marengo_code_for_paper_jan_2023.R was used to generate the figures from the single-cell RNA sequencing data. The following libraries are required for script execution:

    Seurat scReportoire ggplot2 stringr dplyr ggridges ggrepel ComplexHeatmap

    File Descriptions

    The code can be downloaded and opened in RStudios. The "marengo_code_for_paper_jan_2023.R" contains all the code needed to reproduce the figues in the paper The "Marengo_newID_March242023.rds" file is available at the following address: https://zenodo.org/badge/DOI/10.5281/zenodo.7566113.svg (Zenodo DOI: 10.5281/zenodo.7566113). The "all_res_deg_for_heat_updated_march2023.txt" file contains the unfiltered results from DGE anlaysis, also used to create the heatmap with DGE and volcano plots. The "genes_for_heatmap_fig5F.xlsx" contains the genes included in the heatmap in figure 5F.

    Linked Files

    This repository contains code for the analysis of single cell RNA-seq dataset. The dataset contains raw FASTQ files, as well as, the aligned files that were deposited in GEO. The "Rdata" or "Rds" file was deposited in Zenodo. Provided below are descriptions of the linked datasets:

    Gene Expression Omnibus (GEO) ID: GSE223311(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE223311)

    Title: Gene expression profile at single cell level of CD4+ and CD8+ tumor infiltrating lymphocytes (TIL) originating from the EMT6 tumor model from mSTAR1302 treatment. Description: This submission contains the "matrix.mtx", "barcodes.tsv", and "genes.tsv" files for each replicate and condition, corresponding to the aligned files for single cell sequencing data. Submission type: Private. In order to gain access to the repository, you must use a reviewer token (https://www.ncbi.nlm.nih.gov/geo/info/reviewer.html).

    Sequence read archive (SRA) repository ID: SRX19088718 and SRX19088719

    Title: Gene expression profile at single cell level of CD4+ and CD8+ tumor infiltrating lymphocytes (TIL) originating from the EMT6 tumor model from mSTAR1302 treatment. Description: This submission contains the raw sequencing or .fastq.gz files, which are tab delimited text files. Submission type: Private. In order to gain access to the repository, you must use a reviewer token (https://www.ncbi.nlm.nih.gov/geo/info/reviewer.html).

    Zenodo DOI: 10.5281/zenodo.7566113(https://zenodo.org/record/7566113#.ZCcmvC2cbrJ)

    Title: A TCR β chain-directed antibody-fusion molecule that activates and expands subsets of T cells and promotes antitumor activity. Description: This submission contains the "Rdata" or ".Rds" file, which is an R object file. This is a necessary file to use the code. Submission type: Restricted Acess. In order to gain access to the repository, you must contact the author.

    Installation and Instructions

    The code included in this submission requires several essential packages, as listed above. Please follow these instructions for installation:

    Ensure you have R version 4.1.2 or higher for compatibility.

    Although it is not essential, you can use R-Studios (Version 2022.12.0+353 (2022.12.0+353)) for accessing and executing the code.

    1. Download the *"Rdata" or ".Rds" file from Zenodo (https://zenodo.org/record/7566113#.ZCcmvC2cbrJ) (Zenodo DOI: 10.5281/zenodo.7566113).
    2. Open R-Studios (https://www.rstudio.com/tags/rstudio-ide/) or a similar integrated development environment (IDE) for R.
    3. Set your working directory to where the following files are located:

    marengo_code_for_paper_jan_2023.R Install_Packages.R Marengo_newID_March242023.rds genes_for_heatmap_fig5F.xlsx all_res_deg_for_heat_updated_march2023.txt

    You can use the following code to set the working directory in R:

    setwd(directory)

    1. Open the file titled "Install_Packages.R" and execute it in R IDE. This script will attempt to install all the necessary pacakges, and its dependencies in order to set up an environment where the code in "marengo_code_for_paper_jan_2023.R" can be executed.
    2. Once the "Install_Packages.R" script has been successfully executed, re-start R-Studios or your IDE of choice.
    3. Open the file "marengo_code_for_paper_jan_2023.R" file in R-studios or your IDE of choice.
    4. Execute commands in the file titled "marengo_code_for_paper_jan_2023.R" in R-Studios or your IDE of choice to generate the plots.
  20. Integrated data with raw counts

    • figshare.com
    hdf
    Updated Dec 15, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kai Huang (2021). Integrated data with raw counts [Dataset]. http://doi.org/10.6084/m9.figshare.17203883.v1
    Explore at:
    hdfAvailable download formats
    Dataset updated
    Dec 15, 2021
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    Kai Huang
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset contains the integrated and identified seurat object used in the paper's analyses. It has been scrubbed of normalized data and only contains the raw counts and cell metadata. Raw data from the original studies can be found at GSE145926 and https:/www.covid19cellatlas.org/#wilk20

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Sneddon Lab UCSF (2018). Scripts for Analysis [Dataset]. http://doi.org/10.6084/m9.figshare.6783569.v2
Organization logo

Scripts for Analysis

Explore at:
txtAvailable download formats
Dataset updated
Jul 18, 2018
Dataset provided by
Figsharehttp://figshare.com/
Authors
Sneddon Lab UCSF
License

MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically

Description

Scripts used for analysis of V1 and V2 Datasets.seurat_v1.R - initialize seurat object from 10X Genomics cellranger outputs. Includes filtering, normalization, regression, variable gene identification, PCA analysis, clustering, tSNE visualization. Used for v1 datasets. merge_seurat.R - merge two or more seurat objects into one seurat object. Perform linear regression to remove batch effects from separate objects. Used for v1 datasets. subcluster_seurat_v1.R - subcluster clusters of interest from Seurat object. Determine variable genes, perform regression and PCA. Used for v1 datasets.seurat_v2.R - initialize seurat object from 10X Genomics cellranger outputs. Includes filtering, normalization, regression, variable gene identification, and PCA analysis. Used for v2 datasets. clustering_markers_v2.R - clustering and tSNE visualization for v2 datasets. subcluster_seurat_v2.R - subcluster clusters of interest from Seurat object. Determine variable genes, perform regression and PCA analysis. Used for v2 datasets.seurat_object_analysis_v1_and_v2.R - downstream analysis and plotting functions for seurat object created by seurat_v1.R or seurat_v2.R. merge_clusters.R - merge clusters that do not meet gene threshold. Used for both v1 and v2 datasets. prepare_for_monocle_v1.R - subcluster cells of interest and perform linear regression, but not scaling in order to input normalized, regressed values into monocle with monocle_seurat_input_v1.R monocle_seurat_input_v1.R - monocle script using seurat batch corrected values as input for v1 merged timecourse datasets. monocle_lineage_trace.R - monocle script using nUMI as input for v2 lineage traced dataset. monocle_object_analysis.R - downstream analysis for monocle object - BEAM and plotting. CCA_merging_v2.R - script for merging v2 endocrine datasets with canonical correlation analysis and determining the number of CCs to include in downstream analysis. CCA_alignment_v2.R - script for downstream alignment, clustering, tSNE visualization, and differential gene expression analysis.

Search
Clear search
Close search
Google apps
Main menu