100+ datasets found
  1. Data, R code and output Seurat Objects for single cell RNA-seq analysis of...

    • figshare.com
    application/gzip
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yunshun Chen; Gordon Smyth (2023). Data, R code and output Seurat Objects for single cell RNA-seq analysis of human breast tissues [Dataset]. http://doi.org/10.6084/m9.figshare.17058077.v1
    Explore at:
    application/gzipAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    Yunshun Chen; Gordon Smyth
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset contains all the Seurat objects that were used for generating all the figures in Pal et al. 2021 (https://doi.org/10.15252/embj.2020107333). All the Seurat objects were created under R v3.6.1 using the Seurat package v3.1.1. The detailed information of each object is listed in a table in Chen et al. 2021.

  2. n

    Transcription start site analysis for heterogenous CD4+ T cells using 5′...

    • data.niaid.nih.gov
    • datadryad.org
    zip
    Updated Apr 22, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Akiko Oguchi; Yasuhiro Murakawa (2024). Transcription start site analysis for heterogenous CD4+ T cells using 5′ scRNA-seq [Dataset]. http://doi.org/10.5061/dryad.gtht76hv9
    Explore at:
    zipAvailable download formats
    Dataset updated
    Apr 22, 2024
    Dataset provided by
    RIKEN Center for Integrative Medical Sciences
    Authors
    Akiko Oguchi; Yasuhiro Murakawa
    License

    https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html

    Description

    These datasets are generated by ReapTEC (read-level pre-filtering and transcribed enhancer call) using 5' single-cell RNA-seq data on human heterogenous CD4+ T cells. By taking advantage of a unique “cap signature” derived from the 5′-end of a transcript, ReapTEC simultaneously profiles gene expression and enhancer activity at nucleotide resolution using 5′-end single-cell RNA-sequencing (5′ scRNA-seq). The detail of ReapTEC pipeline is described in https://github.com/MurakawaLab/ReapTEC.

  3. Scripts for Analysis

    • figshare.com
    txt
    Updated Jul 18, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sneddon Lab UCSF (2018). Scripts for Analysis [Dataset]. http://doi.org/10.6084/m9.figshare.6783569.v2
    Explore at:
    txtAvailable download formats
    Dataset updated
    Jul 18, 2018
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Sneddon Lab UCSF
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    Scripts used for analysis of V1 and V2 Datasets.seurat_v1.R - initialize seurat object from 10X Genomics cellranger outputs. Includes filtering, normalization, regression, variable gene identification, PCA analysis, clustering, tSNE visualization. Used for v1 datasets. merge_seurat.R - merge two or more seurat objects into one seurat object. Perform linear regression to remove batch effects from separate objects. Used for v1 datasets. subcluster_seurat_v1.R - subcluster clusters of interest from Seurat object. Determine variable genes, perform regression and PCA. Used for v1 datasets.seurat_v2.R - initialize seurat object from 10X Genomics cellranger outputs. Includes filtering, normalization, regression, variable gene identification, and PCA analysis. Used for v2 datasets. clustering_markers_v2.R - clustering and tSNE visualization for v2 datasets. subcluster_seurat_v2.R - subcluster clusters of interest from Seurat object. Determine variable genes, perform regression and PCA analysis. Used for v2 datasets.seurat_object_analysis_v1_and_v2.R - downstream analysis and plotting functions for seurat object created by seurat_v1.R or seurat_v2.R. merge_clusters.R - merge clusters that do not meet gene threshold. Used for both v1 and v2 datasets. prepare_for_monocle_v1.R - subcluster cells of interest and perform linear regression, but not scaling in order to input normalized, regressed values into monocle with monocle_seurat_input_v1.R monocle_seurat_input_v1.R - monocle script using seurat batch corrected values as input for v1 merged timecourse datasets. monocle_lineage_trace.R - monocle script using nUMI as input for v2 lineage traced dataset. monocle_object_analysis.R - downstream analysis for monocle object - BEAM and plotting. CCA_merging_v2.R - script for merging v2 endocrine datasets with canonical correlation analysis and determining the number of CCs to include in downstream analysis. CCA_alignment_v2.R - script for downstream alignment, clustering, tSNE visualization, and differential gene expression analysis.

  4. Z

    Processed, annotated, seurat object

    • data.niaid.nih.gov
    • zenodo.org
    Updated Nov 16, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cenk Celik (2023). Processed, annotated, seurat object [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_7608211
    Explore at:
    Dataset updated
    Nov 16, 2023
    Dataset provided by
    Cenk Celik
    Guillaume Thibault
    Description

    The dataset contains an integrated, annotated Seurat v4 object. One can load the dataset into the R environment using the code below:

    seurat_obj <- readRDS('PATH/TO/DOWNLOAD/seurat.rds')

    The object has three assays: (I) RNA, (II) SCT and (III) integrated.

  5. f

    Processed HSPCs single-cell RNA-seq, Seurat object

    • figshare.com
    application/gzip
    Updated Jan 5, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Daniel Bunis (2021). Processed HSPCs single-cell RNA-seq, Seurat object [Dataset]. http://doi.org/10.6084/m9.figshare.11894691.v2
    Explore at:
    application/gzipAvailable download formats
    Dataset updated
    Jan 5, 2021
    Dataset provided by
    figshare
    Authors
    Daniel Bunis
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Processed hematopoietic stem and progenitor cell (HSPC) single-cell RNAseq data from human samples. The file contains a Seurat object stored as an .rds file which can be read into R with the readRDS() function. It was generated using the raw data of similar name in this project, as well as the code stored here: https://github.com/dtm2451/ProgressiveHematopoiesis

  6. pbmc single cell RNA-seq matrix

    • zenodo.org
    csv
    Updated May 4, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Samuel Buchet; Samuel Buchet; Francesco Carbone; Morgan Magnin; Morgan Magnin; Mickaël Ménager; Olivier Roux; Olivier Roux; Francesco Carbone; Mickaël Ménager (2021). pbmc single cell RNA-seq matrix [Dataset]. http://doi.org/10.5281/zenodo.4730807
    Explore at:
    csvAvailable download formats
    Dataset updated
    May 4, 2021
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Samuel Buchet; Samuel Buchet; Francesco Carbone; Morgan Magnin; Morgan Magnin; Mickaël Ménager; Olivier Roux; Olivier Roux; Francesco Carbone; Mickaël Ménager
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Single cell RNA-sequencing dataset of peripheral blood mononuclear cells (pbmc: T, B, NK and monocytes) extracted from two healthy donors.

    Cells labeled as C26 come from a 30 years old female and cells labeled as C27 come from a 53 years old male. Cells have been isolated from blood using ficoll. Samples were sequenced using standard 3' v3 chemistry protocols by 10x genomics. Cellranger v4.0.0 was used for the processing, and reads were aligned to the ensembl GRCg38 human genome (GRCg38_r98-ensembl_Sept2019). QC metrics were calculated on the count matrix generated by cellranger (filtered_feature_bc_matrix). Cells with less than 3 genes per cells, less than 500 reads per cell and more than 20% of mithocondrial genes were discarded.

    The processing steps was performed with the R package Seurat (https://satijalab.org/seurat/), including sample integration, data normalisation and scaling, dimensional reduction, and clustering. SCTransform method was adopted for the normalisation and scaling steps. The clustered cells were manually annotated using known cell type markers.

    Files content:

    - raw_dataset.csv: raw gene counts

    - normalized_dataset.csv: normalized gene counts (single cell matrix)

    - cell_types.csv: cell types identified from annotated cell clusters

    - cell_types_macro.csv: cell macro types

    - UMAP_coordinates.csv: 2d cell coordinates computed with UMAP algorithm in Seurat

  7. Z

    Repository for Single Cell RNA Sequencing Analysis of The EMT6 Dataset

    • data.niaid.nih.gov
    • zenodo.org
    Updated Nov 20, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stoop, Allart (2023). Repository for Single Cell RNA Sequencing Analysis of The EMT6 Dataset [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_10011621
    Explore at:
    Dataset updated
    Nov 20, 2023
    Dataset provided by
    Stoop, Allart
    Hsu, Jonathan
    Description

    Table of Contents

    Main Description File Descriptions Linked Files Installation and Instructions

    1. Main Description

    This is the Zenodo repository for the manuscript titled "A TCR β chain-directed antibody-fusion molecule that activates and expands subsets of T cells and promotes antitumor activity.". The code included in the file titled marengo_code_for_paper_jan_2023.R was used to generate the figures from the single-cell RNA sequencing data. The following libraries are required for script execution:

    Seurat scReportoire ggplot2 stringr dplyr ggridges ggrepel ComplexHeatmap

    File Descriptions

    The code can be downloaded and opened in RStudios. The "marengo_code_for_paper_jan_2023.R" contains all the code needed to reproduce the figues in the paper The "Marengo_newID_March242023.rds" file is available at the following address: https://zenodo.org/badge/DOI/10.5281/zenodo.7566113.svg (Zenodo DOI: 10.5281/zenodo.7566113). The "all_res_deg_for_heat_updated_march2023.txt" file contains the unfiltered results from DGE anlaysis, also used to create the heatmap with DGE and volcano plots. The "genes_for_heatmap_fig5F.xlsx" contains the genes included in the heatmap in figure 5F.

    Linked Files

    This repository contains code for the analysis of single cell RNA-seq dataset. The dataset contains raw FASTQ files, as well as, the aligned files that were deposited in GEO. The "Rdata" or "Rds" file was deposited in Zenodo. Provided below are descriptions of the linked datasets:

    Gene Expression Omnibus (GEO) ID: GSE223311(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE223311)

    Title: Gene expression profile at single cell level of CD4+ and CD8+ tumor infiltrating lymphocytes (TIL) originating from the EMT6 tumor model from mSTAR1302 treatment. Description: This submission contains the "matrix.mtx", "barcodes.tsv", and "genes.tsv" files for each replicate and condition, corresponding to the aligned files for single cell sequencing data. Submission type: Private. In order to gain access to the repository, you must use a reviewer token (https://www.ncbi.nlm.nih.gov/geo/info/reviewer.html).

    Sequence read archive (SRA) repository ID: SRX19088718 and SRX19088719

    Title: Gene expression profile at single cell level of CD4+ and CD8+ tumor infiltrating lymphocytes (TIL) originating from the EMT6 tumor model from mSTAR1302 treatment. Description: This submission contains the raw sequencing or .fastq.gz files, which are tab delimited text files. Submission type: Private. In order to gain access to the repository, you must use a reviewer token (https://www.ncbi.nlm.nih.gov/geo/info/reviewer.html).

    Zenodo DOI: 10.5281/zenodo.7566113(https://zenodo.org/record/7566113#.ZCcmvC2cbrJ)

    Title: A TCR β chain-directed antibody-fusion molecule that activates and expands subsets of T cells and promotes antitumor activity. Description: This submission contains the "Rdata" or ".Rds" file, which is an R object file. This is a necessary file to use the code. Submission type: Restricted Acess. In order to gain access to the repository, you must contact the author.

    Installation and Instructions

    The code included in this submission requires several essential packages, as listed above. Please follow these instructions for installation:

    Ensure you have R version 4.1.2 or higher for compatibility.

    Although it is not essential, you can use R-Studios (Version 2022.12.0+353 (2022.12.0+353)) for accessing and executing the code.

    1. Download the *"Rdata" or ".Rds" file from Zenodo (https://zenodo.org/record/7566113#.ZCcmvC2cbrJ) (Zenodo DOI: 10.5281/zenodo.7566113).
    2. Open R-Studios (https://www.rstudio.com/tags/rstudio-ide/) or a similar integrated development environment (IDE) for R.
    3. Set your working directory to where the following files are located:

    marengo_code_for_paper_jan_2023.R Install_Packages.R Marengo_newID_March242023.rds genes_for_heatmap_fig5F.xlsx all_res_deg_for_heat_updated_march2023.txt

    You can use the following code to set the working directory in R:

    setwd(directory)

    1. Open the file titled "Install_Packages.R" and execute it in R IDE. This script will attempt to install all the necessary pacakges, and its dependencies in order to set up an environment where the code in "marengo_code_for_paper_jan_2023.R" can be executed.
    2. Once the "Install_Packages.R" script has been successfully executed, re-start R-Studios or your IDE of choice.
    3. Open the file "marengo_code_for_paper_jan_2023.R" file in R-studios or your IDE of choice.
    4. Execute commands in the file titled "marengo_code_for_paper_jan_2023.R" in R-Studios or your IDE of choice to generate the plots.
  8. d

    Data from: Large-scale integration of single-cell transcriptomic data...

    • dataone.org
    • data.niaid.nih.gov
    • +1more
    Updated May 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    David McKellar; Iwijn De Vlaminck; Benjamin Cosgrove (2025). Large-scale integration of single-cell transcriptomic data captures transitional progenitor states in mouse skeletal muscle regeneration [Dataset]. http://doi.org/10.5061/dryad.t4b8gtj34
    Explore at:
    Dataset updated
    May 2, 2025
    Dataset provided by
    Dryad Digital Repository
    Authors
    David McKellar; Iwijn De Vlaminck; Benjamin Cosgrove
    Time period covered
    Oct 22, 2021
    Description

    Skeletal muscle repair is driven by the coordinated self-renewal and fusion of myogenic stem and progenitor cells. Single-cell gene expression analyses of myogenesis have been hampered by the poor sampling of rare and transient cell states that are critical for muscle repair, and do not inform the spatial context that is important for myogenic differentiation. Here, we demonstrate how large-scale integration of single-cell and spatial transcriptomic data can overcome these limitations. We created a single-cell transcriptomic dataset of mouse skeletal muscle by integration, consensus annotation, and analysis of 23 newly collected scRNAseq datasets and 88 publicly available single-cell (scRNAseq) and single-nucleus (snRNAseq) RNA-sequencing datasets. The resulting dataset includes more than 365,000 cells and spans a wide range of ages, injury, and repair conditions. Together, these data enabled identification of the predominant cell types in skeletal muscle, and resolved cell subtypes, in...

  9. o

    Course material Single cell transcriptomics

    • explore.openaire.eu
    Updated Jul 6, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tania Wyss; Rachel Marcone; Geert van Geest; Patricia Palagi (2023). Course material Single cell transcriptomics [Dataset]. http://doi.org/10.5281/zenodo.10124290
    Explore at:
    Dataset updated
    Jul 6, 2023
    Authors
    Tania Wyss; Rachel Marcone; Geert van Geest; Patricia Palagi
    Description

    SIB course on single cell transcriptomics by mostly using the Seurat pipeline

  10. f

    Processed naive T cell single-cell RNA-seq, Seurat object

    • figshare.com
    application/gzip
    Updated Jan 5, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Daniel Bunis (2021). Processed naive T cell single-cell RNA-seq, Seurat object [Dataset]. http://doi.org/10.6084/m9.figshare.11886891.v2
    Explore at:
    application/gzipAvailable download formats
    Dataset updated
    Jan 5, 2021
    Dataset provided by
    figshare
    Authors
    Daniel Bunis
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Processed naive CD4 and CD8 T cell single-cell RNAseq data from human samples. The file contains a Seurat object stored as an .rds file which can be read into R with the readRDS() function. It was generated using the raw data of similar name in this project, as well as the code stored here: https://github.com/dtm2451/ProgressiveHematopoiesis

  11. o

    Dataset to demonstrate the use of NicheNet on a Seurat object

    • explore.openaire.eu
    • zenodo.org
    Updated Nov 7, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Robin Browaeys; Wouter Saelens; Yvan Saeys (2019). Dataset to demonstrate the use of NicheNet on a Seurat object [Dataset]. http://doi.org/10.5281/zenodo.3531888
    Explore at:
    Dataset updated
    Nov 7, 2019
    Authors
    Robin Browaeys; Wouter Saelens; Yvan Saeys
    Description

    Single-cell RNAseq dataset to demonstrate the use of NicheNet directly on a Seurat object. The data came from "Medaglia et al. Spatial reconstruction of immune niches by combining photoactivatable reporters and scRNA-seq, Science 2017". This data was generated via the NICHE-seq method to characterize immune cell composition in the T cell area of inguinal lymph nodes, both in steady-state and 72 hours after lymphocytic choriomeningitis virus (LCMV) infection. The Seurat objects contain the aggregated data after applying the Seurat alignment pipeline. seuratObj.rds: full dataset seuratObj_test.rds: dataset with reduced size (only highly variable genes and CD8 T cells and monocytes) {"references": ["Medaglia et al. Spatial reconstruction of immune niches by combining photoactivatable reporters and scRNA-seq, Science 2017"]}

  12. Mm1 tumor single cell RNA-seq data

    • figshare.com
    application/gzip
    Updated Jun 13, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sam Kleeman (2022). Mm1 tumor single cell RNA-seq data [Dataset]. http://doi.org/10.6084/m9.figshare.20063402.v1
    Explore at:
    application/gzipAvailable download formats
    Dataset updated
    Jun 13, 2022
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Sam Kleeman
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Seurat matrix referring to scRNA-seq of Mm1 mouse tumors in CyC manuscript

  13. o

    Individual-donor scRNA-Seq datasets, as Seurat 4.0.5 objects

    • explore.openaire.eu
    • data.niaid.nih.gov
    • +1more
    Updated Mar 26, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Alexandros Sountoulidis; Christos Samakovlis (2022). Individual-donor scRNA-Seq datasets, as Seurat 4.0.5 objects [Dataset]. http://doi.org/10.5281/zenodo.6386451
    Explore at:
    Dataset updated
    Mar 26, 2022
    Authors
    Alexandros Sountoulidis; Christos Samakovlis
    Description

    The provided datasets correspond to the analyses of individual donor single-cell RNA Sequencing (scRNA-Seq) datasets, before their integration. The datasets have been saved as Seurat v4.0.5 objects. For clustering, we used default settings in Seurat 4.0.5 (resolution 0.8) and increased resolution, if necessary, to separate epithelium in proximal and distal. The *_clusters.pdf files show the suggested clusters in the individual datasets and the _indiv_anno1.pdf files show the cell annotations according to the 84 cell states, described in the study with title "Developmental origins of cell heterogeneity in the human lung" (1st preprint version doi: https://doi.org/10.1101/2022.01.11.475631). The "_cluster_annotations.csv" files provide information about the suggested annotations of the clusters. The "*_object_raw_and_log_counts.RData" objects contain the metadata and the UMI-counts [raw and log2(counts+1)] for each donor scRNA-Seq dataset.

  14. o

    WORKSHOP: Single cell RNAseq analysis in R

    • explore.openaire.eu
    Updated Sep 26, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sarah Williams; Adele Barugahare; Paul Harrison; Laura Perlaza Jimenez; Nicholas Matigan; Valentine Murigneux; Magdalena Antczak; Uwe Winter (2023). WORKSHOP: Single cell RNAseq analysis in R [Dataset]. http://doi.org/10.5281/zenodo.10042918
    Explore at:
    Dataset updated
    Sep 26, 2023
    Authors
    Sarah Williams; Adele Barugahare; Paul Harrison; Laura Perlaza Jimenez; Nicholas Matigan; Valentine Murigneux; Magdalena Antczak; Uwe Winter
    Description

    This record includes training materials associated with the Australian BioCommons workshop 'Single cell RNAseq analysis in R'. This workshop took place over two, 3.5 hour sessions on 26 and 27 October 2023. Event description Analysis and interpretation of single cell RNAseq (scRNAseq) data requires dedicated workflows. In this hands-on workshop we will show you how to perform single cell analysis using Seurat - an R package for QC, analysis, and exploration of single-cell RNAseq data. We will discuss the 'why' behind each step and cover reading in the count data, quality control, filtering, normalisation, clustering, UMAP layout and identification of cluster markers. We will also explore various ways of visualising single cell expression data. This workshop is presented by the Australian BioCommons, Queensland Cyber Infrastructure Foundation (QCIF) and the Monash Genomics and Bioinformatics Platform with the assistance of a network of facilitators from the national Bioinformatics Training Cooperative. Lead trainers: Sarah Williams, Adele Barugahare, Paul Harrison, Laura Perlaza Jimenez Facilitators: Nick Matigan, Valentine Murigneux, Magdalena (Magda) Antczak Infrastructure provision: Uwe Winter Coordinator: Melissa Burke Training materials Materials are shared under a Creative Commons Attribution 4.0 International agreement unless otherwise specified and were current at the time of the event. Files and materials included in this record: Event metadata (PDF): Information about the event including, description, event URL, learning objectives, prerequisites, technical requirements etc. Index of training materials (PDF): List and description of all materials associated with this event including the name, format, location and a brief description of each file. scRNAseq_Schedule (PDF): A breakdown of the topics and timings for the workshop Materials shared elsewhere: This workshop follows the tutorial 'scRNAseq Analysis in R with Seurat' https://swbioinf.github.io/scRNAseqInR_Doco/index.html Slides used to introduce key topics are available via GitHub https://github.com/swbioinf/scRNAseqInR_Doco/tree/main/slides This material is based on the introductory Guided Clustering Tutorial tutorial from Seurat. It is also drawing from a similar workshop held by Monash Bioinformatics Platform Single-Cell-Workshop, with material here.

  15. l

    cellCounts

    • opal.latrobe.edu.au
    • researchdata.edu.au
    bin
    Updated Dec 19, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yang Liao; Dinesh Raghu; Bhupinder Pal; Lisa Mielke; Wei Shi (2022). cellCounts [Dataset]. http://doi.org/10.26181/21588276.v3
    Explore at:
    binAvailable download formats
    Dataset updated
    Dec 19, 2022
    Dataset provided by
    La Trobe
    Authors
    Yang Liao; Dinesh Raghu; Bhupinder Pal; Lisa Mielke; Wei Shi
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This page includes the data and code necessary to reproduce the results of the following paper: Yang Liao, Dinesh Raghu, Bhupinder Pal, Lisa Mielke and Wei Shi. cellCounts: fast and accurate quantification of 10x Chromium single-cell RNA sequencing data. Under review. A Linux computer running an operating system of CentOS 7 (or later) or Ubuntu 20.04 (or later) is recommended for running this analysis. The computer should have >2 TB of disk space and >64 GB of RAM. The following software packages need to be installed before running the analysis. Software executables generated after installation should be included in the $PATH environment variable.

    R (v4.0.0 or newer) https://www.r-project.org/ Rsubread (v2.12.2 or newer) http://bioconductor.org/packages/3.16/bioc/html/Rsubread.html CellRanger (v6.0.1) https://support.10xgenomics.com/single-cell-gene-expression/software/overview/welcome STARsolo (v2.7.10a) https://github.com/alexdobin/STAR sra-tools (v2.10.0 or newer) https://github.com/ncbi/sra-tools Seurat (v3.0.0 or newer) https://satijalab.org/seurat/ edgeR (v3.30.0 or newer) https://bioconductor.org/packages/edgeR/ limma (v3.44.0 or newer) https://bioconductor.org/packages/limma/ mltools (v0.3.5 or newer) https://cran.r-project.org/web/packages/mltools/index.html

    Reference packages generated by 10x Genomics are also required for this analysis and they can be downloaded from the following link (2020-A version for individual human and mouse reference packages should be selected): https://support.10xgenomics.com/single-cell-gene-expression/software/downloads/latest After all these are done, you can simply run the shell script ‘test-all-new.bash’ to perform all the analyses carried out in the paper. This script will automatically download the mixture scRNA-seq data from the SRA database, and it will output a text file called ‘test-all.log’ that contains all the screen outputs and speed/accuracy results of CellRanger, STARsolo and cellCounts.

  16. f

    Seurat object with cell type annotation and UMAP coordinates for zebrafish...

    • figshare.com
    application/gzip
    Updated Nov 28, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Gangcai Xie (2024). Seurat object with cell type annotation and UMAP coordinates for zebrafish testis single cell RNA sequencing datasets [Dataset]. http://doi.org/10.6084/m9.figshare.27922725.v1
    Explore at:
    application/gzipAvailable download formats
    Dataset updated
    Nov 28, 2024
    Dataset provided by
    figshare
    Authors
    Gangcai Xie
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This is the Seurat object in .rds format with the raw matrix information (after filtering) , cell type annotation information and the UMAP coordinates. Users can use R readRDS function to load this .rds file. If you are using this dataset, please cite our paper: Qian, Peipei, Jiahui Kang, Dong Liu, and Gangcai Xie. "Single cell transcriptome sequencing of Zebrafish testis revealed novel spermatogenesis marker genes and stronger Leydig-germ cell paracrine interactions." Frontiers in genetics 13 (2022): 851719.

  17. o

    Repository for the single cell RNA sequencing data analysis for the human...

    • explore.openaire.eu
    Updated Aug 26, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jonathan; Andrew; Pierre; Allart; Adrian (2023). Repository for the single cell RNA sequencing data analysis for the human manuscript. [Dataset]. http://doi.org/10.5281/zenodo.8286134
    Explore at:
    Dataset updated
    Aug 26, 2023
    Authors
    Jonathan; Andrew; Pierre; Allart; Adrian
    Description

    This is the GitHub repository for the single cell RNA sequencing data analysis for the human manuscript. The following essential libraries are required for script execution: Seurat scReportoire ggplot2 dplyr ggridges ggrepel ComplexHeatmap Linked File: -------------------------------------- This repository contains code for the analysis of single cell RNA-seq dataset. The dataset contains raw FASTQ files, as well as, the aligned files that were deposited in GEO. Provided below are descriptions of the linked datasets: 1. Gene Expression Omnibus (GEO) ID: GSE229626 - Title: Gene expression profile at single cell level of human T cells stimulated via antibodies against the T Cell Receptor (TCR) - Description: This submission contains the matrix.mtx, barcodes.tsv, and genes.tsv files for each replicate and condition, corresponding to the aligned files for single cell sequencing data. - Submission type: Private. In order to gain access to the repository, you must use a "reviewer token"(https://www.ncbi.nlm.nih.gov/geo/info/reviewer.html). 2. Sequence read archive (SRA) repository - Title: Gene expression profile at single cell level of human T cells stimulated via antibodies against the T Cell Receptor (TCR) - Description: This submission contains the "raw sequencing" or .fastq.gz files, which are tab delimited text files. - Submission type: Private. In order to gain access to the repository, you must use a "reviewer token" (https://www.ncbi.nlm.nih.gov/geo/info/reviewer.html). Please note that since the GSE submission is private, the raw data deposited at SRA may not be accessible until the embargo on GSE229626 has been lifted. Installation and Instructions -------------------------------------- The code included in this submission requires several essential packages, as listed above. Please follow these instructions for installation: > Ensure you have R version 4.1.2 or higher for compatibility. > Although it is not essential, you can use R-Studios (Version 2022.12.0+353 (2022.12.0+353)) for accessing and executing the code. The following code can be used to set working directory in R: > setwd(directory) Steps: 1. Download the "Human_code_April2023.R" and "Install_Packages.R" R scripts, and the processed data from GSE229626. 2. Open "R-Studios"(https://www.rstudio.com/tags/rstudio-ide/) or a similar integrated development environment (IDE) for R. 3. Set your working directory to where the following files are located: - Human_code_April2023.R - Install_Packages.R 4. Open the file titled Install_Packages.R and execute it in R IDE. This script will attempt to install all the necessary pacakges, and its dependencies. 5. Open the Human_code_April2023.R R script and execute commands as necessary.

  18. o

    Test Data for Galaxy tutorial "Batch Correction and Integration" - Seurat...

    • ordo.open.ac.uk
    • zenodo.org
    bin
    Updated Apr 28, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Marisa Loach (2025). Test Data for Galaxy tutorial "Batch Correction and Integration" - Seurat version [Dataset]. http://doi.org/10.5281/zenodo.14713816
    Explore at:
    binAvailable download formats
    Dataset updated
    Apr 28, 2025
    Dataset provided by
    The Open University
    Authors
    Marisa Loach
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This data is used for the Seurat version of the batch correction and integration tutorial on the Galaxy Training Network. The input data was provided by Seurat in the 'Integrative Analysis in Seurat v5' tutorial. The input dataset provided here has been filtered to include only cells for which nFeature_RNA > 1000. The other datasets were produced on Galaxy. The original dataset was published as: Ding, J., Adiconis, X., Simmons, S.K. et al. Systematic comparison of single-cell and single-nucleus RNA-sequencing methods. Nat Biotechnol 38, 737–746 (2020). https://doi.org/10.1038/s41587-020-0465-8.

  19. Integrated Seurat Object

    • figshare.com
    application/gzip
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tallulah Andrews (2023). Integrated Seurat Object [Dataset]. http://doi.org/10.6084/m9.figshare.14473608.v1
    Explore at:
    application/gzipAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Tallulah Andrews
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    QC filtered using EmptyDropsIndividually scaledMerged then Integrated with HarmonyClustered with SeuratSubclustered with SeuratManually Annotated

  20. Robject files for tissues processed by Seurat

    • figshare.com
    application/gzip
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tabula Muris Consortium (2023). Robject files for tissues processed by Seurat [Dataset]. http://doi.org/10.6084/m9.figshare.5821263.v3
    Explore at:
    application/gzipAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    Tabula Muris Consortium
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Each tissue's gene expression profile was processed by experts to annotate clusters of cells with biological functions. These are the Robjects created using Seurat to normalize and cluster the single-cell RNA-seq expression data.Update 2018-03-27: Updated to resubmitted RobjUpdate 2018-09-20: Updated to accepted Robj

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Yunshun Chen; Gordon Smyth (2023). Data, R code and output Seurat Objects for single cell RNA-seq analysis of human breast tissues [Dataset]. http://doi.org/10.6084/m9.figshare.17058077.v1
Organization logoOrganization logo

Data, R code and output Seurat Objects for single cell RNA-seq analysis of human breast tissues

Explore at:
application/gzipAvailable download formats
Dataset updated
May 31, 2023
Dataset provided by
figshare
Figsharehttp://figshare.com/
Authors
Yunshun Chen; Gordon Smyth
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

This dataset contains all the Seurat objects that were used for generating all the figures in Pal et al. 2021 (https://doi.org/10.15252/embj.2020107333). All the Seurat objects were created under R v3.6.1 using the Seurat package v3.1.1. The detailed information of each object is listed in a table in Chen et al. 2021.

Search
Clear search
Close search
Google apps
Main menu