9 datasets found
  1. o

    Test Data for Galaxy tutorial "Batch Correction and Integration" - Seurat...

    • ordo.open.ac.uk
    bin
    Updated Apr 28, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Marisa Loach (2025). Test Data for Galaxy tutorial "Batch Correction and Integration" - Seurat version [Dataset]. http://doi.org/10.5281/zenodo.14713816
    Explore at:
    binAvailable download formats
    Dataset updated
    Apr 28, 2025
    Dataset provided by
    The Open University
    Authors
    Marisa Loach
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This data is used for the Seurat version of the batch correction and integration tutorial on the Galaxy Training Network. The input data was provided by Seurat in the 'Integrative Analysis in Seurat v5' tutorial. The input dataset provided here has been filtered to include only cells for which nFeature_RNA > 1000. The other datasets were produced on Galaxy. The original dataset was published as: Ding, J., Adiconis, X., Simmons, S.K. et al. Systematic comparison of single-cell and single-nucleus RNA-sequencing methods. Nat Biotechnol 38, 737–746 (2020). https://doi.org/10.1038/s41587-020-0465-8.

  2. o

    Test Data for Galaxy Tutorial "Clustering 3k PBMCs with Seurat"

    • ordo.open.ac.uk
    bin
    Updated Nov 14, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Marisa Loach (2024). Test Data for Galaxy Tutorial "Clustering 3k PBMCs with Seurat" [Dataset]. http://doi.org/10.5281/zenodo.14013475
    Explore at:
    binAvailable download formats
    Dataset updated
    Nov 14, 2024
    Dataset provided by
    The Open University
    Authors
    Marisa Loach
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Test Data for Galaxy Tutorial "Clustering 3k PBMCs with Seurat"

  3. Example data for Immcantation training legacy tutorials

    • zenodo.org
    zip
    Updated May 12, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    S Marquez; S Marquez (2024). Example data for Immcantation training legacy tutorials [Dataset]. http://doi.org/10.5281/zenodo.11181600
    Explore at:
    zipAvailable download formats
    Dataset updated
    May 12, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    S Marquez; S Marquez
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    `bcr_phylo_tutorial.zip` is used in the Reconstruction and analysis of B-cell lineage trees from single cell data using Immcantation tutorial.

    `immcantation-BCR-Seurat-tutorial.zip` is used in the Integration of BCR and GEX data tutorial.

  4. Z

    Immcantation 10x Tutorial Data

    • data.niaid.nih.gov
    • zenodo.org
    Updated Oct 20, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Meng, Hailong (2023). Immcantation 10x Tutorial Data [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_8179845
    Explore at:
    Dataset updated
    Oct 20, 2023
    Dataset provided by
    Meng, Hailong
    Gabernet, Gisela
    Jensen, Cole
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Necessary datasets to run the Immcantation 10x Tutorial. Below is the description of the files in the data set.

    BCR_data_sample1.tsv: data corresponding to the first sample (sample 1) of the two samples analyzed in the 10x tutorial. This is the sample used to show the Change-O steps.

    filtered_contig_annotations.csv: filtered contig annotations file for sample 1, output of cellranger vdj.

    filtered_contig.fasta: sequence fasta file for sample 1, output of cellranger vdj.

    BCR_data.tsv: AIRR rearrangement file containing the data for both samples 1 and 2 used in the 10x tutorial.

    BCR.data_08112023.rds: R dataframe object containing the single-cell BCR sequencing data for both samples 1 and 2 used in the 10x tutorial.

    GEX.data_08112023.rds: Seurat object containing the single-cell gene expression data used in the 10x tutorial.

  5. scverse tutorial data: Getting started with AnnData

    • figshare.com
    hdf
    Updated Apr 7, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jan Lause (2023). scverse tutorial data: Getting started with AnnData [Dataset]. http://doi.org/10.6084/m9.figshare.22577536.v2
    Explore at:
    hdfAvailable download formats
    Dataset updated
    Apr 7, 2023
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    Jan Lause
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The data is derived from the 3k PBMC data used in scanpy & Seurat tutorials. In comes in the AnnData h5ad format.

    Processed 3k PBMCs from a Healthy Donor from 10x Genomics, available at https://scanpy.readthedocs.io/en/stable/generated/scanpy.datasets.pbmc3k_processed.html Original 10X data available at http://cf.10xgenomics.com/samples/cell-exp/1.1.0/pbmc3k/pbmc3k_filtered_gene_bc_matrices.tar.gz from this website: https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.1.0/pbmc3k

    The changes made to the original scanpy.datasets.pbmc3k_processed() data are described in this github issue: https://github.com/scverse/scverse-tutorials/issues/51

    See jupyter notebook for details.

  6. PBMC data for SCelVis

    • figshare.com
    hdf
    Updated Jun 3, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Benedikt Obermayer (2023). PBMC data for SCelVis [Dataset]. http://doi.org/10.6084/m9.figshare.10002125.v1
    Explore at:
    hdfAvailable download formats
    Dataset updated
    Jun 3, 2023
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Benedikt Obermayer
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    IFN-beta treated and control PBMCs from 8 donorstwo groups of PBMCs from Kang et al. 2017 (https://www.nature.com/articles/nbt.4042), analyzed using the Seurat sample alignment strategy as explained in the tutorial at https://satijalab.org/seurat/v2.4/immune_alignment.html and then converted to h5ad format* ~14000 cells* IFN-treated and unstimulated PBMCs from 8 donors* donor identities determined using demuxlet (see GSE96583)

  7. PBMC 3k test datasets for besca

    • zenodo.org
    bin
    Updated Jan 18, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Klas Hatje; Klas Hatje (2021). PBMC 3k test datasets for besca [Dataset]. http://doi.org/10.5281/zenodo.3752813
    Explore at:
    binAvailable download formats
    Dataset updated
    Jan 18, 2021
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Klas Hatje; Klas Hatje
    License

    https://www.gnu.org/licenses/agpl.txthttps://www.gnu.org/licenses/agpl.txt

    Description

    This is a single cell transcriptomics dataset containing roughly 3,000 PBMCs. The original data was downloaded from the Seurat 3k PBMC tutorial: https://satijalab.org/seurat/v3.0/pbmc3k_tutorial.html. We reprocessed the dataset using the Besca package (https://github.com/bedapub/besca).

  8. f

    scMetabolism - pbmc_demo.rda

    • figshare.com
    bin
    Updated Jan 31, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yingcheng Wu (2021). scMetabolism - pbmc_demo.rda [Dataset]. http://doi.org/10.6084/m9.figshare.13670038.v1
    Explore at:
    binAvailable download formats
    Dataset updated
    Jan 31, 2021
    Dataset provided by
    figshare
    Authors
    Yingcheng Wu
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The demo datasets for scMetabolismThe demo data is the dataset of Peripheral Blood Mononuclear Cells (PBMC) from 10X Genomics open access dataset (~2,700 single cells, also used by Seurat tutorial).

  9. domino2: data for a reproducible example

    • zenodo.org
    bin, csv, tsv
    Updated Nov 14, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jacob T. Mitchell; Jacob T. Mitchell (2023). domino2: data for a reproducible example [Dataset]. http://doi.org/10.5281/zenodo.10124866
    Explore at:
    csv, bin, tsvAvailable download formats
    Dataset updated
    Nov 14, 2023
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Jacob T. Mitchell; Jacob T. Mitchell
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This repository hosts example data for reproducible analysis of intra- and intercellular signaling in single cell RNA sequencing (scRNAseq) data based on transcription factor (TF) activation. We demonstrate analysis using domino2 on the 10X Genomics Peripheral Blood Mononuclear Cells (PBMC) data set of 2,700 cells PBMC3K. scRNA-seq data is preprocessed following the Satija Lab's Guided Clustering Tutorial. Quantification of TF activation is conducted using pySCENIC. For more details on how this analysis is conducted, please refer to the vignettes in the domino2 package.

  10. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Marisa Loach (2025). Test Data for Galaxy tutorial "Batch Correction and Integration" - Seurat version [Dataset]. http://doi.org/10.5281/zenodo.14713816

Test Data for Galaxy tutorial "Batch Correction and Integration" - Seurat version

Explore at:
binAvailable download formats
Dataset updated
Apr 28, 2025
Dataset provided by
The Open University
Authors
Marisa Loach
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

This data is used for the Seurat version of the batch correction and integration tutorial on the Galaxy Training Network. The input data was provided by Seurat in the 'Integrative Analysis in Seurat v5' tutorial. The input dataset provided here has been filtered to include only cells for which nFeature_RNA > 1000. The other datasets were produced on Galaxy. The original dataset was published as: Ding, J., Adiconis, X., Simmons, S.K. et al. Systematic comparison of single-cell and single-nucleus RNA-sequencing methods. Nat Biotechnol 38, 737–746 (2020). https://doi.org/10.1038/s41587-020-0465-8.

Search
Clear search
Close search
Google apps
Main menu