16 datasets found
  1. Data from: Spatial transcriptomics stratifies health and psoriatic disease...

    • zenodo.org
    • explore.openaire.eu
    • +1more
    zip
    Updated Feb 19, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ikjot Sidhu; Ikjot Sidhu; Aleksandr Prystupa; Aleksandr Prystupa (2023). Spatial transcriptomics stratifies health and psoriatic disease severity by emergent cellular ecosystems [Dataset]. http://doi.org/10.5281/zenodo.7562864
    Explore at:
    zipAvailable download formats
    Dataset updated
    Feb 19, 2023
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Ikjot Sidhu; Ikjot Sidhu; Aleksandr Prystupa; Aleksandr Prystupa
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    While human inflammatory skin diseases' cellular and molecular features are well-characterized, their tissue context and systemic impact remain poorly understood. We thus profiled human psoriasis (PsO) as a prototypic immune-mediated condition with a high preference for extra-cutaneous involvement. Spatial transcriptomics (ST) analyses of 25 healthy, active, and clinically uninvolved skin biopsies, and integration with public single-cell transcriptomics data revealed striking differences in immune microniches between healthy and inflamed skin. Tissue scale-cartography further identified core disease features across all active lesions, including the emergence of an inflamed suprabasal epidermal state and the presence of B lymphocytes in lesional skin. Notably, both lesional and distal non-lesional samples were stratified by skin disease severity, and not by the presence of systemic disease. This segregation was driven by macrophage-, fibroblast- and lymphatic-enriched spatial regions with gene signatures associated with metabolic dysfunction. Taken together, these findings suggest that mild and severe forms of PsO have distinct molecular features and that severe PsO may profoundly alter the cellular and metabolic make up of distal unaffected skin sites. Additionally, our study provides an unprecedented resource for the research community to study spatial gene organization of healthy and inflamed human skin.

  2. d

    Data from: Large-scale integration of single-cell transcriptomic data...

    • dataone.org
    • data.niaid.nih.gov
    • +1more
    Updated May 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    David McKellar; Iwijn De Vlaminck; Benjamin Cosgrove (2025). Large-scale integration of single-cell transcriptomic data captures transitional progenitor states in mouse skeletal muscle regeneration [Dataset]. http://doi.org/10.5061/dryad.t4b8gtj34
    Explore at:
    Dataset updated
    May 2, 2025
    Dataset provided by
    Dryad Digital Repository
    Authors
    David McKellar; Iwijn De Vlaminck; Benjamin Cosgrove
    Time period covered
    Oct 22, 2021
    Description

    Skeletal muscle repair is driven by the coordinated self-renewal and fusion of myogenic stem and progenitor cells. Single-cell gene expression analyses of myogenesis have been hampered by the poor sampling of rare and transient cell states that are critical for muscle repair, and do not inform the spatial context that is important for myogenic differentiation. Here, we demonstrate how large-scale integration of single-cell and spatial transcriptomic data can overcome these limitations. We created a single-cell transcriptomic dataset of mouse skeletal muscle by integration, consensus annotation, and analysis of 23 newly collected scRNAseq datasets and 88 publicly available single-cell (scRNAseq) and single-nucleus (snRNAseq) RNA-sequencing datasets. The resulting dataset includes more than 365,000 cells and spans a wide range of ages, injury, and repair conditions. Together, these data enabled identification of the predominant cell types in skeletal muscle, and resolved cell subtypes, in...

  3. Z

    A Spatial Transcriptomics Atlas of the Malaria-infected Liver Indicates a...

    • data.niaid.nih.gov
    • zenodo.org
    Updated Sep 20, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tales Pascini (2023). A Spatial Transcriptomics Atlas of the Malaria-infected Liver Indicates a Crucial Role for Lipid Metabolism and Hotspots of Inflammatory Cell Infiltration [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_8328678
    Explore at:
    Dataset updated
    Sep 20, 2023
    Dataset provided by
    Bavo Vanneste
    Johan Ankarklev
    Christian Zwicker
    Miren Urrutia Iturritza
    Franziska Hildebrandt
    Charlotte L. Scott
    Joakim Lundeberg
    Tales Pascini
    Joel Vega-Rodriguez
    Emma R. Andersson
    Elisa Semle
    Mengxiao He
    Noémi Van Hul
    Sami Saarenpää
    Description

    Dataset created in the study "A Spatial Transcriptomics Atlas of the Malaria-infected Liver Indicates a Crucial Role for Lipid Metabolism and Hotspots of Inflammatory Cell Infiltration"

    Structure

    ST_berghei_liver

    contains data generated during stpipeline analysis and imaging on 2k arrays Spatial Transcriptomics platform as well as data necessary for and from hepaquery analysis. These samples include 38 sections in total of which 8 are from mice (n=4) infected with sporozoites for 12h, 5 sections from control mice (n=3) at 12h, 7 sections from mice (n=4) infected with sporozoites for 24h and 4 sections from control mice (n=3) for 24 as well as 8 samples of mice (n=2) infected with sporozoites for 38h and control mice (n =2) for 38h.

    count contains gene expression matrix output from stpipeline in .tsv format

    spotfiles contains coordinate files for count matrices

    images contains scaled H&E, Fluorescence (FL) and annotated H&E images (from FL annotations) scaled to 10% of the original image size.

    masks contains image masks for hepaquery analysis

    distances contains distance measurements from original section sorted by timepoint as well as combined across timepoints

    cluster contains clustering information across spatial positions used in spatial enrichment analysis

    STUtiility_mus_pb_ST.RDS describes seurat object generated using the STUtility package using ST data of the 38 liver sections of which the data is stored in ST_berghei_liver

    visium_berghei_liver

    contains data generated with the spaceranger pipeline and imaging using the Visium spatial transcriptomics platform. These samples include 8 sections in total, of which 1 was infected with sporozoites for 12h, 1 control section at 12h, 1 section infected with sporozoites for 24h and 1 control section at 24 as well as 2 sporozoite infected sections, and 2 control sections at 38h.

    V10S29-135_A1 contains spaceranger output for section 1 for infected and control sections at 38h post-infection

    V10S29-135_B1 contains spaceranger output for section 1 for infected and control sections at 12h post-infection

    V10S29-135_C1 contains spaceranger output for section 1 for infected and control sections at 24h post-infection

    V10S29-135_D1 contains spaceranger output for section 2 for infected and control sections at 38h post-infection

    se_visium.RDS describes seurat object generated using the STUtility package using ST data of the 38 liver sections of which the data is stored in visium_berghei_liver

    snSeq_berghei_liver

    contains data generated with the cellranger pipeline and imaging using the Visium spatial transcriptomics platform. These samples include single nuclei of 2 infected and control mice after 12h, 2 infected and control mice after 24h, 2 infected and control mice after 38h, and 2 uninfected mice prior to a challenge.

    cellranger_cnt_out contains feature count matrix information from cell ranger output

    final_merged_curated_annotations_270623.RDS describes seurat object generated using the STUtility package using ST data of the 38 liver sections of which the data is stored in snSeq_berghei_liver.tar.gz

    raw images.zip contains raw images for supplementary figures 20-22

    adjusted images.zip contains brightness and contrast adjusted images for supplementary figures 20-22

  4. f

    Spatial transcriptomic (Visium) of treatment-naive and residual disease...

    • figshare.com
    application/gzip
    Updated Jan 23, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Fatima Mechta-Grigoriou (2024). Spatial transcriptomic (Visium) of treatment-naive and residual disease HGSOC patient [Dataset]. http://doi.org/10.6084/m9.figshare.22147103.v1
    Explore at:
    application/gzipAvailable download formats
    Dataset updated
    Jan 23, 2024
    Dataset provided by
    figshare
    Authors
    Fatima Mechta-Grigoriou
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Seurat objects of 10 Visium sections (4 before and 6 after treatment) seurat

  5. Spatial Transcriptomics of chicken pectoralis major muscle

    • agdatacommons.nal.usda.gov
    bin
    Updated Mar 11, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    University of Delaware (2025). Spatial Transcriptomics of chicken pectoralis major muscle [Dataset]. https://agdatacommons.nal.usda.gov/articles/dataset/Spatial_Transcriptomics_of_chicken_pectoralis_major_muscle/25078415
    Explore at:
    binAvailable download formats
    Dataset updated
    Mar 11, 2025
    Dataset provided by
    National Center for Biotechnology Informationhttp://www.ncbi.nlm.nih.gov/
    Authors
    University of Delaware
    License

    https://rightsstatements.org/vocab/UND/1.0/https://rightsstatements.org/vocab/UND/1.0/

    Description

    This study aims to use spatial transcriptomics to characterize the cell-type-specific expression profile associated with the microscopic features observed in Wooden Breast myopathy. 1 cm3 muscle sample was dissected from the cranial part of the right pectoralis major muscle from three randomly sampled broiler chickens at 23 days post-hatch and processed with Visium Spatial Gene Expression kits (10X Genomics), followed by high-resolution imaging and sequencing on the Illumina Nextseq 2000 system. WB classification was based on histopathologic features identified. Sequence reads were aligned to the chicken reference genome (Galgal6) and mapped to histological images. Unsupervised K-means clustering and Seurat integrative analysis differentiated histologic features and their specific gene expression pattern, including lipid laden macrophages (LLM), unaffected myofibers, myositis and vasculature. In particular, LLM exhibited reprogramming of lipid metabolism with up-regulated lipid transporters and genes in peroxisome proliferator-activated receptors pathway, possibly through P. Moreover, overexpression of fatty acid binding protein 5 could enhance fatty acid uptake in adjacent veins. In myositic regions, increased expression of cathepsins may play a role in muscle homeostasis and repair by mediating lysosomal activity and apoptosis. A better knowledge of different cell-type interactions at early stages of WB is essential in developing a comprehensive understanding.

  6. mouse brain 10X Visium dataset for spatially proximal cell-cell...

    • figshare.com
    application/gzip
    Updated Oct 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Suoqin Jin (2023). mouse brain 10X Visium dataset for spatially proximal cell-cell communication analysis [Dataset]. http://doi.org/10.6084/m9.figshare.23621151.v2
    Explore at:
    application/gzipAvailable download formats
    Dataset updated
    Oct 31, 2023
    Dataset provided by
    figshare
    Authors
    Suoqin Jin
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    A mouse brain 10X Visium dataset for spatially proximal cell-cell communication analysis using CellChat v2. We download this dataset from https://www.10xgenomics.com/resources/datasets/mouse-brain-serial-section-1-sagittal-anterior-1-standard-1-0-0. Biological annotations of spots (i.e., cell group information) are predicted using Seurat R package.

  7. f

    CellChat object of mouse brain 10X Visium dataset

    • figshare.com
    application/gzip
    Updated Nov 7, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Suoqin Jin (2023). CellChat object of mouse brain 10X Visium dataset [Dataset]. http://doi.org/10.6084/m9.figshare.24516436.v1
    Explore at:
    application/gzipAvailable download formats
    Dataset updated
    Nov 7, 2023
    Dataset provided by
    figshare
    Authors
    Suoqin Jin
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    CellChat object after running cell-cell communication analysis of the mouse brain 10X Visium dataset using CellChat v2. We download this dataset from https://www.10xgenomics.com/resources/datasets/mouse-brain-serial-section-1-sagittal-anterior-1-standard-1-0-0. Biological annotations of spots (i.e., cell group information) are predicted using Seurat R package.

  8. Z

    Data from: Spatial Transcriptomics in Breast Cancer Reveals Tumour...

    • data.niaid.nih.gov
    • zenodo.org
    Updated Nov 29, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rubio-Fernández, Marcos (2024). Spatial Transcriptomics in Breast Cancer Reveals Tumour Microenvironment-Driven Drug Responses and Clonal Therapeutic Heterogeneity [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_10638905
    Explore at:
    Dataset updated
    Nov 29, 2024
    Dataset provided by
    Gómez-López, Gonzalo
    Rubio-Fernández, Marcos
    Al-Shahrour, Fátima
    García-Martín, Santiago
    Jiménez-Santos, María José
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    We acquired 10x Visium spatial transcriptomics (ST) data from 9 patients with invasive adenocarcinomas [1–5] to explore the role of the tumour microenvironment (TME) on intratumor heterogeneity (ITH) and drug response in breast cancer. By leveraging a new version of Beyondcell 6, a tool for identifying tumour cell subpopulations with distinct drug response patterns, we predicted sensitivity to over 1,200 drugs while accounting for the spatial context and interaction between the tumour and TME compartments. Moreover, we also used Beyondcell to compute spot-wise functional enrichment scores and identify niche-specific biological functions.

    Here, you can find:

    In signatures folder:

    SSc breast: Collection of gene signatures used to predict sensitivity to > 1,200 drugs derived from breast cancer cell lines.

    Functional signatures: Collection of gene signatures used to compute enrichment in different biological pathways.

    In visium folder:

    Visium objects: Processed ST Seurat objects with deconvoluted spots, SCTransform-normalised counts, and clonal composition predicted with SCEVAN [7]. These objects, together with the signatures, were used to compute the Beyondcell objects.

    In single-cell folder:

    Single-cell objects: Raw and filtered merged single-cell RNA-seq (scRNA-seq) Seurat objects with unnormalised counts used as a reference for spot deconvolution.

    In beyondcell folder:

    Beyondcell sensitivity objects with prediction scores for all drug response signatures in SSc breast.

    Beyondcell functional objects with enrichment scores for all functional signatures.

  9. Z

    Data from: Single-cell analyses of axolotl forebrain organization,...

    • data.niaid.nih.gov
    • explore.openaire.eu
    • +1more
    Updated Mar 28, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Barbara Treutlein (2022). Single-cell analyses of axolotl forebrain organization, neurogenesis, and regeneration [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_6390082
    Explore at:
    Dataset updated
    Mar 28, 2022
    Dataset provided by
    J. Gray Camp
    Katharina Lust
    Elly M. Tanaka
    Tomás Gomes
    Barbara Treutlein
    Jonas Simon Fleck
    Ashley Maynard
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Preprint: https://doi.org/10.1101/2022.03.21.485045

    Abstract:

    Salamanders are important tetrapod models to study brain organization and regeneration, however the identity and evolutionary conservation of brain cell types is largely unknown. Here, we delineate cell populations in the axolotl telencephalon during homeostasis and regeneration, representing the first single-cell genomic and spatial profiling of an anamniote tetrapod brain. We identify glutamatergic neurons with similarities to amniote neurons of hippocampus, dorsal and lateral cortex, and conserved GABAergic neuron classes. We infer transcriptional dynamics and gene regulatory relationships of postembryonic, region-specific direct and indirect neurogenesis, and unravel conserved signatures. Following brain injury, ependymoglia activate an injury-specific state before reestablishing lost neuron populations and axonal connections. Together, our analyses yield key insights into the organization, evolution, and regeneration of a tetrapod nervous system.

    File description:

    all_nuclei_clustered_highlevel_anno.rds - Seurat object including all snRNA-seq data from uninjured pallium, both from microdissections and whole pallium multiome.

    pallium_metadata_simp.csv - csv file containing a simplified version of the metadata for the uninjured pallium

    Edu_1_2_4_6_8_12_fil_highvarfeat.rds - Seurat object containing all Div-seq data for the pallium injury time course

    divseq_predicted_metadata.csv - csv file containing a simplified version of the metadata for the pallium injury time course

    ep_wpi_srat.rds - Seurat object containing an integrated version of ependymoglia cells from uninjured and injured pallium (see Fig 6 in the preprint).

    D1_113_sub_b.rds - Seurat object containing a Visium data for the axolotl pallium

    multiome_integATAC_SCT.rds - Signac object containing the data used for multiome analysis of the uninjured whole pallium

    predictions_cell2loc.csv - csv file containing cell2location scores for the uninjured pallium cell types in the Visium dataset

  10. CellRanger analyzed Visium data

    • figshare.com
    zip
    Updated Aug 2, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Zhiyu Dai (2024). CellRanger analyzed Visium data [Dataset]. http://doi.org/10.6084/m9.figshare.25584672.v1
    Explore at:
    zipAvailable download formats
    Dataset updated
    Aug 2, 2024
    Dataset provided by
    Figsharehttp://figshare.com/
    figshare
    Authors
    Zhiyu Dai
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Mouse lung tissues were perfused with PBS and fixed with 10% formalin via tracheal instillation at a constant pressure (15 cm H2O) and embedded in paraffin wax. Lung tissues were sectioned into 5 μm sections. Tissue sections were placed within the fiducial frame or the etched frames of the Capture Area on the 10X Genomics Visium Spatial slides. Slides were then deparaffinated, decrosslinked and stained with H & E staining kit (Millipore Sigma). Images were acquired under Keyence BZ-X800E slide scanner. The mouse whole transcriptome probe panel is added to the deparaffinized, stained, and decrosslinked tissues. After hybridization, single stranded ligation products were released and then captured on the Visium slides. Probes are extended by the addition of UMI, Spatial Barcode and partial Read 1, followed by library preparation and sample indexed. The library was sequenced on a Hiseq 4000 with pair-end 150bp (Novogene). The raw sequencing data was analyzed by CellRanger 7.0 (10X Genomics) and Seurat V4. Visium data was integrated with scRNA-seq data. The cell annotation was transferred from scRNA-seq.

  11. Visium Spatial and snRNA data of Brain section from Parkinson Mouse Model...

    • zenodo.org
    bin, csv, zip
    Updated Jun 5, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jaehyun Lee; Jaehyun Lee (2025). Visium Spatial and snRNA data of Brain section from Parkinson Mouse Model based on inducible expression of human a-syn constructs: 20-months + snRNA 23 months dataset [Dataset]. http://doi.org/10.5281/zenodo.14988055
    Explore at:
    csv, bin, zipAvailable download formats
    Dataset updated
    Jun 5, 2025
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Jaehyun Lee; Jaehyun Lee
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Using 23-months old mice of a inducible expression of human a-syn constructs based Parkinson mouse model, we produced a single nucleus RNA dataset by cutting 0mm Bregma to -5mm Bregma. The Chromium 3’ Single Cell Library Kit (10x Genomics) was used and Sequencing was performed on a NovaSeq 6000. From the same model we also used 20-months old mice with the Visium Spatial V1 platform (10x Genomics). Sequencing was performed on a NovaSeq 6000. Both were PE150.

    snRNA pipeline: For the alignment of reads, a custom reference was created by adding the sequences of the V1S/SV2 transgene and the Camk2a promoter to the mm10 mouse reference genome. Count matrices generated by cellranger count 7.1 were loaded into an AnnData object and processed using the Python-based framework Scanpy 1.10.2. Integration with R, where needed, was facilitated through the rpy2 package. Raw count matrices were corrected for ambient RNA contamination using the SoupX 1.6.2. To remove potential doublets, scDblFinder 1.18.0 was employed with a fixed seed (123). Nuclei with nUMI and nGenes values exceeding three median absolute deviations (MADs) from the median were excluded. Genes detected in fewer than five nuclei across the dataset were excluded. The resulting dataset was normalized via scanpy.pp.normalize_total and scanpy.pp.log1p. Highly variable genes were identified using the function scanpy.pp.highly_variable_genes with the Seurat v3 flavor, selecting the top 4,000 genes. Dimensionality reduction was performed using principal component analysis (PCA) and batch effects were corrected using the python-implemented version of Harmony via the function scanpy.external.pp.harmony_integrate. Harmony embeddings were then used to construct a k-nearest neighbor (kNN) graph with scanpy.pp.neighbors. Clustering was performed using Leiden clustering with standard parameters via the function scanpy.tl.leiden. Clusters were annotated using literature, the mousebrain.org, and markers identified via the FindConservedMarkers function in Seurat. First, neurons and non-neuronal cells were distinguished using mainly canonical markers, such as but not limited to Rbfox3 (neurons), Mbp (oligodendrocytes), Acsbg1 (astrocytes), Pdgfra (oligodendrocyte precursor cells), Inpp5d (microglia), Colec12 (vascular cells), and Ttr (choroid plexus cells). Neurons were further classified into Vglut1 (Slc17a7), Vglut2 (Slc17a6), GABA (Gad2), cholinergic (Scube1), and dopaminergic (Th) neurons. Vglut1 and GABA neurons were further annotated into subtypes based on subclustering and FindConservedMarkers markers.

    visium spatial pipeline: Sequences were fiducially aligned to spots using Loupe Browser ver. 8. All aligned sequences were mapped using spaceranger count 3.0.1 with a custom refence, which included sequences for the promotor and transgene (Camk2aTTA, V1S/SV2) to the mouse genome mm39. We filtered each sample of the Visium Spatial dataset based on the MAD filtering of number of reads (nUMI), number of genes (nGene), and percentage of mitochondrial genes (percent.mt). A spot was filtered out if it was outside of 3x MAD value in at least two metrics. Filtered samples were merged into one Seurat 5.1.0 object and we obtained normalized counts by the SCTransform function of Seurat. Integration was performed using Harmony 1.2.0 on 50 PCA embeddings and clustering was done using Leiden clustering based on 30 harmony embeddings. Integrated clusters were visualized using the UMAP method. Samples that were not successfully integrated (based on similarity measures of the harmony embeddings) and showed high percentage.mt or low nUMI levels compared to other samples, were removed from subsequent analysis. A final integration and clustering were performed after filtering. Regions were first annotated based on a 0.1 resolution clustering to get high level region annotation (Cortex, Hippocampus, Subcortex). Each high-level region was further annotated based on either more granular resolutions or subclustering. Marker genes from mousebrain.org and literature were used in combination with the Allen mouse brain atlas to obtain anatomically relevant annotations.

  12. Datasets for ShinyCell2 Example Applications

    • zenodo.org
    application/gzip, bin
    Updated Apr 6, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    John Ouyang; John Ouyang (2025). Datasets for ShinyCell2 Example Applications [Dataset]. http://doi.org/10.5281/zenodo.15162323
    Explore at:
    application/gzip, binAvailable download formats
    Dataset updated
    Apr 6, 2025
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    John Ouyang; John Ouyang
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Datasets for ShinyCell2 Example Applications, which include:

    spatial_brain.rds: Example spatial transcriptomics dataset of sagital mouse brain slices generated using the 10x Visium v1 chemistry, processed using the Seurat spatial pipeline (https://satijalab.org/seurat/articles/spatial_vignette)

    multimodal_pbmc.rds: Example CITE-seq dataset of PBMC reference containing 162,000 PBMC cells measured with 228 antibodies (https://satijalab.org/seurat/articles/multimodal_reference_mapping.html)

    ArchR-ProjHeme.tar.gz: Example scATAC-seq dataset of bone marrow and peripheral blood mononuclear cells, which is used as the tutorial dataset for the ArchR pipeline (https://www.archrproject.com/articles/Articles/tutorial.html). As ArchR objects are stored in a directory containing many files, the entire folder is tarred and compressed here.

    signac_pbmc.rds: Example scATAC-seq dataset of PBMC provided by 10x Genomics, which is used as the tutorial dataset for the signac pipeline (https://stuartlab.org/signac/articles/pbmc_vignette.html). Signac objects store the full list of all unique fragments across all single cells in a separate fragment file, uploaded as signac_pbmc_fragments.tsv.gz here

  13. s

    Dataset supporting the University of Southampton Doctoral Thesis...

    • eprints.soton.ac.uk
    Updated May 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jenkins, Benjamin Henry (2025). Dataset supporting the University of Southampton Doctoral Thesis "Investigating fibroblast heterogeneity in head and neck squamous cell carcinoma" [Dataset]. http://doi.org/10.5258/SOTON/D3247
    Explore at:
    Dataset updated
    May 28, 2025
    Dataset provided by
    University of Southampton
    Authors
    Jenkins, Benjamin Henry
    Description

    This dataset contains scRNA-Seq (10x 3' v3) and spatial transcriptomics (10x Visium V2 Cytassist) data for 10 patients with oropharyngeal squamous cell carcinoma. The scRNA-Seq .RDS file contains an integrated seurat object containing 82,844 cells with corresponding metadata within the object. Spatial transcriptomics data was read into Seurat using Load10X_Spatial(). The visium data is uploaded both as SpaceRanger output files for each sample and as a Seurat object with deconvoluted spot-level cell type abundance metadata.

  14. Seurat objects associated with the tonsil cell atlas

    • zenodo.org
    application/gzip, bin +1
    Updated Sep 28, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ramon Massoni-Badosa; Ramon Massoni-Badosa (2023). Seurat objects associated with the tonsil cell atlas [Dataset]. http://doi.org/10.5281/zenodo.8373756
    Explore at:
    bin, application/gzip, csvAvailable download formats
    Dataset updated
    Sep 28, 2023
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Ramon Massoni-Badosa; Ramon Massoni-Badosa
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    In the context of the Human Cell Atlas, we have created a single-cell-driven taxonomy of cell types and states in human tonsils. This repository contains the Seurat objects derived from this effort. In particular, we have datasets for each modality (scRNA-seq, scATAC-seq, CITE-seq, spatial transcriptomics), as well as cell type-specific datasets. Most importantly, this is the input that we used to create the HCATonsilData package, which allows programmatic access to all this datasets within R.

    Version 2 of this repository includes cells from 7 additional donors, which we used as a validation cohort to validate the cell types and states defined in the atlas. In addition, in this version we also provide the Seurat object associated with the spatial transcriptomics data (10X Visium), as well as the fragments files for scATAC-seq and Multiome

  15. E

    Spatially resolved antigen receptor and gene expression data from human...

    • ega-archive.org
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Spatially resolved antigen receptor and gene expression data from human tonsil tissue [Dataset]. https://ega-archive.org/datasets/EGAD00001011062
    Explore at:
    License

    https://ega-archive.org/dacs/EGAC00001003294https://ega-archive.org/dacs/EGAC00001003294

    Description

    The dataset includes spatially-resolved gene expression and antigen receptor data from two Tonsil samples (1 and 2). Tissue sections from the tonsil samples were used for spatial transcriptomics (Visium, 10x genomics). Tonsil 2 tissue sections were analyzed by a new method (Spatial VDJ) to spatially resolve antigen receptor sequences (target capture), which was developed in our publication. Nearby or adjacent tissue sections (from Tonsil2) were also analyzed by a bulk antigen receptor sequencing approach (amplicon sequencing), by a method also newly developed by us in the same publication (Bulk SS3 VDJ). For Visium, the data were anonymized (all SNPs removed) using Bamboozle (Ziegenhain and Sandberg, Nature Communications 2021). The deposited data is in the form of fastq files. All remaining data, metadata, micrographs of the tissue sections (of those used for spatial transcriptomics), and scripts used for the analysis are available at Zenodo (DOI: 10.5281/zenodo.7961605). Final libraries were sequenced on NextSeq2000 (Illumina) or NovaSeq6000 (Illumina) and analyzed with Seurat, Space Ranger, and STutility pipelines.

  16. Data from: Host-Pathogen Interactions in the Plasmodium-Infected Mouse Liver...

    • zenodo.org
    application/gzip, bin +1
    Updated Jan 5, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Franziska Hildebrandt; Franziska Hildebrandt; Miren Urrutia Iturritza; Miren Urrutia Iturritza; Christian Zwicker; Bavo Vanneste; Noémi Van Hul; Elisa Semle; Tales Pascini; Sami Saarenpää; Mengxiao He; Emma R. Andersson; Charlotte L. Scott; Joel Vega-Rodriguez; Joakim Lundeberg; Johan Ankarklev; Christian Zwicker; Bavo Vanneste; Noémi Van Hul; Elisa Semle; Tales Pascini; Sami Saarenpää; Mengxiao He; Emma R. Andersson; Charlotte L. Scott; Joel Vega-Rodriguez; Joakim Lundeberg; Johan Ankarklev (2024). Host-Pathogen Interactions in the Plasmodium-Infected Mouse Liver at Spatial and Single-Cell Resolution [Dataset]. http://doi.org/10.5281/zenodo.8386528
    Explore at:
    bin, zip, application/gzipAvailable download formats
    Dataset updated
    Jan 5, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Franziska Hildebrandt; Franziska Hildebrandt; Miren Urrutia Iturritza; Miren Urrutia Iturritza; Christian Zwicker; Bavo Vanneste; Noémi Van Hul; Elisa Semle; Tales Pascini; Sami Saarenpää; Mengxiao He; Emma R. Andersson; Charlotte L. Scott; Joel Vega-Rodriguez; Joakim Lundeberg; Johan Ankarklev; Christian Zwicker; Bavo Vanneste; Noémi Van Hul; Elisa Semle; Tales Pascini; Sami Saarenpää; Mengxiao He; Emma R. Andersson; Charlotte L. Scott; Joel Vega-Rodriguez; Joakim Lundeberg; Johan Ankarklev
    Description

    Dataset created in the study "A Spatial Transcriptomics Atlas of the Malaria-infected Liver Indicates a Crucial Role for Lipid Metabolism and Hotspots of Inflammatory Cell Infiltration"

    Structure

    ST_berghei_liver

    contains data generated during stpipeline analysis and imaging on 2k arrays Spatial Transcriptomics platform as well as data necessary for and from hepaquery analysis. These samples include 38 sections in total of which 8 are from mice (n=4) infected with sporozoites for 12h, 5 sections from control mice (n=3) at 12h, 7 sections from mice (n=4) infected with sporozoites for 24h and 4 sections from control mice (n=3) for 24 as well as 8 samples of mice (n=2) infected with sporozoites for 38h and control mice (n =2) for 38h.

    • count contains gene expression matrix output from stpipeline in .tsv format
    • spotfiles contains coordinate files for count matrices
    • images contains scaled H&E, Fluorescence (FL) and annotated H&E images (from FL annotations) scaled to 10% of the original image size.
    • masks contains image masks for hepaquery analysis
    • distances contains distance measurements from original section sorted by timepoint as well as combined across timepoints
    • cluster contains clustering information across spatial positions used in spatial enrichment analysis

    STUtiility_mus_pb_ST.RDS describes seurat object generated using the STUtility package using ST data of the 38 liver sections of which the data is stored in ST_berghei_liver

    h5ad

    contains anndata files of ST data (normalized read counts), spot information, distance measurements, images and masks generated using the hepaquery package.

    visium_berghei_liver

    contains data generated with the spaceranger pipeline and imaging using the Visium spatial transcriptomics platform. These samples include 8 sections in total, of which 1 was infected with sporozoites for 12h, 1 control section at 12h, 1 section infected with sporozoites for 24h and 1 control section at 24 as well as 2 sporozoite infected sections, and 2 control sections at 38h.

    • V10S29-135_A1 contains spaceranger output for section 1 for infected and control sections at 38h post-infection
    • V10S29-135_B1 contains spaceranger output for section 1 for infected and control sections at 12h post-infection
    • V10S29-135_C1 contains spaceranger output for section 1 for infected and control sections at 24h post-infection
    • V10S29-135_D1 contains spaceranger output for section 2 for infected and control sections at 38h post-infection

    se_visium.RDS describes seurat object generated using the STUtility package using ST data of the 38 liver sections of which the data is stored in visium_berghei_liver

    snSeq_berghei_liver

    contains data generated with the cellranger pipeline and imaging using the Visium spatial transcriptomics platform. These samples include single nuclei of 2 infected and control mice after 12h, 2 infected and control mice after 24h, 2 infected and control mice after 38h, and 2 uninfected mice prior to a challenge.

    cellranger_cnt_out contains feature count matrix information from cell ranger output

    final_merged_curated_annotations_270623.RDS describes seurat object generated using the STUtility package using ST data of the 38 liver sections of which the data is stored in snSeq_berghei_liver.tar.gz

    raw images.zip contains raw images for supplementary figures 20-22

    adjusted images.zip contains brightness and contrast adjusted images for supplementary figures 20-22

  17. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Ikjot Sidhu; Ikjot Sidhu; Aleksandr Prystupa; Aleksandr Prystupa (2023). Spatial transcriptomics stratifies health and psoriatic disease severity by emergent cellular ecosystems [Dataset]. http://doi.org/10.5281/zenodo.7562864
Organization logo

Data from: Spatial transcriptomics stratifies health and psoriatic disease severity by emergent cellular ecosystems

Related Article
Explore at:
2 scholarly articles cite this dataset (View in Google Scholar)
zipAvailable download formats
Dataset updated
Feb 19, 2023
Dataset provided by
Zenodohttp://zenodo.org/
Authors
Ikjot Sidhu; Ikjot Sidhu; Aleksandr Prystupa; Aleksandr Prystupa
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

While human inflammatory skin diseases' cellular and molecular features are well-characterized, their tissue context and systemic impact remain poorly understood. We thus profiled human psoriasis (PsO) as a prototypic immune-mediated condition with a high preference for extra-cutaneous involvement. Spatial transcriptomics (ST) analyses of 25 healthy, active, and clinically uninvolved skin biopsies, and integration with public single-cell transcriptomics data revealed striking differences in immune microniches between healthy and inflamed skin. Tissue scale-cartography further identified core disease features across all active lesions, including the emergence of an inflamed suprabasal epidermal state and the presence of B lymphocytes in lesional skin. Notably, both lesional and distal non-lesional samples were stratified by skin disease severity, and not by the presence of systemic disease. This segregation was driven by macrophage-, fibroblast- and lymphatic-enriched spatial regions with gene signatures associated with metabolic dysfunction. Taken together, these findings suggest that mild and severe forms of PsO have distinct molecular features and that severe PsO may profoundly alter the cellular and metabolic make up of distal unaffected skin sites. Additionally, our study provides an unprecedented resource for the research community to study spatial gene organization of healthy and inflamed human skin.

Search
Clear search
Close search
Google apps
Main menu