(Webpage Under Development)
The Department of Water Resources (DWR) provides Technical Support Services (TSS) to assist Groundwater Sustainability Agencies (GSAs) with the implementation of their Groundwater Sustainability Plans (GSPs) and other local entities to better understand groundwater conditions. These services support data collection, groundwater monitoring, and improved understanding of groundwater conditions to help advance sustainable groundwater management efforts across California.
Through the TSS program, DWR has partnered with GSAs and other entities on projects across the state to drill and construct groundwater monitoring wells, install groundwater level recording and telemetry equipment, perform downhole camera and geophysical surveys, and collect and analyze groundwater for general chemistry. The data and reports generated from these efforts are publicly available to support ongoing groundwater management and planning.
Additional information can be found on the Assistance and Engagement webpage.
To date, DWR has completed TSS projects in 35 groundwater subbasins, constructing 234 monitoring wells at 92 sites statewide. Each of these wells have been assigned a State Well Number (SWN), have had a Well Completion Report (WCR) submitted to DWRs Online System for Well Completion Reports (OSWCR), and have been registered either through the California Statewide Groundwater Elevation Monitoring (CASGEM) Online System or the Sustainable Groundwater Management Act (SGMA) Portal’s Monitoring Network Module (MNM).
Groundwater level data from these wells are collected by the GSA or DWR and submitted to CASGEM and/or the MNM. These data can be viewed on the Water Data Library (WDL).
WCRs for these wells can be found using the Well Completion Report Map Application.
A summary table of completed TSS wells including their associated well name(s), site code(s), SWN(s), and WCR number(s), can be viewed and/or downloaded here: DWR Completed TSS Wells
An interactive GIS map containing a feature set of all completed TSS wells can be accessed here: GIS Map of Completed TSS Wells
The individual TSS well locations, associated borehole lithologic information, and groundwater level data can be viewed on the SGMA Data Viewer by:
Checking the “DWR TSS Wells” box under the “Groundwater Levels” tab on the left side of the screen.
Clicking on any one of the well location symbols that appear on the interactive map.
Clicking on one of the associated Site Code numbers that appear in the results table.
Below is a list of subbasins in which TSS projects have been completed. These projects are organized by DWR Region (Northern Region, North Central Region, South Central Region, and Southern Region). Each subbasin listed below has one or more completed TSS project. As more TSS projects are completed, they will be added to this list.
All completed TSS projects have several associated documents and datasets, including a Well Installation Summary Report, TSS Agreement between DWR and the GSA, CEQA Notice of Exemption (NOE), Land Use or License Agreement, Local Drilling Permit, Composite Lithologic Log, Survey Report, and a Water Quality Analytical Report. Some projects also include downhole geophysical logs. These data and reports can be accessed by clicking on the subbasin below in which the project is located.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The dataset contains the locations for the periodic groundwater elevation monitoring stations that track seasonal and long-term groundwater elevation trends within the California Central Valley. The groundwater level measurements contain time-series data at sites managed by the DWR and local monitoring entities. This dataset is available for download on the SGMA Data Viewer web app, CNRA Open Data Platform, and the CASGEM web application. The data was used for the calibration of the C2VSimFG to perform quality control. Not all of these observed data were used in the calibration of the C2VSimFG due to the insufficient or questionable groundwater observations, such as observed data in subregion 10 and 14, where observed groundwater levels within the area of the Corcoran Clay Layers are highly variable. The groundwater elevation data went through an extensive data review process to determine the CASGEM wells used for the calibration of C2VSimFG. For questions/comments contact gis@water.ca.gov.
This dataset includes processed climate change datasets related to climatology, hydrology, and water operations. The climatological data provided are change factors for precipitation and reference evapotranspiration gridded over the entire State. The hydrological data provided are projected stream inflows for major streams in the Central Valley, and streamflow change factors for areas outside of the Central Valley and smaller ungaged watersheds within the Central Valley. The water operations data provided are Central Valley reservoir outflows, diversions, and State Water Project (SWP) and Central Valley Project (CVP) water deliveries and select streamflow data. Most of the Central Valley inflows and all of the water operations data were simulated using the CalSim II model and produced for all projections.
These data were originally developed for the California Water Commission’s Water Storage Investment Program (WSIP). The WSIP data used as the basis for these climate change resources along with the technical reference document are located here: https://data.cnra.ca.gov/dataset/climate-change-projections-wsip-2030-2070. Additional processing steps were performed to improve user experience, ease of use for GSP development, and for Sustainable Groundwater Management Act (SGMA) implementation. Furthermore, the data, tools, and guidance may be useful for purposes other than sustainable groundwater management under SGMA.
Data are provided for projected climate conditions centered around 2030 and 2070. The climate projections are provided for these two future climate periods, and include one scenario for 2030 and three scenarios for 2070: a 2030 central tendency, a 2070 central tendency, and two 2070 extreme scenarios (i.e., one drier with extreme warming and one wetter with moderate warming). The climate scenario development process represents a climate period analysis where historical interannual variability from January 1915 through December 2011 is preserved while the magnitude of events may be increased or decreased based on projected changes in precipitation and air temperature from general circulation models.
DWR has collaborated with Lawrence Berkeley National Laboratory to improve the quality of the 2070 extreme scenarios. The 2070 extreme scenario update utilizes an improved climate period analysis method known as "quantile delta mapping" to better capture the GCM-projected change in temperature and precipitation. A technical note on the background and results of this process is provided here: https://data.cnra.ca.gov/dataset/extreme-climate-change-scenarios-for-water-supply-planning/resource/f2e1c61a-4946-4863-825f-e6d516b433ed.
Note: the original version of the 2070 extreme scenarios can be accessed in the archive posted here: https://data.cnra.ca.gov/dataset/sgma-climate-change-resources/resource/51b6ee27-4f78-4226-8429-86c3a85046f4
Statewide AEM Surveys Project Overview The Department of Water Resources’ (DWR’s) Statewide Airborne Electromagnetic (AEM) Surveys Project is funded through California’s Proposition 68 and the General Fund. The goal of the project is to improve the understanding of groundwater aquifer structure to support the state and local goal of sustainable groundwater management and the implementation of the Sustainable Groundwater Management Act (SGMA). During an AEM survey, a helicopter tows electronic equipment that sends signals into the ground which bounce back. The data collected are used to create continuous images showing the distribution of electrical resistivity values of the subsurface materials that can be interpreted for lithologic properties. The resulting information will provide a standardized, statewide dataset that improves the understanding of large-scale aquifer structures and supports the development or refinement of hydrogeologic conceptual models and can help identify areas for recharging groundwater. DWR collected AEM data in all of California’s high- and medium-priority groundwater basins, where data collection is feasible. Data were collected in a coarsely spaced grid, with a line spacing of approximately 2-miles by 8-miles. AEM data collection started in 2021 and was completed in 2023. Additional information about the project can be found on the Statewide AEM Survey website. See the publication below for an overview of the project and a preliminary analysis of the AEM data. California’s Statewide Airborne Electromagnetic Surveys and Preliminary Hydrogeologic Interpretations Survey Areas AEM data are being collected in groups of groundwater basins, defined as a Survey Area. See Survey Area Map for groundwater subbasins within a Survey Area: Survey Area 1: 180/400 Foot Aquifer (partial), East Side (partial), Upper Valley, Forebay Aquifer, Paso Robles, Atascadero (limited), Adelaida (limited), Cuyama Valley. Survey Area 2: Scott River Valley, Shasta Valley, Butte Valley, Tulelake, Fall River Valley (limited), Big Valley (Modoc/Lassen County). Survey Area 3: Big Valley (Lake County), Ukiah Valley, Santa Rosa Plain, Petaluma Valley, Sonoma Valley. Survey Area 4: White Wolf, Kern County, Tulare Lake, Tule, Kaweah. Survey Area 5: Pleasant Valley, Westside, Kings, Madera, Chowchilla, Merced, Turlock, Modesto, Delta-Mendota Survey Area 6: Cosumnes, Tracy, Eastern San Joaquin, East Contra Costa, Solano, Livermore, South American, North American, Yolo, Sutter, South Yuba, North Yuba Survey Area 7: Colusa, Butte, Wyandotte Creek, Vina, Los Molinos, Corning, Red Bluff, Antelope, Bowman, Bend, Millville, South Battle Creek, Anderson, Enterprise, Eel River, Sierra Valley Survey Area 8: Seaside, Monterey, 180/400 (partially surveyed Summer 2021), Eastside (partially surveyed Summer 2021), Langley, Pajaro, Santa Cruz Mid-County, Santa Margarita, San Benito, and Llagas (partial). Survey Area 9: Basin Characterization Pilot Study 1 - Madera and Kings. Survey Area 10: San Antonio Creek Valley, Arroyo Grande, Santa Maria, San Luis Obispo, Los Osos Area, Warden Creek, Chorro Valley (limited), Morro Valley (limited) Survey Area 11: Indian Wells Valley, Rose Valley, Owens Valley, Fish Slough, Indio, Mission Creek, West Salton Sea (limited), East Salton Sea (limited), Ocotillo-Clark Valley (limited), Imperial Valley (limited),Chocolate Valley (limited), Borrego Springs, and San Jacinto Data Reports Data reports detail the AEM data collection, processing, inversion, interpretation, and uncertainty analyses methods and procedures. Data reports also describe additional datasets used to support the AEM surveys, including digitized lithology and geophysical logs. Multiple data reports may be provided for a single Survey Area, depending on the Survey Area coverage. Data Availability and Types All data collected as a part of the Statewide AEM Surveys will be made publicly available, by survey area, approximately six to twelve months after individual surveys are complete (depending on survey area size). Datasets that will be publicly available include: AEM Datasets Raw AEM Data Processed AEM Data Inverted AEM Data Inverted AEM Data Uncertainty Analysis Interpreted AEM Data (for coarse fraction) Interpreted AEM Data Uncertainty Analysis Supporting Datasets Flown Survey Lines Digitized Lithology Logs Digitized Geophysical Logs AEM Data Viewers DWR has developed AEM Data Viewers to provides a quick and easy way to visualize the AEM electrical resistivity data and the AEM data interpretations (as texture) in a three-dimensional space. The most recent data available are shown, which my be the provisional data for some areas that are not yet finalized. The Data Viewers can be accessed by direct link, below, or from the Data Viewer Landing Page. AEM 3D Viewer (Beta) (computer only) AEM Profile Viewer SGMA Data Viewer (Basin Characterization tab) AEM Depth Slice and Shallow Subsurface Average Maps As a part of DWR’s upcoming Basin Characterization Program, DWR will be publishing a series of maps and tools to support advanced data analyses. The first of these maps have now been published and provide analyses of the Statewide AEM Survey data to support the identification of potential recharge areas. The maps are located on the SGMA Data Viewer (under the Hydrogeologic Conceptual Model tab) and show the AEM electrical resistivity and AEM-derived texture data as the following: Shallow Subsurface Average: Maps showing the average electrical resistivity and AEM-derived texture in the shallow subsurface (the top approximately 50 feet below ground surface). These maps support identification of potential recharge areas, where the top 50 feet is dominated by high resistivity or coarse-grained materials. Depth Slices: Depth slice automations showing changes in electrical resistivity and AEM-derived texture with depth. These maps aid in delineating the geometry of large-scale features (for example, incised valley fills). Shapefiles for the formatted AEM electrical resistivity data and AEM derived texture data as depth slices and the shallow subsurface average can be downloaded here: Electrical Resistivity Depth Slices and Shallow Subsurface Average Maps Texture Interpretation (Coarse Fraction) Depth Slices and Shallow Subsurface Average Maps Technical Memos Technical memos are developed by DWR's consultant team (Ramboll Consulting) to describe research related to AEM survey planning or data collection. Research described in the technical memos may also be formally published in a journal publication. AEM Test Flights to Evaluate the Bias Signal Caused by Vineyard Trellises Containing Metal SkyTEM Instrument Comparison for Airborne EM 2018-2020 AEM Pilot Studies Three pilot studies were conducted in California from 2018-2020 to support the development of the Statewide AEM Survey Project. The AEM Pilot Studies were conducted in the Sacramento Valley in Colusa and Butte county groundwater basins, the Salinas Valley in Paso Robles groundwater basin, and in the Indian Wells Valley groundwater basin. Provisional Statement Data Reports and datasets labeled as provisional may be incomplete and are subject to revision until they have been thoroughly reviewed and received final approval. Provisional data and reports may be inaccurate and subsequent review may result in revisions to the data and reports. Data users are cautioned to consider carefully the provisional nature of the information before using it for decisions that concern personal or public safety or the conduct of business that involves substantial monetary or operational consequences.
DWR has a long history of studying and characterizing California’s groundwater aquifers as a part of California’s Groundwater (Bulletin 118). The Basin Characterization Program provides the latest data and information about California’s groundwater basins to help local communities better understand their aquifer systems and support local and statewide groundwater management. Under the Basin Characterization Program, new and existing data (AEM, lithology logs, geophysical logs, etc.) will be integrated to create continuous maps and three-dimensional models. To support this effort, new data analysis tools will be developed to create texture models, hydrostratigraphic models, and aquifer flow parameters. Data collection efforts will be expanded to include advanced geologic, hydrogeologic, and geophysical data collection and data digitization and quality control efforts will continue. To continue to support data access and data equity, the Basin Characterization Program will develop new online, GIS-based, visualization tools to serve as a central hub for accessing and exploring groundwater related data in California. Additional information can be found on the Basin Characterization Program webpage. DWR's Evaluation of Groundwater Resources: Maps and Models DWR will undertake local, regional, and statewide investigations to evaluate California's groundwater resources and develop state-stewarded maps and models. New and existing data will be combined and integrated using the analysis tools described below to develop maps and models to be developed will describe the grain size, the hydrostratigraphic properties, and hydrogeologic conceptual properties of California’s aquifers. These maps and models help groundwater managers understand how groundwater is stored and moves within the aquifer. The models will be state-stewarded, meaning that they will be regularly updated, as new data becomes available, to ensure that up-to-date information is used for groundwater management activities. The first iterations of the following maps and models will be published as they are developed: Texture Models Hydrostratigraphic Models Aquifer Recharge Potential Maps Extent of Important Aquifer Units Depth to Basement Depth to Freshwater Data Collection As a part of the Basin Characterization Program, advanced geologic, hydrogeologic, and geophysical data will be collected to improve our understanding of groundwater basins. Data collected under Basin Characterization are collected at a local, regional, or statewide scale depending on the scope of the study. Local Investigations: Madera & North Kings Pajaro Western San Joaquin Valley Regional Investigations: Sacramento Valley Four County Area of San Joaquin Valley (Madera, Fresno, Kings, and Tulare) San Joaquin Valley Statewide Investigations: Statewide AEM Surveys Data Compilation and Digitization Digitized Existing Lithology and Geophysical Logs Lithology and geophysical logging data have been digitized to support the Statewide AEM Survey Project and will continue to be digitized to support Basin Characterization efforts. All digitized lithology logs with Well Completion Report IDs will be imported back into the OSWCR database. Digitized lithology and geophysical logging can be found under the following resource: Digitized Lithology and Geophysical Logs. Analysis Tools and Process Documents To develop the state-stewarded maps and models outlined above, new tools and process documents will be created to integrate and analyze a wide range of data, including geologic, geophysical, and hydrogeologic information. By combining and assessing various datasets, these tools will help create a more complete picture of California's groundwater basins. All tools, along with guidance documents, will be made publicly available for local groundwater managers to use to support development of maps and models at a local scale. All tools and guidance will be updated as revisions to tools and process documents are made. Analysis tools and process documents can be found under the following resource: Data Analysis Tools and Process Documents. Data Visualization Data access equity is a priority for the Basin Characterization Program. To ensure data access equity, the Basin Characterization Program has developed applications and tools to allow data to be visualized without needing access to expensive data visualization software. This list below provides links and descriptions for the Basin Characterization's suite of data viewers. SGMA Data Viewer: Basin Characterization tab: Provides maps, depth slices, and profiles of Basin Characterization maps, models, and datasets, including the following: Aquifer Recharge Potential Maps Subsurface Texture Model Depth Slices Statewide AEM Survey Texture Depth Slices Lithology Log Location Maps Geophysical Logs Location Maps Statewide AEM Survey Profile Images 3D AEM Data Viewer: Displays the Statewide AEM Survey electrical resistivity and coarse fraction data, along with lithology logs, in a three-dimensional space. DWR's Subsurface Viewer: Provides a map view and profile view of the Statewide AEM Survey electrical resistivity and coarse fraction data, along with lithology logs. The map view dynamically shows the exact location of AEM data displayed. Basin Characterization Exchange The Basin Characterization Exchange (BCX) is a meeting series and network space for the Basin Characterization community to exchange ideas, share lessons learned, define needed guidance, and highlight research topics. The BCX is open to federal, state, and local agencies, consultants, NGOs, academia, and interested parties who participate in Basin Characterization efforts. The BCX also plays a pivotal role in advancing the Basin Characterization Program’s activities and goals. BCX meetings will include regular updates from the Basin Characterization Program and participants can provide feedback and recommendations. Participants will also be provided with early opportunities to test data analysis tools and submit comments on draft process and guidance documents. BCX meetings are (generally) held the 3rd Tuesday of the month from 12:30 - 1:30 pm (PST). Join the BCX listserv to become a BCX member and receive meeting registration emails. Check the BCX Hub for the upcoming schedule and past meeting materials.
This dataset represents measurements of vertical ground surface displacement in more than 200 of the high-use and populated groundwater basins across the State of California between January of 2015 and April of 2022. Vertical displacement estimates are derived from Interferometric Synthetic Aperture Radar (InSAR) data that are collected by the European Space Agency (ESA) Sentinel-1A satellite and processed by TRE ALTAMIRA Inc. (TRE), under contract with the California Department of Water Resources (DWR) as part of DWR’s SGMA technical assistance to provide important SGMA-relevant data to GSAs for GSP development and implementation. Sentinel-1A InSAR data coverage began in late 2014 for parts of California, and coverage for the entire study area began in June 13, 2015. Included in this dataset are point data that represent average vertical displacement values for 100 meter by 100 meter areas, as well as GIS rasters that were interpolated from the point data; rasters for total vertical displacement relative to June 13, 2015, and rasters for annual vertical displacement rates with earlier coverage for some areas, both in monthly time steps. Towill Inc. (Towill), also under contract with DWR as part of DWR’s SGMA technical assistance, conducted an independent study comparing the InSAR-based vertical displacement point time series data to data from Continuous Global Positioning System (CGPS) stations. The goal of this study was to ground-truth the InSAR results to best available independent data.
Data update frequency: Quarterly Report update frequency: Annual
DWR has a long history of studying and characterizing California’s groundwater aquifers as a part of California’s Groundwater (Bulletin 118). California's Groundwater Basin Characterization Program provides the latest data and information about California’s groundwater basins to help local communities better understand their aquifer systems and support local and statewide groundwater management.
Under the Basin Characterization Program, new and existing data (AEM, lithology logs, geophysical logs, etc.) are integrated to create continuous maps and three-dimensional models. To support this effort, new data analysis tools have been developed to create texture models, hydrostratigraphic models, and aquifer flow parameters. Data collection efforts have been expanded to include advanced geologic, hydrogeologic, and geophysical data collection and data digitization and quality control efforts will continue. To continue to support data access and data equity, the Basin Characterization Program has developed new online, GIS-based, visualization tools to serve as a central hub for accessing and exploring groundwater related data in California.
Additional information can be found on the Basin Characterization Program webpage.
DWR is undertaking local, regional, and statewide investigations to evaluate California's groundwater resources and develop state-stewarded maps and models. New and existing data have been combined and integrated using the analysis tools described below to develop maps and models that describe grain size, the hydrostratigraphic properties, and hydrogeologic conceptual properties of California’s aquifers. These maps and models help groundwater managers understand how groundwater is stored and moves within the aquifer. The models will be state-stewarded, meaning that they will be regularly updated, as new data becomes available, to ensure that up-to-date information is used for groundwater management activities. The first iterations of the following maps and models will be published as they are developed:
Click on the link below for each local, regional, or statewide investigation to find the following datasets.
As a part of the Basin Characterization Program, advanced geologic, hydrogeologic, and geophysical data will be collected to improve our understanding of groundwater basins. Data collected under Basin Characterization are collected at a local, regional, or statewide scale depending on the scope of the study. Advanced data collection methods include:
Lithology and geophysical logging data have been digitized to support the Statewide AEM Survey Project and will continue to be digitized to support Basin Characterization efforts. All digitized lithology logs with Well Completion Report IDs will be imported back into the OSWCR database. Digitized lithology and geophysical logging can be found under the following resource:
To develop the state-stewarded maps and models outlined above, new tools and process documents have been created to integrate and analyze a wide range of data, including geologic, geophysical, and hydrogeologic information. By combining and assessing various datasets, these tools help create a more complete picture of California's groundwater basins. All tools, along with guidance documents, are made publicly available for local groundwater managers to use to support development of maps and models at a local scale. All tools and guidance will be updated as revisions to tools and process documents are made.
Data2Texture: Data2Texture is an advanced spatial data interpolation tool for estimating the distribution of sediment textures from airborne electromagnetic data and lithology logs to create a 3D texture model
Data2HSM - Smart Interpretation: Data2HSM via Smart Interpretation (SI) is a semi-automatic Python tool for delineating continuous hydrogeologic surfaces from airborne electromagnetic data products.
Data2HSM - Gaussian Mixture Model: The Data2HSM via Gaussian Mixture Model tool ingests the AEM data and groups the data into a user-specified number of clusters that are interpreted as stratigraphic units in the hydrostratigraphic model (HSM)
Data2HSM - Geological Pseudolabel Deep Neural Network: The GeoPDNN (Geological Pseudolabel Deep Neural Network) is a semi-supervised machine learning tool that integrates lithologic well logs and AEM data into plausible stratigraphic surfaces.
Texture2Par V2: Texture2Par V2 is a groundwater model pre-processor and parameterization utility developed to work with the IWFM and MODFLOW families of hydrologic simulation code.
Data access equity is a priority for the Basin Characterization Program. To ensure data access equity, the Basin Characterization Program has developed applications and tools to allow data to be visualized without needing access to expensive data visualization software. This list below provides links and descriptions for the Basin Characterization's suite of data viewers.
SGMA Data Viewer: Basin Characterization tab: Provides maps, depth slices, and profiles of Basin Characterization maps, models, and datasets, including the following:
3D AEM Data Viewer: Displays the Statewide AEM Survey electrical resistivity and coarse fraction data, along with lithology logs, in a three-dimensional space.
California's Groundwater Subsurface Viewer: Provides a map view and profile view of the Statewide AEM Survey electrical resistivity and coarse fraction data, along with lithology logs. The map view dynamically shows the exact location of AEM data displayed.
The Basin Characterization
The Groundwater Sustainability Plan (GSP) Annual Report (AR) datasets contain the following data submitted by Groundwater Sustainability Agencies (GSA) and Alternative Agencies as part of their GSP AR or Alternative to GSP AR: groundwater extraction, surface water supply, total water use, and change in storage volumes for a given water year. All data was originally submitted to the Department of Water Resources (DWR) through the Sustainable Groundwater Management Act (SGMA) Portal’s AR Modules (https://sgma.water.ca.gov/portal/gspar/submitted and https://sgma.water.ca.gov/portal/alternative/annualreport/submitted). Data records within each dataset correspond to either an entire basin or one of multiple GSP areas which collectively correspond to an entire basin.
The GSP Regulations established the AR data requirements (23 CCR § 356.2) and tasked DWR with developing an online reporting system for GSAs and Alternative Agencies to electronically submit these data (23 CCR § 353.2). The data fields associated with these datasets were created by DWR to ensure GSAs and Alternative Agencies electronically submitted the required AR data to DWR’s online reporting system, the SGMA Portal (https://sgma.water.ca.gov/portal/). For additional information regarding the AR Modules and the AR submittal process, please view the DWR’s AR resources (https://sgma.water.ca.gov/portal/resources).
Not seeing a result you expected?
Learn how you can add new datasets to our index.
(Webpage Under Development)
The Department of Water Resources (DWR) provides Technical Support Services (TSS) to assist Groundwater Sustainability Agencies (GSAs) with the implementation of their Groundwater Sustainability Plans (GSPs) and other local entities to better understand groundwater conditions. These services support data collection, groundwater monitoring, and improved understanding of groundwater conditions to help advance sustainable groundwater management efforts across California.
Through the TSS program, DWR has partnered with GSAs and other entities on projects across the state to drill and construct groundwater monitoring wells, install groundwater level recording and telemetry equipment, perform downhole camera and geophysical surveys, and collect and analyze groundwater for general chemistry. The data and reports generated from these efforts are publicly available to support ongoing groundwater management and planning.
Additional information can be found on the Assistance and Engagement webpage.
To date, DWR has completed TSS projects in 35 groundwater subbasins, constructing 234 monitoring wells at 92 sites statewide. Each of these wells have been assigned a State Well Number (SWN), have had a Well Completion Report (WCR) submitted to DWRs Online System for Well Completion Reports (OSWCR), and have been registered either through the California Statewide Groundwater Elevation Monitoring (CASGEM) Online System or the Sustainable Groundwater Management Act (SGMA) Portal’s Monitoring Network Module (MNM).
Groundwater level data from these wells are collected by the GSA or DWR and submitted to CASGEM and/or the MNM. These data can be viewed on the Water Data Library (WDL).
WCRs for these wells can be found using the Well Completion Report Map Application.
A summary table of completed TSS wells including their associated well name(s), site code(s), SWN(s), and WCR number(s), can be viewed and/or downloaded here: DWR Completed TSS Wells
An interactive GIS map containing a feature set of all completed TSS wells can be accessed here: GIS Map of Completed TSS Wells
The individual TSS well locations, associated borehole lithologic information, and groundwater level data can be viewed on the SGMA Data Viewer by:
Checking the “DWR TSS Wells” box under the “Groundwater Levels” tab on the left side of the screen.
Clicking on any one of the well location symbols that appear on the interactive map.
Clicking on one of the associated Site Code numbers that appear in the results table.
Below is a list of subbasins in which TSS projects have been completed. These projects are organized by DWR Region (Northern Region, North Central Region, South Central Region, and Southern Region). Each subbasin listed below has one or more completed TSS project. As more TSS projects are completed, they will be added to this list.
All completed TSS projects have several associated documents and datasets, including a Well Installation Summary Report, TSS Agreement between DWR and the GSA, CEQA Notice of Exemption (NOE), Land Use or License Agreement, Local Drilling Permit, Composite Lithologic Log, Survey Report, and a Water Quality Analytical Report. Some projects also include downhole geophysical logs. These data and reports can be accessed by clicking on the subbasin below in which the project is located.