ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
License information was derived automatically
geodata data package providing geojson polygons for all the world's countries
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Summary
Geojson files used to visualize geospatial layers relevant to identifying and assessing trucking fleet decarbonization opportunities with the MIT Climate & Sustainability Consortium's Geospatial Trucking Industry Decarbonization Explorer (Geo-TIDE) tool.
Relevant Links
Link to the online version of the tool (requires creation of a free user account).
Link to GitHub repo with source code to produce this dataset and deploy the Geo-TIDE tool locally.
Funding
This dataset was produced with support from the MIT Climate & Sustainability Consortium.
Original Data Sources
These geojson files draw from and synthesize a number of different datasets and tools. The original data sources and tools are described below:
Filename(s) Description of Original Data Source(s) Link(s) to Download Original Data License and Attribution for Original Data Source(s)
faf5_freight_flows/*.geojson
trucking_energy_demand.geojson
highway_assignment_links_*.geojson
infrastructure_pooling_thought_experiment/*.geojson
Regional and highway-level freight flow data obtained from the Freight Analysis Framework Version 5. Shapefiles for FAF5 region boundaries and highway links are obtained from the National Transportation Atlas Database. Emissions attributes are evaluated by incorporating data from the 2002 Vehicle Inventory and Use Survey and the GREET lifecycle emissions tool maintained by Argonne National Lab.
Shapefile for FAF5 Regions
Shapefile for FAF5 Highway Network Links
FAF5 2022 Origin-Destination Freight Flow database
FAF5 2022 Highway Assignment Results
Attribution for Shapefiles: United States Department of Transportation Bureau of Transportation Statistics National Transportation Atlas Database (NTAD). Available at: https://geodata.bts.gov/search?collection=Dataset.
License for Shapefiles: This NTAD dataset is a work of the United States government as defined in 17 U.S.C. § 101 and as such are not protected by any U.S. copyrights. This work is available for unrestricted public use.
Attribution for Origin-Destination Freight Flow database: National Transportation Research Center in the Oak Ridge National Laboratory with funding from the Bureau of Transportation Statistics and the Federal Highway Administration. Freight Analysis Framework Version 5: Origin-Destination Data. Available from: https://faf.ornl.gov/faf5/Default.aspx. Obtained on Aug 5, 2024. In the public domain.
Attribution for the 2022 Vehicle Inventory and Use Survey Data: United States Department of Transportation Bureau of Transportation Statistics. Vehicle Inventory and Use Survey (VIUS) 2002 [supporting datasets]. 2024. https://doi.org/10.21949/1506070
Attribution for the GREET tool (original publication): Argonne National Laboratory Energy Systems Division Center for Transportation Research. GREET Life-cycle Model. 2014. Available from this link.
Attribution for the GREET tool (2022 updates): Wang, Michael, et al. Summary of Expansions and Updates in GREET® 2022. United States. https://doi.org/10.2172/1891644
grid_emission_intensity/*.geojson
Emission intensity data is obtained from the eGRID database maintained by the United States Environmental Protection Agency.
eGRID subregion boundaries are obtained as a shapefile from the eGRID Mapping Files database.
eGRID database
Shapefile with eGRID subregion boundaries
Attribution for eGRID data: United States Environmental Protection Agency: eGRID with 2022 data. Available from https://www.epa.gov/egrid/download-data. In the public domain.
Attribution for shapefile: United States Environmental Protection Agency: eGRID Mapping Files. Available from https://www.epa.gov/egrid/egrid-mapping-files. In the public domain.
US_elec.geojson
US_hy.geojson
US_lng.geojson
US_cng.geojson
US_lpg.geojson
Locations of direct current fast chargers and refueling stations for alternative fuels along U.S. highways. Obtained directly from the Station Data for Alternative Fuel Corridors in the Alternative Fuels Data Center maintained by the United States Department of Energy Office of Energy Efficiency and Renewable Energy.
US_elec.geojson
US_hy.geojson
US_lng.geojson
US_cng.geojson
US_lpg.geojson
Attribution: U.S. Department of Energy, Energy Efficiency and Renewable Energy. Alternative Fueling Station Corridors. 2024. Available from: https://afdc.energy.gov/corridors. In the public domain.
These data and software code ("Data") are provided by the National Renewable Energy Laboratory ("NREL"), which is operated by the Alliance for Sustainable Energy, LLC ("Alliance"), for the U.S. Department of Energy ("DOE"), and may be used for any purpose whatsoever.
daily_grid_emission_profiles/*.geojson
Hourly emission intensity data obtained from ElectricityMaps.
Original data can be downloaded as csv files from the ElectricityMaps United States of America database
Shapefile with region boundaries used by ElectricityMaps
License: Open Database License (ODbL). Details here: https://www.electricitymaps.com/data-portal
Attribution for csv files: Electricity Maps (2024). United States of America 2022-23 Hourly Carbon Intensity Data (Version January 17, 2024). Electricity Maps Data Portal. https://www.electricitymaps.com/data-portal.
Attribution for shapefile with region boundaries: ElectricityMaps contributors (2024). electricitymaps-contrib (Version v1.155.0) [Computer software]. https://github.com/electricitymaps/electricitymaps-contrib.
gen_cap_2022_state_merged.geojson
trucking_energy_demand.geojson
Grid electricity generation and net summer power capacity data is obtained from the state-level electricity database maintained by the United States Energy Information Administration.
U.S. state boundaries obtained from this United States Department of the Interior U.S. Geological Survey ScienceBase-Catalog.
Annual electricity generation by state
Net summer capacity by state
Shapefile with U.S. state boundaries
Attribution for electricity generation and capacity data: U.S. Energy Information Administration (Aug 2024). Available from: https://www.eia.gov/electricity/data/state/. In the public domain.
electricity_rates_by_state_merged.geojson
Commercial electricity prices are obtained from the Electricity database maintained by the United States Energy Information Administration.
Electricity rate by state
Attribution: U.S. Energy Information Administration (Aug 2024). Available from: https://www.eia.gov/electricity/data.php. In the public domain.
demand_charges_merged.geojson
demand_charges_by_state.geojson
Maximum historical demand charges for each state and zip code are derived from a dataset compiled by the National Renewable Energy Laboratory in this this Data Catalog.
Historical demand charge dataset
The original dataset is compiled by the National Renewable Energy Laboratory (NREL), the U.S. Department of Energy (DOE), and the Alliance for Sustainable Energy, LLC ('Alliance').
Attribution: McLaren, Joyce, Pieter Gagnon, Daniel Zimny-Schmitt, Michael DeMinco, and Eric Wilson. 2017. 'Maximum demand charge rates for commercial and industrial electricity tariffs in the United States.' NREL Data Catalog. Golden, CO: National Renewable Energy Laboratory. Last updated: July 24, 2024. DOI: 10.7799/1392982.
eastcoast.geojson
midwest.geojson
la_i710.geojson
h2la.geojson
bayarea.geojson
saltlake.geojson
northeast.geojson
Highway corridors and regions targeted for heavy duty vehicle infrastructure projects are derived from a public announcement on February 15, 2023 by the United States Department of Energy.
The shapefile with Bay area boundaries is obtained from this Berkeley Library dataset.
The shapefile with Utah county boundaries is obtained from this dataset from the Utah Geospatial Resource Center.
Shapefile for Bay Area country boundaries
Shapefile for counties in Utah
Attribution for public announcement: United States Department of Energy. Biden-Harris Administration Announces Funding for Zero-Emission Medium- and Heavy-Duty Vehicle Corridors, Expansion of EV Charging in Underserved Communities (2023). Available from https://www.energy.gov/articles/biden-harris-administration-announces-funding-zero-emission-medium-and-heavy-duty-vehicle.
Attribution for Bay area boundaries: San Francisco (Calif.). Department Of Telecommunications and Information Services. Bay Area Counties. 2006. In the public domain.
Attribution for Utah boundaries: Utah Geospatial Resource Center & Lieutenant Governor's Office. Utah County Boundaries (2023). Available from https://gis.utah.gov/products/sgid/boundaries/county/.
License for Utah boundaries: Creative Commons 4.0 International License.
incentives_and_regulations/*.geojson
State-level incentives and regulations targeting heavy duty vehicles are collected from the State Laws and Incentives database maintained by the United States Department of Energy's Alternative Fuels Data Center.
Data was collected manually from the State Laws and Incentives database.
Attribution: U.S. Department of Energy, Energy Efficiency and Renewable Energy, Alternative Fuels Data Center. State Laws and Incentives. Accessed on Aug 5, 2024 from: https://afdc.energy.gov/laws/state. In the public domain.
These data and software code ("Data") are provided by the National Renewable Energy Laboratory ("NREL"), which is operated by the Alliance for Sustainable Energy, LLC ("Alliance"), for the U.S. Department of Energy ("DOE"), and may be used for any purpose whatsoever.
costs_and_emissions/*.geojson
diesel_price_by_state.geojson
trucking_energy_demand.geojson
Lifecycle costs and emissions of electric and diesel trucking are evaluated by adapting the model developed by Moreno Sader et al., and calibrated to the Run on Less dataset for the Tesla Semi collected from the 2023 PepsiCo Semi pilot by the North American Council for Freight Efficiency.
In
Download high-quality, up-to-date Sweden shapefile boundaries (SHP, projection system SRID 4326). Our Sweden Shapefile Database offers comprehensive boundary data for spatial analysis, including administrative areas and geographic boundaries. This dataset contains accurate and up-to-date information on all administrative divisions, zip codes, cities, and geographic boundaries, making it an invaluable resource for various applications such as geographic analysis, map and visualization, reporting and business intelligence (BI), master data management, logistics and supply chain management, and sales and marketing. Our location data packages are available in various formats, including Shapefile, GeoJSON, KML, ASC, DAT, CSV, and GML, optimized for seamless integration with popular systems like Esri ArcGIS, Snowflake, QGIS, and more. Companies choose our location databases for their enterprise-grade service, reduction in integration time and cost by 30%, and weekly updates to ensure the highest quality.
Overview
Empower your location data visualizations with our edge-matched polygons, even in difficult geographies.
Our self-hosted GIS data cover administrative and postal divisions with up to 6 precision levels: a zip code layer and up to 5 administrative levels. All levels follow a seamless hierarchical structure with no gaps or overlaps.
The geospatial data shapes are offered in high-precision and visualization resolution and are easily customized on-premise.
Use cases for the Global Boundaries Database (GIS data, Geospatial data)
In-depth spatial analysis
Clustering
Geofencing
Reverse Geocoding
Reporting and Business Intelligence (BI)
Product Features
Coherence and precision at every level
Edge-matched polygons
High-precision shapes for spatial analysis
Fast-loading polygons for reporting and BI
Multi-language support
For additional insights, you can combine the GIS data with:
Population data: Historical and future trends
UNLOCODE and IATA codes
Time zones and Daylight Saving Time (DST)
Data export methodology
Our geospatial data packages are offered in variable formats, including - .shp - .gpkg - .kml - .shp - .gpkg - .kml - .geojson
All GIS data are optimized for seamless integration with popular systems like Esri ArcGIS, Snowflake, QGIS, and more.
Why companies choose our map data
Precision at every level
Coverage of difficult geographies
No gaps, nor overlaps
Note: Custom geospatial data packages are available. Please submit a request via the above contact button for more details.
Download high-quality, up-to-date France shapefile boundaries (SHP, projection system SRID 4326). Our France Shapefile Database offers comprehensive boundary data for spatial analysis, including administrative areas and geographic boundaries. This dataset contains accurate and up-to-date information on all administrative divisions, zip codes, cities, and geographic boundaries, making it an invaluable resource for various applications such as geographic analysis, map and visualization, reporting and business intelligence (BI), master data management, logistics and supply chain management, and sales and marketing. Our location data packages are available in various formats, including Shapefile, GeoJSON, KML, ASC, DAT, CSV, and GML, optimized for seamless integration with popular systems like Esri ArcGIS, Snowflake, QGIS, and more. Companies choose our location databases for their enterprise-grade service, reduction in integration time and cost by 30%, and weekly updates to ensure the highest quality.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Introduction
Geographical scale, in terms of spatial extent, provide a basis for other branches of science. This dataset contains newly proposed geographical and geological GIS boundaries for the Pan-Tibetan Highlands (new proposed name for the High Mountain Asia), based on geological and geomorphological features. This region comprises the Tibetan Plateau and three adjacent mountain regions: the Himalaya, Hengduan Mountains and Mountains of Central Asia, and boundaries are also given for each subregion individually. The dataset will benefit quantitative spatial analysis by providing a well-defined geographical scale for other branches of research, aiding cross-disciplinary comparisons and synthesis, as well as reproducibility of research results.
The dataset comprises three subsets, and we provide three data formats (.shp, .geojson and .kmz) for each of them. Shapefile format (.shp) was generated in ArcGIS Pro, and the other two were converted from shapefile, the conversion steps refer to 'Data processing' section below. The following is a description of the three subsets:
(1) The GIS boundaries we newly defined of the Pan-Tibetan Highlands and its four constituent sub-regions, i.e. the Tibetan Plateau, Himalaya, Hengduan Mountains and the Mountains of Central Asia. All files are placed in the "Pan-Tibetan Highlands (Liu et al._2022)" folder.
(2) We also provide GIS boundaries that were applied by other studies (cited in Fig. 3 of our work) in the folder "Tibetan Plateau and adjacent mountains (Others’ definitions)". If these data is used, please cite the relevent paper accrodingly. In addition, it is worthy to note that the GIS boundaries of Hengduan Mountains (Li et al. 1987a) and Mountains of Central Asia (Foggin et al. 2021) were newly generated in our study using Georeferencing toolbox in ArcGIS Pro.
(3) Geological assemblages and characters of the Pan-Tibetan Highlands, including Cratons and micro-continental blocks (Fig. S1), plus sutures, faults and thrusts (Fig. 4), are placed in the "Pan-Tibetan Highlands (geological files)" folder.
Note: High Mountain Asia: The name ‘High Mountain Asia’ is the only direct synonym of Pan-Tibetan Highlands, but this term is both grammatically awkward and somewhat misleading, and hence the term ‘Pan-Tibetan Highlands’ is here proposed to replace it. Third Pole: The first use of the term ‘Third Pole’ was in reference to the Himalaya by Kurz & Montandon (1933), but the usage was subsequently broadened to the Tibetan Plateau or the whole of the Pan-Tibetan Highlands. The mainstream scientific literature refer the ‘Third Pole’ to the region encompassing the Tibetan Plateau, Himalaya, Hengduan Mountains, Karakoram, Hindu Kush and Pamir. This definition was surpported by geological strcture (Main Pamir Thrust) in the western part, and generally overlaps with the ‘Tibetan Plateau’ sensu lato defined by some previous studies, but is more specific.
More discussion and reference about names please refer to the paper. The figures (Figs. 3, 4, S1) mentioned above were attached in the end of this document.
Data processing
We provide three data formats. Conversion of shapefile data to kmz format was done in ArcGIS Pro. We used the Layer to KML tool in Conversion Toolbox to convert the shapefile to kmz format. Conversion of shapefile data to geojson format was done in R. We read the data using the shapefile function of the raster package, and wrote it as a geojson file using the geojson_write function in the geojsonio package.
Version
Version 2022.1.
Acknowledgements
This study was supported by the Strategic Priority Research Program of Chinese Academy of Sciences (XDB31010000), the National Natural Science Foundation of China (41971071), the Key Research Program of Frontier Sciences, CAS (ZDBS-LY-7001). We are grateful to our coauthors insightful discussion and comments. We also want to thank professors Jed Kaplan, Yin An, Dai Erfu, Zhang Guoqing, Peter Cawood, Tobias Bolch and Marc Foggin for suggestions and providing GIS files.
Citation
Liu, J., Milne, R. I., Zhu, G. F., Spicer, R. A., Wambulwa, M. C., Wu, Z. Y., Li, D. Z. (2022). Name and scale matters: Clarifying the geography of Tibetan Plateau and adjacent mountain regions. Global and Planetary Change, In revision
Jie Liu & Guangfu Zhu. (2022). Geographical and geological GIS boundaries of the Tibetan Plateau and adjacent mountain regions (Version 2022.1). https://doi.org/10.5281/zenodo.6432940
Contacts
Dr. Jie LIU: E-mail: liujie@mail.kib.ac.cn;
Mr. Guangfu ZHU: zhuguangfu@mail.kib.ac.cn
Institution: Kunming Institute of Botany, Chinese Academy of Sciences
Address: 132# Lanhei Road, Heilongtan, Kunming 650201, Yunnan, China
Copyright
This dataset is available under the Attribution-ShareAlike 4.0 International (CC BY-SA 4.0).
Download high-quality, up-to-date Syria shapefile boundaries (SHP, projection system SRID 4326). Our Syria Shapefile Database offers comprehensive boundary data for spatial analysis, including administrative areas and geographic boundaries. This dataset contains accurate and up-to-date information on all administrative divisions, zip codes, cities, and geographic boundaries, making it an invaluable resource for various applications such as geographic analysis, map and visualization, reporting and business intelligence (BI), master data management, logistics and supply chain management, and sales and marketing. Our location data packages are available in various formats, including Shapefile, GeoJSON, KML, ASC, DAT, CSV, and GML, optimized for seamless integration with popular systems like Esri ArcGIS, Snowflake, QGIS, and more. Companies choose our location databases for their enterprise-grade service, reduction in integration time and cost by 30%, and weekly updates to ensure the highest quality.
The UNI-CEN Digital Boundary File Series facilitates the mapping of UNI-CEN census data tables. Boundaries are provided in multiple formats for different use cases: Esri Shapefile (SHP), geoJson, and File Geodatabase (FGDB). SHP and FGDB files are provided in two projections: NAD83 CSRS for print cartography and WGS84 for web applications. The geoJson version is provided in WGS84 only. The UNI-CEN Standardized Census Data Tables are readily merged to these boundary files. For more information about file sources, the methods used to create them, and how to use them, consult the documentation at https://borealisdata.ca/dataverse/unicen_docs. For more information about the project, visit https://observatory.uwo.ca/unicen.
Overview
Empower your location data visualizations with our edge-matched polygons, even in difficult geographies.
Our self-hosted geospatial data cover administrative and postal divisions with up to 5 precision levels. All levels follow a seamless hierarchical structure with no gaps or overlaps.
The geospatial data shapes are offered in high-precision and visualization resolution and are easily customized on-premise.
Use cases for the Global Administrative Boundaries Database (Geospatial data, Map data)
In-depth spatial analysis
Clustering
Geofencing
Reverse Geocoding
Reporting and Business Intelligence (BI)
Product Features
Coherence and precision at every level
Edge-matched polygons
High-precision shapes for spatial analysis
Fast-loading polygons for reporting and BI
Multi-language support
For additional insights, you can combine the map data with:
Population data: Historical and future trends
UNLOCODE and IATA codes
Time zones and Daylight Saving Time (DST)
Data export methodology
Our location data packages are offered in variable formats, including - .shp - .gpkg - .kml - .shp - .gpkg - .kml - .geojson
All geospatial data are optimized for seamless integration with popular systems like Esri ArcGIS, Snowflake, QGIS, and more.
Why companies choose our map data
Precision at every level
Coverage of difficult geographies
No gaps, nor overlaps
Note: Custom geospatial data packages are available. Please submit a request via the above contact button for more details.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
In this directory, there are 6 geojson files which were used for mapping.1. Lake_Arc_simplify: Boundary of Lakes in and around Ontario2. Ontario_arc: Boundary lines of Ontario3. Municipal_Arc_simplify: Boundary lines of municipalities4. Municipal_Polygon: Polygons of the municipalities5. Stations151: Locations of 151 weather stations (municipalites)6.polygon9864: Rectangle areas centered at the 9864 grid pointssource:https://github.com/LAMPSYORKU/OntarioClimateDataPortal/tree/master/shapefiles
ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
License information was derived automatically
geodata data package providing geojson polygons and shp for administratives European NUTS levels 1, 2 and 3
The UNI-CEN Digital Boundary File Series facilitates the mapping of UNI-CEN census data tables. Boundaries are provided in multiple formats for different use cases: Esri Shapefile (SHP), geoJson, and File Geodatabase (FGDB). SHP and FGDB files are provided in two projections: NAD83 CSRS for print cartography and WGS84 for web applications. The geoJson version is provided in WGS84 only. The UNI-CEN Standardized Census Data Tables are readily merged to these boundary files. For more information about file sources, the methods used to create them, and how to use them, consult the documentation at https://borealisdata.ca/dataverse/unicen_docs. For more information about the project, visit https://observatory.uwo.ca/unicen.
geodata data package providing geojson polygons and shapefiles for Global Lakes and Wetlands Database
Download high-quality, up-to-date Belgium shapefile boundaries (SHP, projection system SRID 4326). Our Belgium Shapefile Database offers comprehensive boundary data for spatial analysis, including administrative areas and geographic boundaries. This dataset contains accurate and up-to-date information on all administrative divisions, zip codes, cities, and geographic boundaries, making it an invaluable resource for various applications such as geographic analysis, map and visualization, reporting and business intelligence (BI), master data management, logistics and supply chain management, and sales and marketing. Our location data packages are available in various formats, including Shapefile, GeoJSON, KML, ASC, DAT, CSV, and GML, optimized for seamless integration with popular systems like Esri ArcGIS, Snowflake, QGIS, and more. Companies choose our location databases for their enterprise-grade service, reduction in integration time and cost by 30%, and weekly updates to ensure the highest quality.
The City Planning Facilities Database (FacDB) aggregates information about 35,000+ public and private facilities and program sites that are owned, operated, funded, licensed or certified by a City, State, or Federal agency in the City of New York. It captures facilities that generally help to shape quality of life in the city’s neighborhoods, including schools, day cares, parks, libraries, public safety services, youth programs, community centers, health clinics, workforce development programs, transitional housing, and solid waste and transportation infrastructure sites. To facilitate analysis and mapping, the data is available in coma-separated values (CSV) file format, ESRI Shapefile, and GeoJSon. The data is also complemented with a new interactive web map that enables users to easily filter the data for their needs. Users are strongly encouraged to read the database documentation, particularly with regard to analytical limitations.
For data dictionary, please follow this link
Overview
Empower your location data visualizations with our edge-matched polygons, even in difficult geographies.
Our self-hosted geospatial data cover postal divisions for the whole world. The geospatial data shapes are offered in high-precision and visualization resolution and are easily customized on-premise.
Use cases for the Global Boundaries Database (Geospatial data, Map data, Polygon daa)
In-depth spatial analysis
Clustering
Geofencing
Reverse Geocoding
Reporting and Business Intelligence (BI)
Product Features
Coherence and precision at every level
Edge-matched polygons
High-precision shapes for spatial analysis
Fast-loading polygons for reporting and BI
Multi-language support
For additional insights, you can combine the map data with:
Population data: Historical and future trends
UNLOCODE and IATA codes
Time zones and Daylight Saving Time (DST)
Data export methodology
Our location data packages are offered in variable formats, including - .shp - .gpkg - .kml - .shp - .gpkg - .kml - .geojson
All geospatial data are optimized for seamless integration with popular systems like Esri ArcGIS, Snowflake, QGIS, and more.
Why companies choose our map data
Precision at every level
Coverage of difficult geographies
No gaps, nor overlaps
Note: Custom geospatial data packages are available. Please submit a request via the above contact button for more details.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is of simplified geometries from COD live services deployed June 2019. Simplification methods applied from ESRI libraries using Python, Node.js and Mapshaper.js and based on adapted procedures for best outcomes preserving shape, topology and attributes. These data are not a substitute for the original COD data sets used in GIS applications. No warranties of any kind are made for any purpose and this dataset is offered as-is. Versions of topojson, kml and csv are also available. For a list of other simplified CODs see the address list: https://github.com/UGA-ITOSHumanitarianGIS/mapservicedoc/raw/master/Data/AWSDeploymentURLlist.xlsx
Download high-quality, up-to-date Isle of Man shapefile boundaries (SHP, projection system SRID 4326). Our Isle of Man Shapefile Database offers comprehensive boundary data for spatial analysis, including administrative areas and geographic boundaries. This dataset contains accurate and up-to-date information on all administrative divisions, zip codes, cities, and geographic boundaries, making it an invaluable resource for various applications such as geographic analysis, map and visualization, reporting and business intelligence (BI), master data management, logistics and supply chain management, and sales and marketing. Our location data packages are available in various formats, including Shapefile, GeoJSON, KML, ASC, DAT, CSV, and GML, optimized for seamless integration with popular systems like Esri ArcGIS, Snowflake, QGIS, and more. Companies choose our location databases for their enterprise-grade service, reduction in integration time and cost by 30%, and weekly updates to ensure the highest quality.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Data for Figure Atlas.2 from Atlas of the Working Group I (WGI) Contribution to the Intergovernmental Panel on Climate Change (IPCC) Sixth Assessment Report (AR6).
Figure Atlas.2 shows WGI reference regions used in the (a) AR5 and (b) AR6 reports.
How to cite this dataset
When citing this dataset, please include both the data citation below (under 'Citable as') and the following citations: For the report component from which the figure originates: Gutiérrez, J.M., R.G. Jones, G.T. Narisma, L.M. Alves, M. Amjad, I.V. Gorodetskaya, M. Grose, N.A.B. Klutse, S. Krakovska, J. Li, D. Martínez-Castro, L.O. Mearns, S.H. Mernild, T. Ngo-Duc, B. van den Hurk, and J.-H. Yoon, 2021: Atlas. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 1927–2058, doi:10.1017/9781009157896.021
Iturbide, M. et al., 2021: Repository supporting the implementation of FAIR principles in the IPCC-WG1 Interactive Atlas. Zenodo. Retrieved from: http://doi.org/10.5281/zenodo.5171760
Figure subpanels
The figure has two panels, with data provided for both panels in the master GitHub repository linked in the documentation.
Data provided in relation to figure
This dataset contains the corner coordinates defining each reference region for the second panel of the figure, which contain coordinate information at a 0.44º resolution. The repository directory 'reference-regions' contains data provided for the reference regions as polygons in different formats (CSV with coordinates, R data, shapefile and geojson) together with R and Python notebooks illustrating the use of these regions with worked examples.
Data for reference regions for AR5 can be found here: https://catalogue.ceda.ac.uk/uuid/a3b6d7f93e5c4ea986f3622eeee2b96f
CMIP5 is the fifth phase of the Coupled Model Intercomparison Project. CMIP6 is the sixth phase of the Coupled Model Intercomparison Project. CORDEX is The Coordinated Regional Downscaling Experiment from the WCRP. AR5 and AR6 refer to the 5th and 6th Annual Report of the IPCC. WGI stands for Working Group I
Notes on reproducing the figure from the provided data
Data and figures produced by the Jupyter Notebooks live inside the notebooks directory. The notebooks describe step by step the basic process followed to generate some key figures of the AR6 WGI Atlas and some products underpinning the Interactive Atlas, such as reference regions, global warming levels, aggregated datasets. They include comments and hints to extend the analysis, thus promoting reusability of the results. These notebooks are provided as guidance for practitioners, more user friendly than the code provided as scripts in the reproducibility folder.
Some of the notebooks require access to large data volumes out of this repository. To speed up the execution of the notebook, in addition to the full code to access the data, we provide a data loading shortcut, by storing intermediate results in the auxiliary-material folder in this repository. To test other parameter settings, the full data access instructions should be followed, which can take long waiting times.
Sources of additional information
The following weblinks are provided in the Related Documents section of this catalogue record: - Link to the figure on the IPCC AR6 website - Link to the report component containing the figure (Atlas) - Link to the Supplementary Material for Atlas, which contains details on the input data used in Table Atlas.SM.15. - Link to the code for the figure, archived on Zenodo. - Link to the necessary notebooks for reproducing the figure from GitHub. - Link to IPCC AR5 reference regions dataset
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Datasets, code and results for paper 'Measuring Geodiversity in Large Overhead Imagery Datasets'1) Synthetic shapes dataset .zip (Count:3)Used to test GeoFID and GeoIS computations in the paper.Contains 3 separate zip files for 'polygon', 'star', and 'ellipse' shape classes. Each .zip file contains 2,000 images in .png format, 1,000 of which are randomized images along with 1,000 control images as described in the paper. Image filenames are referenced in external polygon GIS files (.geojson format) to facilitate research experiments in the paper.2) Synthetic shapes dataset creation script .py (Count:1)Used to create the dataset in (1) with the pycairo package3) Sample locations .csv (Count:3)Used to specify XY coordinate locations (WGS1984) for each shape class of the synthetic shapes dataset in (1)4) Polygon sub-regions creation script .py (Count:1)Used to create subregion grids in GeoJSON format with the shapely package5) Polygon sub-region grids .geojson (Count:12)Used to link images in synthetic dataset to geospatial regions based on point locations in (3). Used to store GeoFID and GeoIS values calculated for each subregion grid6) GeoFID/GeoIS implementation Jupyter Notebook .pynb (Count:1)Used in conjunction with Google Cloud Services to train deep learning models & calculate GeoFID/GeoIS values stored in (5)
ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
License information was derived automatically
geodata data package providing geojson polygons for all the world's countries