Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Here we present a geospatial dataset representing local- and regional-scale aquifer system boundaries, defined on the basis of an extensive literature review and published in GebreEgziabher et al. (2022). Nature Communications, 13, 2129, https://www.nature.com/articles/s41467-022-29678-7
The database contains 440 polygons, each representing one study area analyzed in GebreEgziabher et al. (2022). The attribute table associated with the shapefile has two fields (column headings): (1) aquifer system title (Ocala Uplift sub-area of the broader Floridan Aquifer System), and (2) broader aquifer system title (e.g., the Floridan Aquifer System).
The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. States and equivalent entities are the primary governmental divisions of the United States. In addition to the fifty States, the Census Bureau treats the District of Columbia, Puerto Rico, and each of the Island Areas (American Samoa, the Commonwealth of the Northern Mariana Islands, Guam, and the U.S. Virgin Islands) as the statistical equivalents of States for the purpose of data presentation.
Crime data assembled by census block group for the MSA from the Applied Geographic Solutions' (AGS) 1999 and 2005 'CrimeRisk' databases distributed by the Tetrad Computer Applications Inc. CrimeRisk is the result of an extensive analysis of FBI crime statistics. Based on detailed modeling of the relationships between crime and demographics, CrimeRisk provides an accurate view of the relative risk of specific crime types at the block group level. Data from 1990 - 1996,1999, and 2004-2005 were used to compute the attributes, please refer to the 'Supplemental Information' section of the metadata for more details. Attributes are available for two categories of crimes, personal crimes and property crimes, along with total and personal crime indices. Attributes for personal crimes include murder, rape, robbery, and assault. Attributes for property crimes include burglary, larceny, and mother vehicle theft. 12 block groups have no attribute information. CrimeRisk is a block group and higher level geographic database consisting of a series of standardized indexes for a range of serious crimes against both persons and property. It is derived from an extensive analysis of several years of crime reports from the vast majority of law enforcement jurisdictions nationwide. The crimes included in the database are the "Part I" crimes and include murder, rape, robbery, assault, burglary, theft, and motor vehicle theft. These categories are the primary reporting categories used by the FBI in its Uniform Crime Report (UCR), with the exception of Arson, for which data is very inconsistently reported at the jurisdictional level. Part II crimes are not reported in the detail databases and are generally available only for selected areas or at high levels of geography. In accordance with the reporting procedures using in the UCR reports, aggregate indexes have been prepared for personal and property crimes separately, as well as a total index. While this provides a useful measure of the relative "overall" crime rate in an area, it must be recognized that these are unweighted indexes, in that a murder is weighted no more heavily than a purse snatching in the computation. For this reason, caution is advised when using any of the aggregate index values. The block group boundaries used in the dataset come from TeleAtlas's (formerly GDT) Dynamap data, and are consistent with all other block group boundaries in the BES geodatabase.
This is part of a collection of 221 Baltimore Ecosystem Study metadata records that point to a geodatabase.
The geodatabase is available online and is considerably large. Upon request, and under certain arrangements, it can be shipped on media, such as a usb hard drive.
The geodatabase is roughly 51.4 Gb in size, consisting of 4,914 files in 160 folders.
Although this metadata record and the others like it are not rich with attributes, it is nonetheless made available because the data that it represents could be indeed useful.
This is part of a collection of 221 Baltimore Ecosystem Study metadata records that point to a geodatabase.
The geodatabase is available online and is considerably large. Upon request, and under certain arrangements, it can be shipped on media, such as a usb hard drive.
The geodatabase is roughly 51.4 Gb in size, consisting of 4,914 files in 160 folders.
Although this metadata record and the others like it are not rich with attributes, it is nonetheless made available because the data that it represents could be indeed useful.
Download high-quality, up-to-date Benign shapefile boundaries (SHP, projection system SRID 4326). Our Benign Shapefile Database offers comprehensive boundary data for spatial analysis, including administrative areas and geographic boundaries. This dataset contains accurate and up-to-date information on all administrative divisions, zip codes, cities, and geographic boundaries, making it an invaluable resource for various applications such as geographic analysis, map and visualization, reporting and business intelligence (BI), master data management, logistics and supply chain management, and sales and marketing. Our location data packages are available in various formats, including Shapefile, GeoJSON, KML, ASC, DAT, CSV, and GML, optimized for seamless integration with popular systems like Esri ArcGIS, Snowflake, QGIS, and more. Companies choose our location databases for their enterprise-grade service, reduction in integration time and cost by 30%, and weekly updates to ensure the highest quality.
The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. Primary roads are generally divided, limited-access highways within the interstate highway system or under State management, and are distinguished by the presence of interchanges. These highways are accessible by ramps and may include some toll highways. The MAF/TIGER Feature Classification Code (MTFCC) is S1100 for primary roads.
The South Florida Water Management District (SFWMD) and the U.S. Geological Survey have developed projected future change factors for precipitation depth-duration-frequency (DDF) curves at 174 NOAA Atlas 14 stations in central and south Florida. The change factors were computed as the ratio of projected future to historical extreme precipitation depths fitted to extreme precipitation data from various downscaled climate datasets using a constrained maximum likelihood (CML) approach. The change factors correspond to the period 2050-2089 (centered in the year 2070) as compared to the 1966-2005 historical period. The SFWMD manages the water resources of various interconnected areas in south Florida, which are defined in the SFWMD ArcHydro Enhanced Database (AHED) as “AHED Rain Areas”. The SFWMD is interested in summarizing change factors for each individual AHED Rain Area to use in future planning efforts. Geospatial data provided in an ArcGIS shapefile named “AHED_basins.shp” are described herein. The shapefile contains polygons for the AHED Rain Areas defined in the South Florida Water Management District (SFWMD)'s ArcHydro Enhanced Database (AHED) including their acreages.
Download high-quality, up-to-date Israel shapefile boundaries (SHP, projection system SRID 4326). Our Israel Shapefile Database offers comprehensive boundary data for spatial analysis, including administrative areas and geographic boundaries. This dataset contains accurate and up-to-date information on all administrative divisions, zip codes, cities, and geographic boundaries, making it an invaluable resource for various applications such as geographic analysis, map and visualization, reporting and business intelligence (BI), master data management, logistics and supply chain management, and sales and marketing. Our location data packages are available in various formats, including Shapefile, GeoJSON, KML, ASC, DAT, CSV, and GML, optimized for seamless integration with popular systems like Esri ArcGIS, Snowflake, QGIS, and more. Companies choose our location databases for their enterprise-grade service, reduction in integration time and cost by 30%, and weekly updates to ensure the highest quality.
Download high-quality, up-to-date Spain shapefile boundaries (SHP, projection system SRID 4326). Our Spain Shapefile Database offers comprehensive boundary data for spatial analysis, including administrative areas and geographic boundaries. This dataset contains accurate and up-to-date information on all administrative divisions, zip codes, cities, and geographic boundaries, making it an invaluable resource for various applications such as geographic analysis, map and visualization, reporting and business intelligence (BI), master data management, logistics and supply chain management, and sales and marketing. Our location data packages are available in various formats, including Shapefile, GeoJSON, KML, ASC, DAT, CSV, and GML, optimized for seamless integration with popular systems like Esri ArcGIS, Snowflake, QGIS, and more. Companies choose our location databases for their enterprise-grade service, reduction in integration time and cost by 30%, and weekly updates to ensure the highest quality.
Download high-quality, up-to-date United States shapefile boundaries (SHP, projection system SRID 4326). Our United States Shapefile Database offers comprehensive boundary data for spatial analysis, including administrative areas and geographic boundaries. This dataset contains accurate and up-to-date information on all administrative divisions, zip codes, cities, and geographic boundaries, making it an invaluable resource for various applications such as geographic analysis, map and visualization, reporting and business intelligence (BI), master data management, logistics and supply chain management, and sales and marketing. Our location data packages are available in various formats, including Shapefile, GeoJSON, KML, ASC, DAT, CSV, and GML, optimized for seamless integration with popular systems like Esri ArcGIS, Snowflake, QGIS, and more. Companies choose our location databases for their enterprise-grade service, reduction in integration time and cost by 30%, and weekly updates to ensure the highest quality.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The GIS database has been developed by under the Small Hydropower Mapping and Improved Geospatial Electrification Planning in Indonesia Project [Project ID: P145273]. The scope of the project was to facilitate and improve the planning and investment process for small hydro development both grid and isolated systems through: building up a central database on smal hydro at national scale and validating the mapping of small hydro in NTT, Maluku, Maluku Utara and Sulawesi improved electrification planning by integrating small hydro potential for the provinces of NTT, Maluku, Maluku Utara and Sulawesi into the planning process. Please refer to the country project page for additional outputs and reports: https://www.esmap.org/re-mapping/indonesia The GIS database contains the following datasets: SHP(promising sites) Admin Divisions Topomas_grid Rivers, Geology Forest_areas Roads RainfallGauges RunoffGauges ElectricSystem, each accompanied by a metadata file. Please cite as: [Data/information/map obtained from the] “World Bank via ENERGYDATA.info, under a project funded by the Energy Sector Management Assistance Program (ESMAP). For more information: Indonesia Small Hydro GIS Atlas, 2017, https://energydata.info/dataset/indonesia-small-hydro-gis-database-2017"
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
Data presented here include a shapefile that combines fault data for the United States and Canada (Chorlton, 2007; Reed and others, 2005; Styron and Pagani, 2020) and a shapefile of faults for Australia (Chorlton, 2007; Raymond and others, 2012; Styron and Pagani, 2020). These two shapefiles were used as an evidential layer to evaluate the mineral prospectivity for sediment-hosted Pb-Zn deposits (Lawley and others, 2022). References Chorlton, L.B., 2007, Generalized geology of the world: Bedrock domains and major faults in GIS format: a small-scale world geology map with an extended geological attribute database: Geological Survey of Canada Open File 5529, https://doi.org/10.4095/223767. Lawley, C.J.M., McCafferty, A.E., Graham, G.E., Huston, D.L., Kelley, K.D., Czarnota, K., Paradis, S., Peter, J.M., Hayward, N., Barlow, M., Emsbo, P., Coyan, J., San Juan, C.A., and Gadd, M.G., 2022, Data-driven prospectivity modelling of sediment-hosted Zn-Pb mineral systems and their critical r ...
This dataset contains the White Mountain National Forest Boundary. The boundary was extracted from the National Forest boundaries coverage for the lower 48 states, including Puerto Rico developed by the USDA Forest Service - Geospatial Service and Technology Center. The coverage was projected from decimal degrees to UTM zone 19. This dataset includes administrative unit boundaries, derived primarily from the GSTC SOC data system, comprised of Cartographic Feature Files (CFFs), using ESRI Spatial Data Engine (SDE) and an Oracle database. The data that was available in SOC was extracted on November 10, 1999. Some of the data that had been entered into SOC was outdated, and some national forest boundaries had never been entered for a variety of reasons. The USDA Forest Service, Geospatial Service and Technology Center has edited this data in places where it was questionable or missing, to match the National Forest Inventoried Roadless Area data submitted for the President's Roadless Area Initiative. Data distributed as shapefile in Coordinate system EPSG:26919 - NAD83 / UTM zone 19N.
Download high-quality, up-to-date Ghana shapefile boundaries (SHP, projection system SRID 4326). Our Ghana Shapefile Database offers comprehensive boundary data for spatial analysis, including administrative areas and geographic boundaries. This dataset contains accurate and up-to-date information on all administrative divisions, zip codes, cities, and geographic boundaries, making it an invaluable resource for various applications such as geographic analysis, map and visualization, reporting and business intelligence (BI), master data management, logistics and supply chain management, and sales and marketing. Our location data packages are available in various formats, including Shapefile, GeoJSON, KML, ASC, DAT, CSV, and GML, optimized for seamless integration with popular systems like Esri ArcGIS, Snowflake, QGIS, and more. Companies choose our location databases for their enterprise-grade service, reduction in integration time and cost by 30%, and weekly updates to ensure the highest quality.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘Facilities Database - Shapefile’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://catalog.data.gov/dataset/a0709aa5-f873-45b3-87f1-fdb65d4ddf0d on 13 February 2022.
--- Dataset description provided by original source is as follows ---
The City Planning Facilities Database (FacDB) aggregates information about 35,000+ public and private facilities and program sites that are owned, operated, funded, licensed or certified by a City, State, or Federal agency in the City of New York. It captures facilities that generally help to shape quality of life in the city’s neighborhoods, including schools, day cares, parks, libraries, public safety services, youth programs, community centers, health clinics, workforce development programs, transitional housing, and solid waste and transportation infrastructure sites. To facilitate analysis and mapping, the data is available in coma-separated values (CSV) file format, ESRI Shapefile, and GeoJSon. The data is also complemented with a new interactive web map that enables users to easily filter the data for their needs. Users are strongly encouraged to read the database documentation, particularly with regard to analytical limitations.
For data dictionary, please follow this link
All previously released versions of this data are available at BYTES of the BIG APPLE- Archive
--- Original source retains full ownership of the source dataset ---
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The California Protected Areas Database (CPAD) is a GIS database of lands that are owned in fee and protected for open space purposes by over 1,000 public agencies or non-profit organizations. It is the authoritative GIS database of parks and open space in California.
CPAD is maintained and published by GreenInfo Network (www.greeninfo.org). GreenInfo Network publishes CPAD twice annually.
The City Planning Facilities Database (FacDB) aggregates information about 35,000+ public and private facilities and program sites that are owned, operated, funded, licensed or certified by a City, State, or Federal agency in the City of New York. It captures facilities that generally help to shape quality of life in the city’s neighborhoods, including schools, day cares, parks, libraries, public safety services, youth programs, community centers, health clinics, workforce development programs, transitional housing, and solid waste and transportation infrastructure sites. To facilitate analysis and mapping, the data is available in coma-separated values (CSV) file format, ESRI Shapefile, and GeoJSon. The data is also complemented with a new interactive web map that enables users to easily filter the data for their needs. Users are strongly encouraged to read the database documentation, particularly with regard to analytical limitations.
For data dictionary, please follow this link
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
The Contaminated Sediments Database for the Gulf of Maine provides a compilation and synthesis of existing data to help establish the environmental status of our coastal sediments and the transport paths and fate of contaminants in this region. This information, in turn, forms one of the essential bases for developing successful remediation and resource management policies. The Contaminated Sediments Database for the Gulf of Maine provides a compilation and synthesis of existing data to help establish the environmental status of our coastal sediments and the transport paths and fate of contaminants in this region. This information, in turn, forms one of the essential bases for developing successful remediation and resource management policies This product is the result of a collaborative effort of principal investigators from the U.S. Geological Survey Coastal and Marine Geology Program, Woods Hole Oceanographic Institution, the University of New Hampshire, Bigelow Laboratory for ...
The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. States and equivalent entities are the primary governmental divisions of the United States. In addition to the fifty States, the Census Bureau treats the District of Columbia, Puerto Rico, and each of the Island Areas (American Samoa, the Commonwealth of the Northern Mariana Islands, Guam, and the U.S. Virgin Islands) as the statistical equivalents of States for the purpose of data presentation.
The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. After each decennial census, the Census Bureau delineates urban areas that represent densely developed territory, encompassing residential, commercial, and other nonresidential urban land uses. In general, this territory consists of areas of high population density and urban land use resulting in a representation of the "urban footprint." There are two types of urban areas: urbanized areas (UAs) that contain 50,000 or more people and urban clusters (UCs) that contain at least 2,500 people, but fewer than 50,000 people (except in the U.S. Virgin Islands and Guam which each contain urban clusters with populations greater than 50,000). Each urban area is identified by a 5-character numeric census code that may contain leading zeroes.
The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. The Address Ranges Feature Shapefile (ADDRFEAT.dbf) contains the geospatial edge geometry and attributes of all unsuppressed address ranges for a county or county equivalent area. The term "address range" refers to the collection of all possible structure numbers from the first structure number to the last structure number and all numbers of a specified parity in between along an edge side relative to the direction in which the edge is coded. Single-address address ranges have been suppressed to maintain the confidentiality of the addresses they describe. Multiple coincident address range feature edge records are represented in the shapefile if more than one left or right address ranges are associated to the edge. The ADDRFEAT shapefile contains a record for each address range to street name combination. Address range associated to more than one street name are also represented by multiple coincident address range feature edge records. Note that the ADDRFEAT shapefile includes all unsuppressed address ranges compared to the All Lines Shapefile (EDGES.shp) which only includes the most inclusive address range associated with each side of a street edge. The TIGER/Line shapefile contain potential address ranges, not individual addresses. The address ranges in the TIGER/Line Files are potential ranges that include the full range of possible structure numbers even though the actual structures may not exist.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Here we present a geospatial dataset representing local- and regional-scale aquifer system boundaries, defined on the basis of an extensive literature review and published in GebreEgziabher et al. (2022). Nature Communications, 13, 2129, https://www.nature.com/articles/s41467-022-29678-7
The database contains 440 polygons, each representing one study area analyzed in GebreEgziabher et al. (2022). The attribute table associated with the shapefile has two fields (column headings): (1) aquifer system title (Ocala Uplift sub-area of the broader Floridan Aquifer System), and (2) broader aquifer system title (e.g., the Floridan Aquifer System).