17 datasets found
  1. M

    DNRGPS

    • gisdata.mn.gov
    • data.wu.ac.at
    windows_app
    Updated Sep 7, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Natural Resources Department (2022). DNRGPS [Dataset]. https://gisdata.mn.gov/dataset/dnrgps
    Explore at:
    windows_appAvailable download formats
    Dataset updated
    Sep 7, 2022
    Dataset provided by
    Natural Resources Department
    Description

    DNRGPS is an update to the popular DNRGarmin application. DNRGPS and its predecessor were built to transfer data between Garmin handheld GPS receivers and GIS software.

    DNRGPS was released as Open Source software with the intention that the GPS user community will become stewards of the application, initiating future modifications and enhancements.

    DNRGPS does not require installation. Simply run the application .exe

    See the DNRGPS application documentation for more details.

    Compatible with: Windows (XP, 7, 8, 10, and 11), ArcGIS shapefiles and file geodatabases, Google Earth, most hand-held Garmin GPSs, and other NMEA output GPSs

    Limited Compatibility: Interactions with ArcMap layer files and ArcMap graphics are no longer supported. Instead use shapefile or geodatabase.

    Prerequisite: .NET 4 Framework

    DNR Data and Software License Agreement

    Subscribe to the DNRGPS announcement list to be notified of upgrades or updates.

  2. e

    OpenStreetMaps raw data for Münster

    • data.europa.eu
    html, pbf, shape
    Updated Feb 9, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Münster (2023). OpenStreetMaps raw data for Münster [Dataset]. https://data.europa.eu/set/data/e9be6594-2e67-4b8c-879b-90f4904c8f9a
    Explore at:
    pbf, html, shapeAvailable download formats
    Dataset updated
    Feb 9, 2023
    Dataset authored and provided by
    Münster
    License

    http://dcat-ap.de/def/licenses/other-closedhttp://dcat-ap.de/def/licenses/other-closed

    Description

    OpenStreetMap is a project founded in 2004 with the aim of creating a free world map. Volunteers from many countries work on the further development of the software as well as the collection and processing of geodata. Data is collected about roads, railways, rivers, forests, houses and everything else that is commonly seen on maps. The OpenStreetMap data may be used free of charge and processed as long as the source is mentioned (see also: https://www.openstreetmap.org/copyright).

    This data set contains an excerpt from the OpenStreetMaps “Planet-File”, which contains the relevant data for the administrative district of Münster. Other formats such as OSM-XML, shapefiles, SVG, Adobe Illustrator, Garmin GPS, GPX, GML, KML, Manifold GIS or raster graphics can be exported at http://wiki.openstreetmap.org/wiki/Export.

    For questions about OpenStreetMap data, there is a German-speaking user forum: http://forum.openstreetmap.org/viewforum.php?id=14

  3. Open StreetMap data for Berlin

    • data.europa.eu
    • processor1.francecentral.cloudapp.azure.com
    • +1more
    unknown, zip
    Updated Mar 27, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    openstreetmap.org (2024). Open StreetMap data for Berlin [Dataset]. https://data.europa.eu/88u/dataset/eecb8237-ccf4-4616-81dc-40189fffb10a
    Explore at:
    unknown, zipAvailable download formats
    Dataset updated
    Mar 27, 2024
    Dataset provided by
    OpenStreetMap//www.openstreetmap.org/
    License

    http://dcat-ap.de/def/licenses/odblhttp://dcat-ap.de/def/licenses/odbl

    Description

    OpenStreetMap is a project launched in 2004 to create a free world map. We collect data on roads, railways, rivers, forests, homes and anything else around the world, commonly seen on maps. Because we collect the data yourself and not distinguish from existing cards, we have all the rights to it. Open StreetMap data may be used free of charge by anyone and further processed at any time. This dataset contains the Berlin section of the Planet File. Other formats such as OSM-XML, shapefiles, SVG, Adobe Illustrator, Garmin GPS, GPX, GML, KML, Manifold GIS, grid graphics can be exported at http://wiki.openstreetmap.org/wiki/Export.

    Open StreetMap-data questions can be discussed here: Http://forum.openstreetmap.org/viewforum.php?id=14

  4. Z

    Underwater images collected by an Autonomous Surface Vehicle in Boucan,...

    • data.niaid.nih.gov
    Updated Apr 11, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Matteo Contini (2025). Underwater images collected by an Autonomous Surface Vehicle in Boucan, Réunion - 2023-11-09 [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_11165711
    Explore at:
    Dataset updated
    Apr 11, 2025
    Dataset provided by
    Matteo Contini
    Sylvain Bonhommeau
    Victor Illien
    Alexis Joly
    Julien Barde
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset was collected by an Autonomous Surface Vehicle in Boucan, Réunion - 2023-11-09.

        Underwater or aerial images collected by scientists or citizens can have a wide variety of use for science, management, or conservation.
        These images can be annotated and shared to train IA models which can in turn predict the objects on the images.
        We provide a set of tools (hardware and software) to collect marine data, predict species or habitat, and provide maps.
    
    
          This session has 26.16 GB of MP4 files, but no images were trimmed.
    

    GPS information: The data was processed with a PPK workflow to achieve centimeter-level GPS accuracy. Base : Files coming from rtk a GPS-fixed station or any static positioning instrument which can provide with correction frames. Device GPS : Emlid Reach M2 Quality of our data - Q1: 86.58 %, Q2: 13.3 %, Q5: 0.12 %

    Bathymetry

          The data are collected using a single-beam echosounder S500. 
    
          We only keep the values which have a GPS correction in Q1.
          We keep the points that are the waypoints.
    
          We keep the raw data where depth was estimated between 0.2 m and 50.0 m deep. 
          The data are first referenced against the WGS84 ellipsoid. Then we apply the local geoid if available.
          At the end of processing, the data are projected into a homogeneous grid to create a raster and a shapefiles. 
          The size of the grid cells is 1.319 m. 
          The raster and shapefiles are generated by linear interpolation. The 3D reconstruction algorithm is ballpivot. 
    

    Generic folder structure

        YYYYMMDD_COUNTRYCODE-optionalplace_device_session-number 
        ├── DCIM : folder to store videos and photos depending on the media collected. 
        ├── GPS : folder to store any positioning related file. If any kind of correction is possible on files (e.g. Post-Processed Kinematic thanks to rinex data) then the distinction between device data and base data is made. If, on the other hand, only device position data are present and the files cannot be corrected by post-processing techniques (e.g. gpx files), then the distinction between base and device is not made and the files are placed directly at the root of the GPS folder. 
        │  ├── BASE : files coming from rtk station or any static positioning instrument. 
        │  └── DEVICE : files coming from the device. 
        ├── METADATA : folder with general information files about the session. 
        ├── PROCESSED_DATA : contain all the folders needed to store the results of the data processing of the current session. 
        │  ├── BATHY : output folder for bathymetry raw data extracted from mission logs. 
        │  ├── FRAMES : output folder for georeferenced frames extracted from DCIM videos. 
        │  ├── IA : destination folder for image recognition predictions. 
        │  └── PHOTOGRAMMETRY : destination folder for reconstructed models in photogrammetry. 
        └── SENSORS : folder to store files coming from other sources (bathymetry data from the echosounder, log file from the autopilot, mission plan etc.).    
    

    Software All the raw data was processed using our worflow. All predictions were generated by our inference pipeline. You can find all the necessary scripts to download this data in this repository. Enjoy your data with SeatizenDOI!

  5. a

    Census Data for Census Subdivisions, 2016

    • icorridor-mto-on-ca.hub.arcgis.com
    Updated May 28, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Authoritative_iCorridor_mto_on_ca (2019). Census Data for Census Subdivisions, 2016 [Dataset]. https://icorridor-mto-on-ca.hub.arcgis.com/items/86fbdb3d9e434b1780437e5294fe5693
    Explore at:
    Dataset updated
    May 28, 2019
    Dataset authored and provided by
    Authoritative_iCorridor_mto_on_ca
    Description

    Data DescriptionThe layer on this map contains population, employed labour force counts, private dwelling counts, and employment counts at a Census Subdivision geography from the 2016 Census. The definition of each variable is described next:Population counts: the total population aggregated from different ages in each census tract.Employment counts: the number of labour force aged 15 years and over having an usual work place or working at home at places of work in each census tract, excluding workers with a non-fixed place-of-work.Employed labour force counts: the number of employed labour force aged 15 years and over having a usual work place or working at home at places of residence in each census tract including workers with a non-fixed place-of-work.Private dwellings count: the number of households aggregated from different types of dwellings in each census tract.Note: Population counts are from long census survey forms, covering 25% of the population. The other three variables are from short census survey forms, covering 100% population.Note about the Legend: the Employment and Population values are normalized by Quantiles. Each colour has the same number of features and will not necessarily represent the same values in different layers.InstructionsZoom in and out of the map to update the bar charts. Use the Select Tool to select specific geographies to display on the bar chart.“Select by rectangle” allows you to draw a rectangle and select multiple geography to view in the chart.“Select by point” allows you select an area by clicking on its geography."Add Data" allows you add separate public data as need from ArcGIS Online, URL (an ArcGIS Server Web Service, a WMS OGC Web Service, a KML file, a GeoRSS file, a CSV file), and local files (shapefile, csv, kml, gpx, geojson)

  6. Z

    Underwater images collected by an Autonomous Surface Vehicle in St-Leu,...

    • data.niaid.nih.gov
    Updated Apr 11, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Victor Illien (2025). Underwater images collected by an Autonomous Surface Vehicle in St-Leu, Réunion - 2023-11-03 [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_11199958
    Explore at:
    Dataset updated
    Apr 11, 2025
    Dataset provided by
    Matteo Contini
    Sylvain Bonhommeau
    Victor Illien
    Alexis Joly
    Julien Barde
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Saint-Leu, Saint-Leu
    Description

    This dataset was collected by an Autonomous Surface Vehicle in St-Leu, Réunion - 2023-11-03.

        Underwater or aerial images collected by scientists or citizens can have a wide variety of use for science, management, or conservation.
        These images can be annotated and shared to train IA models which can in turn predict the objects on the images.
        We provide a set of tools (hardware and software) to collect marine data, predict species or habitat, and provide maps.
    

    Image acquisition This session has 56.62 GB of MP4 files, which were trimmed into 8778 frames (at 2997/1000 fps).
    The frames are georeferenced. 98.74% of these extracted images are useful and 1.26% are useless, according to predictions made by Jacques model. Multilabel predictions have been made on useful frames using DinoVd'eau model.

    GPS information: The data was processed with a PPK workflow to achieve centimeter-level GPS accuracy. Base : Files coming from rtk a GPS-fixed station or any static positioning instrument which can provide with correction frames. Device GPS : Emlid Reach M2 Quality of our data - Q1: 88.06 %, Q2: 11.68 %, Q5: 0.26 %

    Bathymetry

          The data are collected using a single-beam echosounder S500. 
    
          We only keep the values which have a GPS correction in Q1.
          We keep the points that are the waypoints.
    
          We keep the raw data where depth was estimated between 0.2 m and 50.0 m deep. 
          The data are first referenced against the WGS84 ellipsoid. Then we apply the local geoid if available.
          At the end of processing, the data are projected into a homogeneous grid to create a raster and a shapefiles. 
          The size of the grid cells is 0.158 m. 
          The raster and shapefiles are generated by linear interpolation. The 3D reconstruction algorithm is ballpivot. 
    

    Generic folder structure

        YYYYMMDD_COUNTRYCODE-optionalplace_device_session-number 
        ├── DCIM : folder to store videos and photos depending on the media collected. 
        ├── GPS : folder to store any positioning related file. If any kind of correction is possible on files (e.g. Post-Processed Kinematic thanks to rinex data) then the distinction between device data and base data is made. If, on the other hand, only device position data are present and the files cannot be corrected by post-processing techniques (e.g. gpx files), then the distinction between base and device is not made and the files are placed directly at the root of the GPS folder. 
        │  ├── BASE : files coming from rtk station or any static positioning instrument. 
        │  └── DEVICE : files coming from the device. 
        ├── METADATA : folder with general information files about the session. 
        ├── PROCESSED_DATA : contain all the folders needed to store the results of the data processing of the current session. 
        │  ├── BATHY : output folder for bathymetry raw data extracted from mission logs. 
        │  ├── FRAMES : output folder for georeferenced frames extracted from DCIM videos. 
        │  ├── IA : destination folder for image recognition predictions. 
        │  └── PHOTOGRAMMETRY : destination folder for reconstructed models in photogrammetry. 
        └── SENSORS : folder to store files coming from other sources (bathymetry data from the echosounder, log file from the autopilot, mission plan etc.).    
    

    Software All the raw data was processed using our worflow. All predictions were generated by our inference pipeline. You can find all the necessary scripts to download this data in this repository. Enjoy your data with SeatizenDOI!

  7. e

    Perímetro ZFE (zonas de bajas emisiones) en el territorio de la aglomeración...

    • data.europa.eu
    excel xlsx, gpx, json +1
    Updated Aug 20, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Communauté d'Agglomération Annemasse - les Voirons Agglomération (2024). Perímetro ZFE (zonas de bajas emisiones) en el territorio de la aglomeración de Annemasse [Dataset]. https://data.europa.eu/data/datasets/66c45fb73159f51fcecca3da?locale=es
    Explore at:
    excel xlsx(9764), json(58668), kml(64168), gpx(622)Available download formats
    Dataset updated
    Aug 20, 2024
    Dataset authored and provided by
    Communauté d'Agglomération Annemasse - les Voirons Agglomération
    License

    https://www.etalab.gouv.fr/licence-ouverte-open-licencehttps://www.etalab.gouv.fr/licence-ouverte-open-licence

    Area covered
    Annemasse
    Description

    Alcance del perímetro ZFE (Zona de Bajas Emisiones) del territorio de la Aglomeración de Annemasse. Datos disponibles en shapefile (EPSG 3946), GPX (EPSG 4326), KML (EPSG 4326). Más información en el sitio web www.annemasse-agglo.fr/zfe.

    Datos disponibles en shapefile (EPSG 3946), GPX (EPSG 4326), KML (EPSG 4326).

    Más información en el sitio web www.annemasse-agglo.fr/zfe.

  8. Z

    Underwater images collected by an Autonomous Surface Vehicle in Hermitage,...

    • data.niaid.nih.gov
    Updated Apr 11, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Victor Illien (2025). Underwater images collected by an Autonomous Surface Vehicle in Hermitage, Réunion - 2023-12-07 [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_11160755
    Explore at:
    Dataset updated
    Apr 11, 2025
    Dataset provided by
    Matteo Contini
    Sylvain Bonhommeau
    Victor Illien
    Alexis Joly
    Julien Barde
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset was collected by an Autonomous Surface Vehicle in Hermitage, Réunion - 2023-12-07.

        Underwater or aerial images collected by scientists or citizens can have a wide variety of use for science, management, or conservation.
        These images can be annotated and shared to train IA models which can in turn predict the objects on the images.
        We provide a set of tools (hardware and software) to collect marine data, predict species or habitat, and provide maps.
    

    Image acquisition This session has 28.39 GB of MP4 files, which were trimmed into 9237 frames (at 2997/1000 fps).
    The frames are georeferenced. 99.95% of these extracted images are useful and 0.05% are useless, according to predictions made by Jacques model. Multilabel predictions have been made on useful frames using DinoVd'eau model.

    GPS information: The data was processed with a PPK workflow to achieve centimeter-level GPS accuracy. Base : Files coming from rtk a GPS-fixed station or any static positioning instrument which can provide with correction frames. Device GPS : Emlid Reach M2 Quality of our data - Q1: 78.82 %, Q2: 20.66 %, Q5: 0.52 %

    Bathymetry

          The data are collected using a single-beam echosounder ETC 400. 
    
          We only keep the values which have a GPS correction in Q1.
          We keep the points that are the waypoints.
    
          We keep the raw data where depth was estimated between 0.2 m and 50.0 m deep. 
          The data are first referenced against the WGS84 ellipsoid. Then we apply the local geoid if available.
          At the end of processing, the data are projected into a homogeneous grid to create a raster and a shapefiles. 
          The size of the grid cells is 0.107 m. 
          The raster and shapefiles are generated by linear interpolation. The 3D reconstruction algorithm is ballpivot. 
    

    Generic folder structure

        YYYYMMDD_COUNTRYCODE-optionalplace_device_session-number 
        ├── DCIM : folder to store videos and photos depending on the media collected. 
        ├── GPS : folder to store any positioning related file. If any kind of correction is possible on files (e.g. Post-Processed Kinematic thanks to rinex data) then the distinction between device data and base data is made. If, on the other hand, only device position data are present and the files cannot be corrected by post-processing techniques (e.g. gpx files), then the distinction between base and device is not made and the files are placed directly at the root of the GPS folder. 
        │  ├── BASE : files coming from rtk station or any static positioning instrument. 
        │  └── DEVICE : files coming from the device. 
        ├── METADATA : folder with general information files about the session. 
        ├── PROCESSED_DATA : contain all the folders needed to store the results of the data processing of the current session. 
        │  ├── BATHY : output folder for bathymetry raw data extracted from mission logs. 
        │  ├── FRAMES : output folder for georeferenced frames extracted from DCIM videos. 
        │  ├── IA : destination folder for image recognition predictions. 
        │  └── PHOTOGRAMMETRY : destination folder for reconstructed models in photogrammetry. 
        └── SENSORS : folder to store files coming from other sources (bathymetry data from the echosounder, log file from the autopilot, mission plan etc.).    
    

    Software All the raw data was processed using our worflow. All predictions were generated by our inference pipeline. You can find all the necessary scripts to download this data in this repository. Enjoy your data with SeatizenDOI!

  9. a

    Census Statistics

    • icorridor-mto-on-ca.hub.arcgis.com
    Updated Jun 5, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Authoritative_iCorridor_mto_on_ca (2019). Census Statistics [Dataset]. https://icorridor-mto-on-ca.hub.arcgis.com/items/22d42bf1c02444ea8d7b6e2d7b11be8e
    Explore at:
    Dataset updated
    Jun 5, 2019
    Dataset authored and provided by
    Authoritative_iCorridor_mto_on_ca
    Area covered
    Description

    Data DescriptionThe layers on this map contain population, employed labour force counts, private dwelling counts, and employment counts at Census Subdivision and Census Tract geographies from the 2006, 2011, and 2016 Census. The definition of each variable is described next:Population counts: the total population aggregated from different ages in each census tract.Employment counts: the number of labour force aged 15 years and over having an usual work place or working at home at places of work in each census tract, excluding workers with a non-fixed place-of-work.Employed labour force counts: the number of employed labour force aged 15 years and over having a usual work place or working at home at places of residence in each census tract including workers with a non-fixed place-of-work.Private dwellings count: the number of households aggregated from different types of dwellings in each census tract.Note: Population counts are from long census survey forms, covering 25% of the population. The other three variables are from short census survey forms, covering 100% population.Note about the Legend: the Employment and Population values are normalized by Quantiles. Each colour has the same number of features and will not necessarily represent the same values in different layers.InstructionsZoom in and out of the map to update the bar charts. Use the Select Tool to select specific geographies to display on the bar chart.“Select by rectangle” allows you to draw a rectangle and select multiple geography to view in the chart.“Select by point” allows you select an area by clicking on its geography."Add Data" allows you add separate public data as need from ArcGIS Online, URL (an ArcGIS Server Web Service, a WMS OGC Web Service, a KML file, a GeoRSS file, a CSV file), and local files (shapefile, csv, kml, gpx, geojson)Project lead: A.MaruicioDevelopers: C.Riccardo, W.Huang, D.Robbin

  10. w

    OpenStreetMap Daten für Berlin

    • data.wu.ac.at
    • opalpro.cs.upb.de
    • +1more
    pbf, zip
    Updated Jul 12, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    BerlinOnline Stadtportal GmbH & Co KG (2018). OpenStreetMap Daten für Berlin [Dataset]. https://data.wu.ac.at/schema/govdata_de/MWM4MjU3NmUtNDJmNy00OTI0LWI4ZGQtMjJmM2I0MmRmZGUw
    Explore at:
    zip, pbfAvailable download formats
    Dataset updated
    Jul 12, 2018
    Dataset provided by
    BerlinOnline Stadtportal GmbH & Co KG
    License

    http://dcat-ap.de/def/licenses/odblhttp://dcat-ap.de/def/licenses/odbl

    Area covered
    Berlin, http://www.geonames.org/2950157
    Description

    OpenStreetMap ist ein im Jahre 2004 gegründetes Projekt mit dem Ziel, eine freie Weltkarte zu erschaffen. Wir sammeln weltweit Daten über Straßen, Eisenbahnen, Flüsse, Wälder, Häuser und alles andere, was gemeinhin auf Karten zu sehen ist. Weil wir die Daten selbst erheben und nicht aus existierenden Karten abmalen, haben wir selbst auch alle Rechte daran. Die OpenStreetMap-Daten darf jeder lizenzkostenfrei einsetzen und beliebig weiterverarbeiten. Dieser Datensatz enthält den Berliner Ausschnitt aus dem Planet File. Weitere Formate wie OSM-XML, shapefiles, SVG,Adobe Illustrator, Garmin GPS, GPX, GML, KML, Manifold GIS, Rastergrafiken können unter http://wiki.openstreetmap.org/wiki/Export exportiert werden.

    Fragen zu den OpenStreetMap-Daten können hier diskutiert werden: http://forum.openstreetmap.org/viewforum.php?id=14

  11. Z

    Underwater images collected by an Autonomous Surface Vehicle in Cap-Homard,...

    • data.niaid.nih.gov
    Updated Apr 11, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Victor Illien (2025). Underwater images collected by an Autonomous Surface Vehicle in Cap-Homard, Réunion - 2023-11-28 [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_11180049
    Explore at:
    Dataset updated
    Apr 11, 2025
    Dataset provided by
    Matteo Contini
    Sylvain Bonhommeau
    Victor Illien
    Alexis Joly
    Julien Barde
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset was collected by an Autonomous Surface Vehicle in Cap-Homard, Réunion - 2023-11-28.

        Underwater or aerial images collected by scientists or citizens can have a wide variety of use for science, management, or conservation.
        These images can be annotated and shared to train IA models which can in turn predict the objects on the images.
        We provide a set of tools (hardware and software) to collect marine data, predict species or habitat, and provide maps.
    

    Image acquisition This session has 22.61 GB of MP4 files, which were trimmed into 8035 frames (at 2997/1000 fps).
    The frames are georeferenced. 56.91% of these extracted images are useful and 43.09% are useless, according to predictions made by Jacques model. Multilabel predictions have been made on useful frames using DinoVd'eau model.

    GPS information: The data was processed with a PPK workflow to achieve centimeter-level GPS accuracy. Base : Files coming from rtk a GPS-fixed station or any static positioning instrument which can provide with correction frames. Device GPS : Emlid Reach M2 Quality of our data - Q1: 52.3 %, Q2: 46.01 %, Q5: 1.69 %

    Bathymetry

          The data are collected using a single-beam echosounder S500. 
    
          We only keep the values which have a GPS correction in Q1.
          We keep the points that are the waypoints.
    
          We keep the raw data where depth was estimated between 0.2 m and 50.0 m deep. 
          The data are first referenced against the WGS84 ellipsoid. Then we apply the local geoid if available.
          At the end of processing, the data are projected into a homogeneous grid to create a raster and a shapefiles. 
          The size of the grid cells is 0.613 m. 
          The raster and shapefiles are generated by linear interpolation. The 3D reconstruction algorithm is ballpivot. 
    

    Generic folder structure

        YYYYMMDD_COUNTRYCODE-optionalplace_device_session-number 
        ├── DCIM : folder to store videos and photos depending on the media collected. 
        ├── GPS : folder to store any positioning related file. If any kind of correction is possible on files (e.g. Post-Processed Kinematic thanks to rinex data) then the distinction between device data and base data is made. If, on the other hand, only device position data are present and the files cannot be corrected by post-processing techniques (e.g. gpx files), then the distinction between base and device is not made and the files are placed directly at the root of the GPS folder. 
        │  ├── BASE : files coming from rtk station or any static positioning instrument. 
        │  └── DEVICE : files coming from the device. 
        ├── METADATA : folder with general information files about the session. 
        ├── PROCESSED_DATA : contain all the folders needed to store the results of the data processing of the current session. 
        │  ├── BATHY : output folder for bathymetry raw data extracted from mission logs. 
        │  ├── FRAMES : output folder for georeferenced frames extracted from DCIM videos. 
        │  ├── IA : destination folder for image recognition predictions. 
        │  └── PHOTOGRAMMETRY : destination folder for reconstructed models in photogrammetry. 
        └── SENSORS : folder to store files coming from other sources (bathymetry data from the echosounder, log file from the autopilot, mission plan etc.).    
    

    Software All the raw data was processed using our worflow. All predictions were generated by our inference pipeline. You can find all the necessary scripts to download this data in this repository. Enjoy your data with SeatizenDOI!

  12. 1

    OpenStreetMaps-Rohdaten für Münster

    • ckan.open.nrw
    • open.nrw
    • +1more
    pbf, shape
    Updated May 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Münster (2025). OpenStreetMaps-Rohdaten für Münster [Dataset]. https://ckan.open.nrw/dataset/openstreetmaps-rohdaten-fur-munster-ms
    Explore at:
    pbf, shapeAvailable download formats
    Dataset updated
    May 30, 2025
    Dataset provided by
    Münster
    License

    Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
    License information was derived automatically

    http://dcat-ap.de/def/licenses/odblhttp://dcat-ap.de/def/licenses/odbl

    Description

    OpenStreetMap ist ein im Jahre 2004 gegründetes Projekt mit dem Ziel, eine freie Weltkarte zu erschaffen. Freiwillige aus vielen Ländern arbeiten sowohl an der Weiterentwicklung der Software als auch an der Sammlung und Bearbeitung von Geodaten. Zusammengetragen werden Daten über Straßen, Eisenbahnen, Flüsse, Wälder, Häuser und alles andere, was gemeinhin auf Karten zu sehen ist. Die OpenStreetMap-Daten darf jeder lizenzkostenfrei einsetzen und beliebig weiterverarbeiten, solange die Quelle genannt wird (siehe auch: https://www.openstreetmap.org/copyright).

    Dieser Datensatz enthält einen Ausschnitt aus dem OpenStreetMaps "Planet-File", der die relevanten Daten für den Regierungsbezirk Münster enthält. Weitere Formate wie OSM-XML, shapefiles, SVG,Adobe Illustrator, Garmin GPS, GPX, GML, KML, Manifold GIS oder Rastergrafiken können unter https://wiki.openstreetmap.org/wiki/Export exportiert werden.

    Für Fragen zu den OpenStreetMap-Daten gibt es ein deutschsprachiges Benutzerforum: https://forum.openstreetmap.org/viewforum.php?id=14

    Die Daten werden bereitgestellt von www.geofabrik.de

  13. e

    山地災害情報管理用クラウド型森林GIS(森林GISx画像解析x現地調査アプリ)(デモ)

    • national-government.esrij.com
    Updated Aug 26, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    demodesu01 (2019). 山地災害情報管理用クラウド型森林GIS(森林GISx画像解析x現地調査アプリ)(デモ) [Dataset]. https://national-government.esrij.com/items/90fe09c43207434689247b3297e28602
    Explore at:
    Dataset updated
    Aug 26, 2019
    Dataset authored and provided by
    demodesu01
    Description

    森林簿等の森林情報やArcGIS Proを利用した画像解析結果に加え、現地調査アプリ(ArcGIS Field Maps)で取得した山地災害情報のリアルタイムデータを重ね合わせることが可能なクラウド型森林GISです。北海道のオープンデータを活用しています。また、Shp、CSV、KML、GPX、GeoJSONファイルをドラッグアンドドロップで直接取り込めます。

  14. Z

    Underwater images collected by an Autonomous Surface Vehicle in Etang-Sale,...

    • data.niaid.nih.gov
    Updated Apr 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Alexis Joly (2025). Underwater images collected by an Autonomous Surface Vehicle in Etang-Sale, Réunion - 2023-12-13 [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_11179073
    Explore at:
    Dataset updated
    Apr 11, 2025
    Dataset provided by
    Matteo Contini
    Sylvain Bonhommeau
    Victor Illien
    Alexis Joly
    Julien Barde
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    L'Étang-Salé
    Description

    This dataset was collected by an Autonomous Surface Vehicle in Etang-Sale, Réunion - 2023-12-13.

        Underwater or aerial images collected by scientists or citizens can have a wide variety of use for science, management, or conservation.
        These images can be annotated and shared to train IA models which can in turn predict the objects on the images.
        We provide a set of tools (hardware and software) to collect marine data, predict species or habitat, and provide maps.
    

    Image acquisition This session has 22.32 GB of MP4 files, which were trimmed into 7552 frames (at 2997/1000 fps).
    The frames are georeferenced. 99.39% of these extracted images are useful and 0.61% are useless, according to predictions made by Jacques model. Multilabel predictions have been made on useful frames using DinoVd'eau model.

    GPS information: The data was processed with a PPK workflow to achieve centimeter-level GPS accuracy. Base : Files coming from rtk a GPS-fixed station or any static positioning instrument which can provide with correction frames. Device GPS : Emlid Reach M2 Quality of our data - Q1: 85.05 %, Q2: 14.77 %, Q5: 0.18 %

    Bathymetry

          The data are collected using a single-beam echosounder ETC 400. 
    
          We only keep the values which have a GPS correction in Q1.
          We keep the points that are the waypoints.
    
          We keep the raw data where depth was estimated between 0.2 m and 50.0 m deep. 
          The data are first referenced against the WGS84 ellipsoid. Then we apply the local geoid if available.
          At the end of processing, the data are projected into a homogeneous grid to create a raster and a shapefiles. 
          The size of the grid cells is 0.076 m. 
          The raster and shapefiles are generated by linear interpolation. The 3D reconstruction algorithm is ballpivot. 
    

    Generic folder structure

        YYYYMMDD_COUNTRYCODE-optionalplace_device_session-number 
        ├── DCIM : folder to store videos and photos depending on the media collected. 
        ├── GPS : folder to store any positioning related file. If any kind of correction is possible on files (e.g. Post-Processed Kinematic thanks to rinex data) then the distinction between device data and base data is made. If, on the other hand, only device position data are present and the files cannot be corrected by post-processing techniques (e.g. gpx files), then the distinction between base and device is not made and the files are placed directly at the root of the GPS folder. 
        │  ├── BASE : files coming from rtk station or any static positioning instrument. 
        │  └── DEVICE : files coming from the device. 
        ├── METADATA : folder with general information files about the session. 
        ├── PROCESSED_DATA : contain all the folders needed to store the results of the data processing of the current session. 
        │  ├── BATHY : output folder for bathymetry raw data extracted from mission logs. 
        │  ├── FRAMES : output folder for georeferenced frames extracted from DCIM videos. 
        │  ├── IA : destination folder for image recognition predictions. 
        │  └── PHOTOGRAMMETRY : destination folder for reconstructed models in photogrammetry. 
        └── SENSORS : folder to store files coming from other sources (bathymetry data from the echosounder, log file from the autopilot, mission plan etc.).    
    

    Software All the raw data was processed using our worflow. All predictions were generated by our inference pipeline. You can find all the necessary scripts to download this data in this repository. Enjoy your data with SeatizenDOI!

  15. a

    Census Data for Census Tracts, 2006

    • icorridor-mto-on-ca.hub.arcgis.com
    • icorridor-fr-mto-on-ca.hub.arcgis.com
    Updated May 28, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Authoritative_iCorridor_mto_on_ca (2019). Census Data for Census Tracts, 2006 [Dataset]. https://icorridor-mto-on-ca.hub.arcgis.com/items/bdfb65b79d644fa79a2ccc2653a9ddb5
    Explore at:
    Dataset updated
    May 28, 2019
    Dataset authored and provided by
    Authoritative_iCorridor_mto_on_ca
    Area covered
    Description

    Data DescriptionThe layer on this map contains population, employed labour force counts, private dwelling counts, and employment counts at a Census Tract geography from the 2006 Census. The definition of each variable is described next:Population counts: the total population aggregated from different ages in each census tract.Employment counts: the number of labour force aged 15 years and over having an usual work place or working at home at places of work in each census tract, excluding workers with a non-fixed place-of-work.Employed labour force counts: the number of employed labour force aged 15 years and over having a usual work place or working at home at places of residence in each census tract including workers with a non-fixed place-of-work.Private dwellings count: the number of households aggregated from different types of dwellings in each census tract.Note: Population counts are from long census survey forms, covering 25% of the population. The other three variables are from short census survey forms, covering 100% population.Note about the Legend: the Employment and Population values are normalized by Quantiles. Each colour has the same number of features and will not necessarily represent the same values in different layers.InstructionsZoom in and out of the map to update the bar charts. Use the Select Tool to select specific geographies to display on the bar chart.“Select by rectangle” allows you to draw a rectangle and select multiple geography to view in the chart.“Select by point” allows you select an area by clicking on its geography."Add Data" allows you add separate public data as need from ArcGIS Online, URL (an ArcGIS Server Web Service, a WMS OGC Web Service, a KML file, a GeoRSS file, a CSV file), and local files (shapefile, csv, kml, gpx, geojson)

  16. e

    共有型森林クラウド(オープンデータの活用)(デモ)

    • national-government.esrij.com
    Updated Jun 18, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    demodesu01 (2019). 共有型森林クラウド(オープンデータの活用)(デモ) [Dataset]. https://national-government.esrij.com/items/e8fb6939a41d4a8b89966b4ec8de648a
    Explore at:
    Dataset updated
    Jun 18, 2019
    Dataset authored and provided by
    demodesu01
    Description

    森林簿・森林計画図等の森林情報とリアルタイムデータ※を組み合わせた次世代のクラウド型森林GISです。静岡県のオープンデータを活用しています。また、Shp、CSV、KML、GPX、GeoJSONファイルをドラッグアンドドロップで直接取り込めます。※現地調査アプリ(ArcGIS Field Maps)で取得した施業記録やリアルタイム降水量データ(本デモアプリでは未搭載のため、閲覧を希望する場合はお問い合わせください。)

  17. a

    Statistiques de Recensement

    • icorridor-fr-mto-on-ca.hub.arcgis.com
    Updated Nov 19, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Authoritative_iCorridor_mto_on_ca (2020). Statistiques de Recensement [Dataset]. https://icorridor-fr-mto-on-ca.hub.arcgis.com/datasets/ea4ae71cb0a04beb9867f90239504d3f
    Explore at:
    Dataset updated
    Nov 19, 2020
    Dataset authored and provided by
    Authoritative_iCorridor_mto_on_ca
    Area covered
    Description

    Les couches de cette carte comprennent la population, la population active occupée, les logements privés et le nombre d’emplois dans les secteurs et subdivisions de recensement de 2006, 2011 et 2016. La définition de chaque variable est décrite ci-après :Chiffres de la population : population totale agrégée par tranche d’âge dans chacun des secteurs de recensement.Chiffres de l’emploi : population active occupée âgée de 15 ans et plus ayant un lieu habituel de travail ou travaillant à domicile dans chacun des secteurs de recensement, excluant les travailleurs dont le lieu de travail est variable.Chiffres de la population active occupée : population active occupée âgée de 15 ans et plus ayant un lieu habituel de travail ou travaillant au lieu de résidence, dans chacun des secteurs de recensement, incluant les travailleurs dont le lieu de travail est variable.Chiffres des logements privés : nombre de ménages, agrégés par différents types de logements dans chaque secteur de recensement.Nota : Les chiffres pour la population active occupée proviennent des questionnaires détaillés du recensement, couvrant 25 % de la population. Les trois autres variables proviennent des questionnaires de recensement abrégés, couvrant la totalité de la population.Nota (à propos de la légende) : Les valeurs sur l’emploi et la population sont normalisées par quantile. Chaque couleur présente la même portion des cas, mais ne représente pas nécessairement les mêmes valeurs pour chaque couche.InstructionsFaites un zoom avant et un zoom arrière sur la carte pour mettre à jour les graphiques à barres. Utilisez l’outil de sélection pour sélectionner certaines zones géographiques à afficher dans le graphique à barres.« Sélectionner par rectangle » vous permet de tracer un rectangle et de sélectionner plusieurs zones géographiques à afficher dans le graphique à barres.« Sélectionner par point » vous permet de sélectionner une zone géographique en cliquant dessus.« Ajouter des données » vous permet d’ajouter au besoin des données publiques distinctes provenant d’ArcGIS Online, provenant d’autres sites Web (service Web ArcGIS Server, OpenGISMD Web Map Service, fichier KML, fichier GeoRSS, fichier CSV) et de fichiers locaux (shapefile, csv, kml, gpx, geojson)Conditions d’utilisationLes renseignements utilisés pour construire cette application ont été achetés par le ministère des Transports et ses partenaires municipaux, dans le cadre du consortium de géocodage du lieu de travail du recensement de 2016. Ces renseignements sont fournis par le Ministère à titre de service public et pour plus de convenance et le Ministère ou ses agents n’assument aucune responsabilité, quelle qu’elle soit, et ne garantissent aucunement l’exactitude, le caractère suffisant ou l’exhaustivité de tout renseignement contenu ici ou offert par ce service, notamment, sans toutefois s’y limiter, toute garantie implicite d’adéquation à un usage, une fonctionnalité ou une valeur commerciale en particulier. Les utilisateurs doivent s’assurer de l’exactitude, du caractère suffisant ou de l’exhaustivité des renseignements avant d’agir en fonction de ces renseignements, et ils doivent procéder à toute autre analyse nécessaire à leur utilisation.Le Ministère ne garantit aucunement avoir fourni tous les renseignements pouvant être disponibles.Ce service peut être interrompu en tout temps sans préavis aux utilisateurs.Le Ministère n’assume aucune responsabilité et ne saurait être tenu responsable envers personne de pertes, coûts, dommages ou préjudices, directs ou indirects, occasionnés en tout ou en partie par l’utilisation adéquate ou inadéquate de ce service et des renseignements contenus ici ou de l’absence de renseignements ou envers quiconque sur la foi de mesures ou décisions que vous auriez prises à l’égard de ces renseignements. L’utilisateur assume tous les risques de l’utilisation et de l’application des renseignements.Tout le contenu de cette couche est protégé par la licence ouverte de Statistique Canada et par la licence du gouvernement ouvert – Ontario. Project lead: A.MaruicioDevelopers: C.Riccardo, W.Huang, D.Robbin

  18. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Natural Resources Department (2022). DNRGPS [Dataset]. https://gisdata.mn.gov/dataset/dnrgps

DNRGPS

Explore at:
114 scholarly articles cite this dataset (View in Google Scholar)
windows_appAvailable download formats
Dataset updated
Sep 7, 2022
Dataset provided by
Natural Resources Department
Description

DNRGPS is an update to the popular DNRGarmin application. DNRGPS and its predecessor were built to transfer data between Garmin handheld GPS receivers and GIS software.

DNRGPS was released as Open Source software with the intention that the GPS user community will become stewards of the application, initiating future modifications and enhancements.

DNRGPS does not require installation. Simply run the application .exe

See the DNRGPS application documentation for more details.

Compatible with: Windows (XP, 7, 8, 10, and 11), ArcGIS shapefiles and file geodatabases, Google Earth, most hand-held Garmin GPSs, and other NMEA output GPSs

Limited Compatibility: Interactions with ArcMap layer files and ArcMap graphics are no longer supported. Instead use shapefile or geodatabase.

Prerequisite: .NET 4 Framework

DNR Data and Software License Agreement

Subscribe to the DNRGPS announcement list to be notified of upgrades or updates.

Search
Clear search
Close search
Google apps
Main menu