https://choosealicense.com/licenses/other/https://choosealicense.com/licenses/other/
This repository contains ShapeNetCore (v2), a subset of ShapeNet.ShapeNetCore is a densely annotated subset of ShapeNet covering 55 common object categories with ~51,300 unique 3D models. Each model in ShapeNetCore are linked to an appropriate synset in WordNet 3.0.
Please see DATA.md for details about the data.
If you use ShapeNet data, you agree to abide by the ShapeNet terms of use. You are only allowed to redistribute the data to your research associates and colleagues provided that… See the full description on the dataset page: https://huggingface.co/datasets/ShapeNet/ShapeNetCore.
https://choosealicense.com/licenses/other/https://choosealicense.com/licenses/other/
This repository contains archives (zip files) for ShapeNetSem, a subset of ShapeNet richly annotated with physical attributes. Please see DATA.md for details about the data. If you use ShapeNet data, you agree to abide by the ShapeNet terms of use. You are only allowed to redistribute the data to your research associates and colleagues provided that they first agree to be bound by these terms and conditions. If you use this data, please cite the main ShapeNet technical report and the… See the full description on the dataset page: https://huggingface.co/datasets/ShapeNet/ShapeNetSem-archive.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
## Overview
Shapenet_car is a dataset for object detection tasks - it contains Cars annotations for 1,157 images.
## Getting Started
You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
## License
This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
HOWS-CL-25 (Household Objects Within Simulation dataset for Continual Learning) is a synthetic dataset especially designed for object classification on mobile robots operating in a changing environment (like a household), where it is important to learn new, never seen objects on the fly. This dataset can also be used for other learning use-cases, like instance segmentation or depth estimation. Or where household objects or continual learning are of interest.
Our dataset contains 150,795 unique synthetic images using 25 different household categories with 925 3D models in total. For each of those categories, we generated about 6000 RGB images. In addition, we also provide a corresponding depth, segmentation, and normal image.
The dataset was created with BlenderProc [Denninger et al. (2019)], a procedural pipeline to generate images for deep learning. This tool created a virtual room with randomly textured floors, walls, and a light source with randomly chosen light intensity and color. After that, a 3D model is placed in the resulting room. This object gets customized by randomly assigning materials, including different textures, to achieve a diverse dataset. Moreover, each object might be deformed with a random displacement texture. We use 774 3D models from the ShapeNet dataset [A. X. Chang et al. (2015)] and the other models from various internet sites. Please note that we had to manually fix and filter most of the models with Blender before using them in the pipeline!
For continual learning (CL), we provide two different loading schemes: - Five sequences with five categories each - Twelve sequences with three categories in the first and two in the other sequences.
In addition to the RGB, depth, segmentation, and normal images, we also provide the calculated features of the RGB images (by ResNet50) as used in our RECALL paper. In those two loading schemes, ten percent of the images are used for validation, where we ensure that an object instance is either in the training or the validation set, not in both. This avoids learning to recognize certain instances by heart.
We recommend using those loading schemes to compare your approach with others.
Here we provide three files for download: - HOWS_CL_25.zip [124GB]: This is the original dataset with the RGB, depth, segmentation, and normal images, as well as the loading schemes. It is divided into three archive parts. To open the dataset, please ensure to download all three parts. - HOWS_CL_25_hdf5_features.zip [2.5GB]: This only contains the calculated features from the RGB input by a ResNet50 in a .hdf5 file. Download this if you want to use the dataset for learning and/or want to compare your approach to our RECALL approach (where we used the same features). - README.md: Some additional explanation.
For further information and code examples, please have a look at our website: https://github.com/DLR-RM/RECALL.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
MatSeg Dataset and benchmark for zero-shot material state segmentation.
MatSeg Benchmark containing 1220 real-world images and their annotations is available at MatSeg_Benchmark.zip the file contains documentation and Python readers.
MatSeg dataset containing synthetic images with infused natural images patterns is available at MatSeg3D_part_*.zip and MatSeg3D_part_*.zip (* stand for number).
MatSeg3D_part_*.zip: contain synthethc 3D scenes
MatSeg2D_part_*.zip: contain syntethc 2D scenes
Readers and documentation for the synthetic data are available at: Dataset_Documentation_And_Readers.zip
Readers and documentation for the real-images benchmark are available at: MatSeg_Benchmark.zip
The Code used to generate the MatSeg Dataset is available at: https://zenodo.org/records/11401072
Additional permanent sources for downloading the dataset and metadata: 1, 2
Evaluation scripts for the Benchmark are now available at:
https://zenodo.org/records/13402003 and https://e.pcloud.link/publink/show?code=XZsP8PZbT7AJzG98tV1gnVoEsxKRbBl8awX
Materials and their states form a vast array of patterns and textures that define the physical and visual world. Minerals in rocks, sediment in soil, dust on surfaces, infection on leaves, stains on fruits, and foam in liquids are some of these almost infinite numbers of states and patterns.
Image segmentation of materials and their states is fundamental to the understanding of the world and is essential for a wide range of tasks, from cooking and cleaning to construction, agriculture, and chemistry laboratory work.
The MatSeg dataset focuses on zero-shot segmentation of materials and their states, meaning identifying the region of an image belonging to a specific material type of state, without previous knowledge or training of the material type, states, or environment.
The dataset contains a large set of (100k) synthetic images and benchmarks of 1220 real-world images for testing.
The benchmark contains 1220 real-world images with a wide range of material states and settings. For example: food states (cooked/burned..), plants (infected/dry.) to rocks/soil (minerals/sediment), construction/metals (rusted, worn), liquids (foam/sediment), and many other states in without being limited to a set of classes or environment. The goal is to evaluate the segmentation of material materials without knowledge or pretraining on the material or setting. The focus is on materials with complex scattered boundaries, and gradual transition (like the level of wetness of the surface).
Evaluation scripts for the Benchmark are now available at: 1 and 2.
The synthetic dataset is composed of synthetic scenes rendered in 2d and 3d using a blender. The synthetic data is infused with patterns, materials, and textures automatically extracted from real images allowing it to capture the complexity and diversity of the real world while maintaining the precision and scale of synthetic data. 100k images and their annotation are available to download.
License
This dataset, including all its components, is released under the CC0 1.0 Universal (CC0 1.0) Public Domain Dedication. To the extent possible under law, the authors have dedicated all copyright and related and neighboring rights to this dataset to the public domain worldwide. This dedication applies to the dataset and all derivative works.
The MatSeg 2D and 3D synthetic were generated using the open-images dataset which is licensed under the https://www.apache.org/licenses/LICENSE-2.0. For these components, you must comply with the terms of the Apache License. In addition, the MatSege3D dataset uses Shapenet 3D assets with GNU license.
An Example of a training and evaluation code for a net trained on the dataset and evaluated on the benchmark is given at these urls: 1, 2
This include an evaluation script on the MatSeg benchmark.
Training script using the MatSeg dataset.
And weights of a trained model
Paper:
More detail on the work ca be found in the paper "Infusing Synthetic Data with Real-World Patterns for
Zero-Shot Material State Segmentation"
Croissant metadata and additional sources for downloading the dataset are available at 1,2
Not seeing a result you expected?
Learn how you can add new datasets to our index.
https://choosealicense.com/licenses/other/https://choosealicense.com/licenses/other/
This repository contains ShapeNetCore (v2), a subset of ShapeNet.ShapeNetCore is a densely annotated subset of ShapeNet covering 55 common object categories with ~51,300 unique 3D models. Each model in ShapeNetCore are linked to an appropriate synset in WordNet 3.0.
Please see DATA.md for details about the data.
If you use ShapeNet data, you agree to abide by the ShapeNet terms of use. You are only allowed to redistribute the data to your research associates and colleagues provided that… See the full description on the dataset page: https://huggingface.co/datasets/ShapeNet/ShapeNetCore.