Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
This dataset contains the historical closing price data for all stocks listed on the National Stock Exchange (NSE) of India with a market capitalization exceeding 500 crore INR. The dataset is ideal for analysts, researchers, and enthusiasts who wish to perform detailed analysis, develop trading algorithms, or study market trends of substantial companies within the Indian stock market.
The data is sourced from official NSE records and includes all companies meeting the market capitalization criteria as of the latest update.
The dataset can be used for various purposes including but not limited to: - Financial modeling and forecasting - Risk management and portfolio optimization - Academic research and projects - Machine learning and AI-driven stock prediction models
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset contains historical daily prices for all tickers currently trading on NASDAQ. The up to date list is available from nasdaqtrader.com. The historic data is retrieved from Yahoo finance via yfinance python package.
It contains prices for up to 01 of April 2020. If you need more up to date data, just fork and re-run data collection script also available from Kaggle.
The date for every symbol is saved in CSV format with common fields:
All that ticker data is then stored in either ETFs or stocks folder, depending on a type. Moreover, each filename is the corresponding ticker symbol. At last, symbols_valid_meta.csv contains some additional metadata for each ticker such as full name.
Facebook
Twitterchuotchuilacduong/deepstock-stock-historical-prices-dataset-processed dataset hosted on Hugging Face and contributed by the HF Datasets community
Facebook
Twitterhttps://www.reddit.com/wiki/apihttps://www.reddit.com/wiki/api
The datasets contain historical stock or futures prices for my personal projects and learning purposes. The equity classification and data source are mainly from Yahoo Finance, Google Finance, or Nasdaq with API access. So you can practice EAD or predictive analysis on your own and assume the dataset structure will not change so much when used in the same platform later. In short, please do not contact me privately for recently updated data. Below is the breakdown for every file, as all came from different sources.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The main stock market index of United States, the US500, rose to 6818 points on December 2, 2025, gaining 0.08% from the previous session. Over the past month, the index has declined 0.50%, though it remains 12.70% higher than a year ago, according to trading on a contract for difference (CFD) that tracks this benchmark index from United States. United States Stock Market Index - values, historical data, forecasts and news - updated on December of 2025.
Facebook
TwitterThe dataset contains a total of 25,161 rows, each row representing the stock market data for a specific company on a given date. The information collected through web scraping from www.nasdaq.com includes the stock prices and trading volumes for the companies listed, such as Apple, Starbucks, Microsoft, Cisco Systems, Qualcomm, Meta, Amazon.com, Tesla, Advanced Micro Devices, and Netflix.
Data Analysis Tasks:
1) Exploratory Data Analysis (EDA): Analyze the distribution of stock prices and volumes for each company over time. Visualize trends, seasonality, and patterns in the stock market data using line charts, bar plots, and heatmaps.
2)Correlation Analysis: Investigate the correlations between the closing prices of different companies to identify potential relationships. Calculate correlation coefficients and visualize correlation matrices.
3)Top Performers Identification: Identify the top-performing companies based on their stock price growth and trading volumes over a specific time period.
4)Market Sentiment Analysis: Perform sentiment analysis using Natural Language Processing (NLP) techniques on news headlines related to each company. Determine whether positive or negative news impacts the stock prices and volumes.
5)Volatility Analysis: Calculate the volatility of each company's stock prices using metrics like Standard Deviation or Bollinger Bands. Analyze how volatile stocks are in comparison to others.
Machine Learning Tasks:
1)Stock Price Prediction: Use time-series forecasting models like ARIMA, SARIMA, or Prophet to predict future stock prices for a particular company. Evaluate the models' performance using metrics like Mean Squared Error (MSE) or Root Mean Squared Error (RMSE).
2)Classification of Stock Movements: Create a binary classification model to predict whether a stock will rise or fall on the next trading day. Utilize features like historical price changes, volumes, and technical indicators for the predictions. Implement classifiers such as Logistic Regression, Random Forest, or Support Vector Machines (SVM).
3)Clustering Analysis: Cluster companies based on their historical stock performance using unsupervised learning algorithms like K-means clustering. Explore if companies with similar stock price patterns belong to specific industry sectors.
4)Anomaly Detection: Detect anomalies in stock prices or trading volumes that deviate significantly from the historical trends. Use techniques like Isolation Forest or One-Class SVM for anomaly detection.
5)Reinforcement Learning for Portfolio Optimization: Formulate the stock market data as a reinforcement learning problem to optimize a portfolio's performance. Apply algorithms like Q-Learning or Deep Q-Networks (DQN) to learn the optimal trading strategy.
The dataset provided on Kaggle, titled "Stock Market Stars: Historical Data of Top 10 Companies," is intended for learning purposes only. The data has been gathered from public sources, specifically from web scraping www.nasdaq.com, and is presented in good faith to facilitate educational and research endeavors related to stock market analysis and data science.
It is essential to acknowledge that while we have taken reasonable measures to ensure the accuracy and reliability of the data, we do not guarantee its completeness or correctness. The information provided in this dataset may contain errors, inaccuracies, or omissions. Users are advised to use this dataset at their own risk and are responsible for verifying the data's integrity for their specific applications.
This dataset is not intended for any commercial or legal use, and any reliance on the data for financial or investment decisions is not recommended. We disclaim any responsibility or liability for any damages, losses, or consequences arising from the use of this dataset.
By accessing and utilizing this dataset on Kaggle, you agree to abide by these terms and conditions and understand that it is solely intended for educational and research purposes.
Please note that the dataset's contents, including the stock market data and company names, are subject to copyright and other proprietary rights of the respective sources. Users are advised to adhere to all applicable laws and regulations related to data usage, intellectual property, and any other relevant legal obligations.
In summary, this dataset is provided "as is" for learning purposes, without any warranties or guarantees, and users should exercise due diligence and judgment when using the data for any purpose.
Facebook
Twitterhttps://data.gov.tw/licensehttps://data.gov.tw/license
Historical data of the Taiwan Stock Exchange Weighted Index
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Chart Industries stock price, live market quote, shares value, historical data, intraday chart, earnings per share and news.
Facebook
TwitterThis table contains 30 series, with data for years 1900 - 1979 (not all combinations necessarily have data for all years), and was last released on 2000-02-19. This table contains data described by the following dimensions (Not all combinations are available): Geography (1 items: Canada ...), Industries (30 items: Manufacturing industries; food and beverage; Clothing and knitting mills; Textile products industries; Tobacco; rubber; primary metals; electrical; non-metallic mineral; petroleum and coal and miscellaneous manufacturing industries ...).
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This dataset provides historical stock market performance data for specific companies. It enables users to analyze and understand the past trends and fluctuations in stock prices over time. This information can be utilized for various purposes such as investment analysis, financial research, and market trend forecasting.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Gold fell to 4,199.97 USD/t.oz on December 2, 2025, down 0.75% from the previous day. Over the past month, Gold's price has risen 4.93%, and is up 58.92% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks the benchmark market for this commodity. Gold - values, historical data, forecasts and news - updated on December of 2025.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
DIA stock price, live market quote, shares value, historical data, intraday chart, earnings per share and news.
Facebook
TwitterThis dataset includes the daily historical stock prices for Google (GOOGL) spanning from 2020 to 2025. It features essential financial metrics such as opening and closing prices, daily highs and lows, adjusted close prices, and trading volumes. The information offers valuable insights into the stock's performance over a five-year timeframe.
Note: 1. This data is scraped from Yahoo Finance by me using python code. 2. Some of the About Data is generated from AI, but verified from me.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Match stock price, live market quote, shares value, historical data, intraday chart, earnings per share and news.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Centerspace stock price, live market quote, shares value, historical data, intraday chart, earnings per share and news.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This dataset provides historical stock market performance data for specific companies. It enables users to analyze and understand the past trends and fluctuations in stock prices over time. This information can be utilized for various purposes such as investment analysis, financial research, and market trend forecasting.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset provides historical stock prices of eBay Inc. (EBAY) from 1998 to the 2025. It includes key stock market data such as Open, High, Low, Close, Adjusted Close, and Volume, making it useful for financial analysis, stock market research, and predictive modeling.
πΉ Ticker Symbol: EBAY
πΉ Date Range: 1998 - Present
πΉ Dataset Type: Time Series Data
| Column Name | Description |
|---|---|
| π Date | Trading date (Index) |
| π Open | Stock price at market open |
| π High | Highest price during the trading day |
| π Low | Lowest price during the trading day |
| π₯ Close | Price at market close |
| β Adj Close | Adjusted closing price after dividends/splits |
| π Volume | Number of shares traded on that day |
β
Stock Market Analysis β Identify trends in eBayβs stock price
β
Machine Learning & AI β Train models for stock price prediction
β
Financial Research β Study historical patterns and volatility
β
Time Series Forecasting β Analyze long-term trends and patterns
This dataset has been extracted from Yahoo Finance and processed to remove unnecessary columns while retaining core stock market data.
Explore and analyze eBayβs stock history! ππ
Facebook
TwitterComplete historical financial dataset for Adobe Inc.
Facebook
TwitterComplete historical financial dataset for Cloudflare, Inc.
Facebook
TwitterComplete historical financial dataset for Alphabet Inc.
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
This dataset contains the historical closing price data for all stocks listed on the National Stock Exchange (NSE) of India with a market capitalization exceeding 500 crore INR. The dataset is ideal for analysts, researchers, and enthusiasts who wish to perform detailed analysis, develop trading algorithms, or study market trends of substantial companies within the Indian stock market.
The data is sourced from official NSE records and includes all companies meeting the market capitalization criteria as of the latest update.
The dataset can be used for various purposes including but not limited to: - Financial modeling and forecasting - Risk management and portfolio optimization - Academic research and projects - Machine learning and AI-driven stock prediction models