Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
China's main stock market index, the SHANGHAI, rose to 3510 points on July 11, 2025, gaining 0.01% from the previous session. Over the past month, the index has climbed 3.16% and is up 18.14% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from China. China Shanghai Composite Stock Market Index - values, historical data, forecasts and news - updated on July of 2025.
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Israel's main stock market index, the TA-125, fell to 3121 points on July 10, 2025, losing 0.20% from the previous session. Over the past month, the index has climbed 13.30% and is up 51.70% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from Israel. Israel Stock Market (TA-125) - values, historical data, forecasts and news - updated on July of 2025.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Spain's main stock market index, the ES35, fell to 14009 points on July 11, 2025, losing 0.94% from the previous session. Over the past month, the index has declined 0.57%, though it remains 24.52% higher than a year ago, according to trading on a contract for difference (CFD) that tracks this benchmark index from Spain. Spain Stock Market Index (ES35) - values, historical data, forecasts and news - updated on July of 2025.
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The global card stock market size was valued at approximately USD 2.8 billion in 2023 and is projected to grow to USD 4.2 billion by 2032, at a compound annual growth rate (CAGR) of 4.6% during the forecast period. This robust growth is driven by increasing demand in the packaging and printing industries, along with a burgeoning interest in crafting and DIY activities globally.
One of the primary growth factors fueling the card stock market is the rising demand for sustainable and eco-friendly packaging solutions. As consumers and businesses alike become more environmentally conscious, the demand for recyclable and biodegradable card stock has surged. This trend is particularly evident in the packaging sector, where companies are increasingly opting for card stock over plastic to meet consumer preferences and regulatory requirements aimed at reducing plastic waste.
The growth of the e-commerce industry is another significant driver for the card stock market. With the rapid expansion of online retailing, the need for secure and appealing packaging solutions has increased. Card stock is often used in packaging for its durability and printability, which helps in creating visually attractive and sturdy packaging. Moreover, the rise in personalized and custom packaging trends among e-commerce platforms has further amplified the demand for high-quality card stock.
Additionally, the increasing popularity of crafting and DIY activities has spurred the demand for various types of card stock. With more people engaging in hobbies such as scrapbooking, card-making, and other creative projects, the market for card stock has expanded significantly. This trend is further bolstered by the proliferation of social media platforms, where users share their crafting ideas and projects, thereby inspiring others and driving demand for crafting materials, including card stock.
From a regional perspective, North America and Europe hold significant shares in the card stock market, driven by high levels of consumer awareness and stringent environmental regulations. Asia Pacific, however, is expected to witness the fastest growth during the forecast period due to increasing industrialization, rising disposable income, and the growing e-commerce sector. Latin America and the Middle East & Africa are also anticipated to exhibit moderate growth, supported by expanding packaging and printing industries in these regions.
The card stock market can be segmented by product type into coated card stock, uncoated card stock, textured card stock, recycled card stock, and others. Coated card stock holds a significant share due to its smooth surface and excellent printability, which makes it ideal for high-quality printing applications. It is widely used in business cards, brochures, and luxury packaging, where visual appeal is paramount. The coating enhances the card's durability and resistance to moisture, making it suitable for various commercial uses.
Uncoated card stock, on the other hand, is preferred for applications that require a more natural and tactile feel. It is often used in stationery, greeting cards, and certain types of packaging where a rustic or minimalist aesthetic is desired. The lack of coating allows for better ink absorption, which can be advantageous for certain printing techniques and crafting projects.
Textured card stock offers a unique advantage with its distinct surface patterns, adding a tactile dimension to printed materials. This type of card stock is popular in high-end invitations, business cards, and special event stationery. The textured surface can range from subtle linen-like patterns to more pronounced embossing, catering to diverse design needs.
Recycled card stock is gaining traction due to the growing emphasis on sustainability. Made from post-consumer waste, this type of card stock appeals to eco-conscious consumers and businesses. It is used in a variety of applications, including packaging, printing, and crafting, and offers a viable alternative to traditional paper products with a lower environmental footprint.
Other types of card stock include specialty variants tailored for specific applications, such as metallic finishes, which are used for luxury packaging and special occasions. These niche products, while not as widely used as the more common types, play an important role in meeting the diverse needs of the market and offering unique solutions for specific projects.
TagX is your trusted partner for stock market and financial data solutions. We specialize in delivering real-time and end-of-day data feeds that power software, trading algorithms, and risk management systems globally. Whether you're a financial institution, hedge fund, or individual investor, our reliable datasets provide essential insights into market trends, historical pricing, and key financial metrics.
TagX is committed to precision and reliability in stock market data. Our comprehensive datasets include critical information such as date, open/close/high/low prices, trading volume, EPS, P/E ratio, dividend yield, and more. Tailor your dataset to match your specific requirements, choosing from a wide range of parameters and coverage options across primary listings on NASDAQ, AMEX, NYSE, and ARCA exchanges.
Key Features of TagX Stock Market Data:
Custom Dataset Requests: Customize your data feed to focus on specific metrics and parameters crucial to your trading strategy.
Extensive Coverage: Access data from reputable exchanges and market participants, ensuring accuracy and completeness in your analyses.
Flexible Pricing Models: Choose pricing structures based on your selected parameters, offering cost-effective solutions tailored to your needs.
Why Choose TagX? Partner with TagX for precise, dependable, and customizable stock market data solutions. Whether you require real-time updates or end-of-day valuations, our datasets are designed to support informed decision-making and enhance your competitive edge in the financial markets. Trust TagX to deliver the data integrity and accuracy essential for maximizing your trading potential.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
France's main stock market index, the FR40, fell to 7829 points on July 11, 2025, losing 0.92% from the previous session. Over the past month, the index has climbed 0.83% and is up 1.36% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from France. France Stock Market Index (FR40) - values, historical data, forecasts and news - updated on July of 2025.
https://www.mordorintelligence.com/privacy-policyhttps://www.mordorintelligence.com/privacy-policy
The Rolling Stock Market Report is Segmented by Type (Locomotives, Metros and Light Rail Vehicles, Passenger Coaches, and More), Propulsion Type (Diesel, Electric, and More), Application (Passenger Rail and Freight Rail), End-User (National Rail Operators and More), Technology (Conventional and More) and Geography. The Market Forecasts are Provided in Terms of Value (USD) and Volume (Units).
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
India's main stock market index, the SENSEX, fell to 82500 points on July 11, 2025, losing 0.83% from the previous session. Over the past month, the index has climbed 0.99% and is up 2.46% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from India. BSE SENSEX Stock Market Index - values, historical data, forecasts and news - updated on July of 2025.
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Euro Area's main stock market index, the EU50, fell to 5385 points on July 11, 2025, losing 1.03% from the previous session. Over the past month, the index has climbed 0.45% and is up 6.78% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from Euro Area. Euro Area Stock Market Index (EU50) - values, historical data, forecasts and news - updated on July of 2025.
https://www.statsndata.org/how-to-orderhttps://www.statsndata.org/how-to-order
The Home Office market has witnessed a remarkable transformation over the past few years, emerging as a pivotal segment within the broader workspace industry. With the shift towards remote work fueled by advancements in technology and changing employee expectations, the Home Office market now caters to a diverse arr
https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
The foreign exchange (Forex) market is a global decentralized market for the trading of currencies. It is the largest financial market in the world, with an average daily trading volume of over $5 trillion. The market size is expected to reach $84 million by 2033, growing at a CAGR of 5.83% during the forecast period 2025-2033. Key drivers of the Forex market growth include increasing international trade, rising foreign direct investment, and growing demand for hedging and speculation. The market is also being driven by the increasing use of online trading platforms and the growing popularity of cryptocurrencies. The major players in the Forex market include Deutsche Bank, UBS, JP Morgan, State Street, XTX Markets, Jump Trading, Citi, Bank of New York Mellon, Bank America, and Goldman Sachs. The market is segmented by type (spot Forex, currency swap, outright forward, Forex swaps, Forex options, other types), counterparty (reporting dealers, other financial institutions, non-financial customers), and region (North America, South America, Europe, Middle East & Africa, Asia Pacific). Recent developments include: In November 2023, JP Morgan revealed the introduction of novel FX Warrants denominated in Hong Kong dollars in the Hong Kong market, marking its status as the inaugural issuer in Asia to present FX Warrants featuring CNH/HKD (Chinese Renminbi traded outside Mainland China/Hong Kong dollar) and JPY/HKD (Japanese Yen/Hong Kong dollar) as underlying currency pairs. These fresh FX Warrants are set to commence trading on the Hong Kong Stock Exchange., In October 2023, Deutsche Bank AG finalized its purchase of Numis Corporation Plc. The integration of both brands under the name 'Deutsche Numis' underscores their collective influence and standing in the UK and global markets. 'Deutsche Numis' emerges as a prominent entity in UK investment banking and the preferred advisor for UK-listed companies. This acquisition aligns with Deutsche Bank's Global Hausbank strategy, aiming to become the primary partner for clients in financial services and fostering stronger relationships with corporations throughout the United Kingdom., In June 2023, UBS successfully finalized the acquisition of Credit Suisse, marking a significant achievement. Credit Suisse Group AG has merged into UBS Group AG, forming a unified banking entity.. Key drivers for this market are: International Transactions Driven by Growing Tourism Driving Market Demand, Market Liquidity Impacting the Foreign Exchange Market. Potential restraints include: International Transactions Driven by Growing Tourism Driving Market Demand, Market Liquidity Impacting the Foreign Exchange Market. Notable trends are: FX Swaps is leading the market.
https://www.statsndata.org/how-to-orderhttps://www.statsndata.org/how-to-order
The Stock Trading Training Services market has witnessed significant evolution in recent years, becoming an essential resource for both novice and seasoned traders looking to enhance their skills and strategies within the dynamic financial landscape. As more individuals turn to stock trading as a potential avenue fo
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
https://www.statsndata.org/how-to-orderhttps://www.statsndata.org/how-to-order
The 800G switch market is rapidly evolving, driven by the increasing demand for higher bandwidth capabilities in data centers, telecommunications, and cloud computing. As businesses and consumers alike require faster and more reliable internet connections, 800G switches have emerged as a critical infrastructure comp
https://www.statsndata.org/how-to-orderhttps://www.statsndata.org/how-to-order
The Big Data Exchange market has emerged as a pivotal component in today's data-driven landscape, fundamentally reshaping how organizations manage, analyze, and utilize vast amounts of data. As businesses recognize the immense value hidden within their data reservoirs, the need for efficient data exchange frameworks
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
China's main stock market index, the SHANGHAI, rose to 3510 points on July 11, 2025, gaining 0.01% from the previous session. Over the past month, the index has climbed 3.16% and is up 18.14% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from China. China Shanghai Composite Stock Market Index - values, historical data, forecasts and news - updated on July of 2025.