Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required
Graph and download economic data for Index of Common Stock Prices, New York Stock Exchange for United States (M11007USM322NNBR) from Jan 1902 to May 1923 about New York, stock market, indexes, and USA.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The main stock market index of United States, the US500, rose to 6818 points on December 2, 2025, gaining 0.08% from the previous session. Over the past month, the index has declined 0.50%, though it remains 12.70% higher than a year ago, according to trading on a contract for difference (CFD) that tracks this benchmark index from United States. United States Stock Market Index - values, historical data, forecasts and news - updated on December of 2025.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset contains historical daily prices for all tickers currently trading on NASDAQ. The up to date list is available from nasdaqtrader.com. The historic data is retrieved from Yahoo finance via yfinance python package.
It contains prices for up to 01 of April 2020. If you need more up to date data, just fork and re-run data collection script also available from Kaggle.
The date for every symbol is saved in CSV format with common fields:
All that ticker data is then stored in either ETFs or stocks folder, depending on a type. Moreover, each filename is the corresponding ticker symbol. At last, symbols_valid_meta.csv contains some additional metadata for each ticker such as full name.
Facebook
TwitterThis statistic shows the total trading value of stocks on Taiwan Stock Exchange market from 2014 to 2024. In 2024, the total stock trading value on Taiwan Stock Exchange market reached around ***** trillion New Taiwan dollars.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The "Stock Market Dataset for AI-Driven Prediction and Trading Strategy Optimization" is designed to simulate real-world stock market data for training and evaluating machine learning models. This dataset includes a combination of technical indicators, market metrics, sentiment scores, and macroeconomic factors, providing a comprehensive foundation for developing and testing AI models for stock price prediction and trading strategy optimization.
Key Features Market Metrics:
Open, High, Low, Close Prices: Daily stock price movement. Volume: Represents the trading activity during the day. Technical Indicators:
RSI (Relative Strength Index): A momentum oscillator to measure the speed and change of price movements. MACD (Moving Average Convergence Divergence): An indicator to reveal changes in strength, direction, momentum, and duration of a trend. Bollinger Bands: Upper and lower bands around a stock price to measure volatility. Sentiment Analysis:
Sentiment Score: Simulated sentiment derived from financial news and social media, ranging from -1 (negative) to 1 (positive). Macroeconomic Factors:
GDP Growth: Indicates the overall health and growth of the economy. Inflation Rate: Reflects changes in purchasing power and economic stability. Target Variable:
Buy/Sell Signal: Binary classification (1 = Buy, 0 = Sell) based on price movement thresholds, simulating actionable trading decisions. Use Cases AI Model Training: Ideal for building stock prediction models using LSTM, Gradient Boosting, Random Forest, etc. Trading Strategy Optimization: Enables testing of trading algorithms and strategies in a simulated environment. Sentiment Analysis Research: Useful for understanding how sentiment influences stock movements. Feature Engineering and Selection: Provides a diverse set of features for experimentation with advanced techniques like PCA and LDA. Dataset Highlights Synthetic Yet Realistic: Carefully designed to mimic real-world financial data trends and relationships. Comprehensive Coverage: Includes key indicators and metrics used by traders and analysts. Scalable: Suitable for use in both small-scale academic projects and larger AI-driven trading platforms. Accessible for All Levels: The intuitive structure ensures that even beginners can utilize this dataset for financial machine learning applications. File Format The dataset is provided in CSV format, where:
Rows represent individual trading days. Columns represent features (technical indicators, market metrics, etc.) and the target variable. Acknowledgments This dataset is synthetically generated and is intended for research and educational purposes. It is not based on real market data and should not be used for actual trading.
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Interest Rates and Price Indexes; Dow Jones U.S. Total Market Index, Level (BOGZ1FL073164013A) from 1970 to 2024 about mutual funds, equity, liabilities, interest rate, interest, rate, price index, indexes, price, and USA.
Facebook
TwitterOpen Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
This table contains 25 series, with data for years 1956 - present (not all combinations necessarily have data for all years). This table contains data described by the following dimensions (Not all combinations are available): Geography (1 items: Canada ...), Toronto Stock Exchange Statistics (25 items: Standard and Poor's/Toronto Stock Exchange Composite Index; high; Standard and Poor's/Toronto Stock Exchange Composite Index; close; Toronto Stock Exchange; oil and gas; closing quotations; Standard and Poor's/Toronto Stock Exchange Composite Index; low ...).
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required
Graph and download economic data for Financial Market: Share Prices for Italy (SPASTT01ITQ661N) from Q1 1957 to Q3 2025 about Italy and stock market.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Gold fell to 4,199.97 USD/t.oz on December 2, 2025, down 0.75% from the previous day. Over the past month, Gold's price has risen 4.93%, and is up 58.92% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks the benchmark market for this commodity. Gold - values, historical data, forecasts and news - updated on December of 2025.
Facebook
TwitterThe Dow Jones Industrial Average (DJIA) index dropped around ***** points in the four weeks from February 12 to March 11, 2020, but has since recovered and peaked at ********* points as of November 24, 2024. In February 2020 - just prior to the global coronavirus (COVID-19) pandemic, the DJIA index stood at a little over ****** points. U.S. markets suffer as virus spreads The COVID-19 pandemic triggered a turbulent period for stock markets – the S&P 500 and Nasdaq Composite also recorded dramatic drops. At the start of February, some analysts remained optimistic that the outbreak would ease. However, the increased spread of the virus started to hit investor confidence, prompting a record plunge in the stock markets. The Dow dropped by more than ***** points in the week from February 21 to February 28, which was a fall of **** percent – its worst percentage loss in a week since October 2008. Stock markets offer valuable economic insights The Dow Jones Industrial Average is a stock market index that monitors the share prices of the 30 largest companies in the United States. By studying the performance of the listed companies, analysts can gauge the strength of the domestic economy. If investors are confident in a company’s future, they will buy its stocks. The uncertainty of the coronavirus sparked fears of an economic crisis, and many traders decided that investment during the pandemic was too risky.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Myanmar Stock Price Index: Yangon Stock Exchange: Composite data was reported at 394.730 25Mar2016=1000 in Nov 2025. This records a decrease from the previous number of 398.400 25Mar2016=1000 for Oct 2025. Myanmar Stock Price Index: Yangon Stock Exchange: Composite data is updated monthly, averaging 443.720 25Mar2016=1000 from Mar 2016 (Median) to Nov 2025, with 117 observations. The data reached an all-time high of 1,258.060 25Mar2016=1000 in Mar 2016 and a record low of 334.280 25Mar2016=1000 in Jul 2022. Myanmar Stock Price Index: Yangon Stock Exchange: Composite data remains active status in CEIC and is reported by Central Bank of Myanmar. The data is categorized under Global Database’s Myanmar – Table MM.Z: Stock Market. [COVID-19-IMPACT]
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset contains historical stock price data for major banks from the year 2014 to 2024. The dataset includes daily stock prices, trading volume, and other relevant financial metrics for prominent banks. The stock prices are provided in IDR (Indonesian Rupiah) currency.
PT Bank Central Asia Tbk (BBCA.JK), more commonly recognized as Bank Central Asia (BCA). As one of Indonesia's largest privately-owned banks, BCA was founded in 1955 and provides a diverse array of banking services encompassing consumer banking, corporate banking, investment banking, and asset management. With a widespread presence throughout Indonesia, including numerous branches and ATMs, BCA is esteemed for its robust financial achievements, inventive banking offerings, and dedication to customer satisfaction.
Dataset Variables:
Data Sources: The dataset is compiled from reliable financial sources, including stock exchanges, financial news websites, and reputable financial data providers. Data cleaning and preprocessing techniques have been applied to ensure accuracy and consistency. More info: https://finance.yahoo.com/quote/BBCA.JK/history/
Use Case: This dataset can be utilized for various purposes, including financial analysis, stock market forecasting, algorithmic trading strategies, and academic research. Researchers, analysts, and data scientists can explore the trends, patterns, and relationships within the data to derive valuable insights into the performance of the banking sector over the specified period. Additionally, this dataset can serve as a benchmark for evaluating the performance of machine learning models and quantitative trading strategies in the banking industry.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
France's main stock market index, the FR40, rose to 8121 points on December 2, 2025, gaining 0.29% from the previous session. Over the past month, the index has climbed 0.13% and is up 11.93% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from France. France Stock Market Index (FR40) - values, historical data, forecasts and news - updated on December of 2025.
Facebook
Twitterhttps://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice
Foreign Exchange Market Size 2025-2029
The foreign exchange market size is valued to increase by USD 582 billion, at a CAGR of 10.6% from 2024 to 2029. Growing urbanization and digitalization will drive the foreign exchange market.
Major Market Trends & Insights
Europe dominated the market and accounted for a 47% growth during the forecast period.
By Type - Reporting dealers segment was valued at USD 278.60 billion in 2023
By Trade Finance Instruments - Currency swaps segment accounted for the largest market revenue share in 2023
Market Size & Forecast
Market Opportunities: USD 118.14 billion
Market Future Opportunities: USD 582.00 billion
CAGR from 2024 to 2029 : 10.6%
Market Summary
The market, a dynamic and intricate web of financial transactions, plays a pivotal role in facilitating global trade and economic interactions. Its primary function is to enable the conversion of one currency into another, thereby mitigating the risk of currency fluctuations for businesses and investors. Key drivers of this market include growing urbanization and digitalization, which have expanded trading opportunities to a 24x7 global economy. However, the uncertainty of future exchange rates poses a significant challenge, necessitating effective risk management strategies. The market's evolution reflects the increasing interconnectedness of the global economy. Transactions occur in a decentralized, over-the-counter system, with major trading centers in London, New York, and Tokyo.
Participants include commercial banks, investment banks, hedge funds, and individual investors, all seeking to capitalize on price differences between currencies. Trends shaping the market include the increasing use of automation and artificial intelligence to analyze market data and execute trades. Regulatory changes, such as the introduction of stricter capital requirements, also impact the market's functioning. Looking ahead, the market is expected to remain a vital component of the global financial landscape, with continued growth driven by increased trade and economic interdependence. However, challenges, such as regulatory changes and geopolitical risks, will necessitate adaptability and innovation from market participants.
What will be the Size of the Foreign Exchange Market during the forecast period?
Get Key Insights on Market Forecast (PDF) Request Free Sample
How is the Foreign Exchange Market Segmented ?
The foreign exchange industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD billion' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.
Type
Reporting dealers
Financial institutions
Non-financial customers
Trade Finance Instruments
Currency swaps
Outright forward and FX swaps
FX options
Trading Platforms
Electronic Trading
Over-the-Counter (OTC)
Mobile Trading
Geography
North America
US
Canada
Europe
Germany
Switzerland
UK
Middle East and Africa
UAE
APAC
China
India
Japan
South America
Brazil
Rest of World (ROW)
By Type Insights
The reporting dealers segment is estimated to witness significant growth during the forecast period.
The market, a dynamic and ever-evolving financial landscape, is characterized by constant activity and intricate patterns. Participants engage in various trading strategies, employing advanced tools such as stop-loss and take-profit orders on forex trading platforms. Real-time data feeds and order book dynamics facilitate trade execution speed, while market microstructure and slippage minimization techniques ensure efficient transactions. Currency correlation analysis and transaction cost analysis are integral to informed decision-making, with backtesting methodologies providing valuable insights. Currency forwards contracts, position sizing techniques, and forex derivatives pricing are essential components of risk management systems. Carry trade strategies, hedging strategies, and interest rate parity are popular tactics employed by market participants.
Algorithmic trading strategies, driven by options pricing models and trading algorithms' efficiency, significantly influence price discovery mechanisms. High-frequency trading and volatility modeling contribute to the market's liquidity risk management, while foreign exchange swaps and currency option valuation help manage risk. The market's complexities necessitate sophisticated risk management systems and intricate order routing optimization. Global payments systems facilitate the smooth transfer of funds, and liquidity risk management remains a critical concern for market participants. According to recent studies, The market is estimated to account for approximately USD6 trillion in daily trading volume, und
Facebook
TwitterThe value of global domestic equity market increased from ***** trillion U.S. dollars in 2013 to ****** trillion U.S. dollars in 2024. The United States was by far the leading country with the largest share of total world stocks as of 2024. Global market capitalization in different regions The market capitalization of domestic companies listed varied across different regions of the world. As of Decmber 2024, the Americas region had the largest domestic equity market, totaling ** trillion U.S. dollars. This region is home to the NYSE and Nasdaq, which are the two largest stock exchange operators in the world. The market capitalization of these two exchanges alone exceeded ** billion U.S. dollars as of January 2025, larger than the total market capitalization in the Asia-Pacific, and in the EMEA regions in the same period. Largest Stock Exchanges in Latin America As of December 2024, the B3 (Brasil Bolsa Balcao) was the biggest stock exchange in Latin America in terms of market capitalization and the second-largest in terms of number of listed companies. Following the B3 were the Mexican Stock Exchange and the Santiago Stock Exchange in Chile. The most valuable company in Latin America is listed on the Mexican Stock Exchange: Fomento Económico Mexicano, a multinational beverage and retail company headquartered in Monterrey, had a market cap of *** billion U.S. dollars as of March 2025.
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required
Graph and download economic data for Share Prices: All Shares/Broad: Total for Ireland (SPASTT01IEQ657N) from Q2 1955 to Q3 2025 about Ireland and stock market.
Facebook
TwitterThe price of Intel shares traded on the Nasdaq stock exchange fluctuated significantly during the period between January 2010 and February 2025. The price of Intel share stood at ***** U.S. dollar as of the end of February 2025, significantly higher than the previous month.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The prediction of stock prices has long been a captivating subject in academic research. This study aims to forecast the prices of prominent stocks in five key industries of the Chinese A-share market by leveraging the synergistic power of deep learning techniques and investor sentiment analysis. To achieve this, a sentiment multi-classification dataset is for the first time constructed for China’s stock market, based on four types of sentiments in modern psychology. The significant heterogeneity of sentiment changes in the sectors’ leading stock markets is trained and mined using the Bi-LSTM-ATT model. The impact of multi-classification investor sentiment on stock price prediction was analyzed using the CNN-Bi-LSTM-ATT model. It finds that integrating sentiment indicators into the prediction of industry leading stock prices can enhance the accuracy of the model. Drawing upon four fundamental sentiment types derived from modern psychology, our dataset provides a comprehensive framework for analyzing investor sentiment and its impact on forecasting the stock prices of China’s A-share market.
Facebook
TwitterOpen Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically
The "yahoo_finance_dataset(2018-2023)" dataset is a financial dataset containing daily stock market data for multiple assets such as equities, ETFs, and indexes. It spans from April 1, 2018 to March 31, 2023, and contains 1257 rows and 7 columns. The data was sourced from Yahoo Finance, and the purpose of the dataset is to provide researchers, analysts, and investors with a comprehensive dataset that they can use to analyze stock market trends, identify patterns, and develop investment strategies. The dataset can be used for various tasks, including stock price prediction, trend analysis, portfolio optimization, and risk management. The dataset is provided in XLSX format, which makes it easy to import into various data analysis tools, including Python, R, and Excel.
The dataset includes the following columns:
Date: The date on which the stock market data was recorded. Open: The opening price of the asset on the given date. High: The highest price of the asset on the given date. Low: The lowest price of the asset on the given date. Close*: The closing price of the asset on the given date. Note that this price does not take into account any after-hours trading that may have occurred after the market officially closed. Adj Close**: The adjusted closing price of the asset on the given date. This price takes into account any dividends, stock splits, or other corporate actions that may have occurred, which can affect the stock price. Volume: The total number of shares of the asset that were traded on the given date.
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-pre-approvalhttps://fred.stlouisfed.org/legal/#copyright-pre-approval
View data of the S&P 500, an index of the stocks of 500 leading companies in the US economy, which provides a gauge of the U.S. equity market.
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required
Graph and download economic data for Index of Common Stock Prices, New York Stock Exchange for United States (M11007USM322NNBR) from Jan 1902 to May 1923 about New York, stock market, indexes, and USA.