TRCA GIS Open data on ArcGIS online. This link will take you to an external site URL: https://trca-camaps.opendata.arcgis.com/
Building footprint polygons are updated weekly by ECGIS. They provide a general reference of where buildings in Eaton County are located. These are not survey-grade.
The 2022 cartographic boundary shapefiles are simplified representations of selected geographic areas from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). These boundary files are specifically designed for small-scale thematic mapping. When possible, generalization is performed with the intent to maintain the hierarchical relationships among geographies and to maintain the alignment of geographies within a file set for a given year. Geographic areas may not align with the same areas from another year. Some geographies are available as nation-based files while others are available only as state-based files. This file depicts the shape of the United States clipped back to a generalized coastline. This nation layer covers the extent of the fifty states, the District of Columbia, Puerto Rico, and each of the Island Areas (American Samoa, the Commonwealth of the Northern Mariana Islands, Guam, and the U.S. Virgin Islands) when scale appropriate.
A shapefile of 311 undersea features from all major oceans and seas has been created as an aid for retrieving georeferenced information resources. The geographic extent of the shapefile is 0 degrees E to 0 degrees W longitude and 75 degrees S to 90 degrees N latitude. Many of the undersea features (UF) in the shapefile were selected from a list assembled by Weatherall and Cramer (2008) in a report from the British Oceanographic Data Centre (BODC) to the General Bathymetric Chart of the Oceans (GEBCO) Sub-Committee on Undersea Feature Names (SCUFN). Annex II of the Weatherall and Cramer report (p. 20-22) lists 183 undersea features that "may need additional points to define their shape" and includes online links to additional BODC documents providing coordinate pairs sufficient to define detailed linestrings for these features. For the first phase of the U.S. Geological Survey (USGS) project, Wingfield created polygons for 87 of the undersea features on the BODC list, using the linestrings as guides; the selected features were primarily ridges, rises, trenches, fracture zones, basins, and seamount chains. In the second phase of the USGS project, Wingfield and Hartwell created polygons for an additional 224 undersea features, mostly basins, abyssal plains, and fracture zones. Because USGS is a Federal agency, the attribute tables follow the conventions of the National Geospatial-Intelligence Agency (NGA) GEOnet Names Server (http://earth-info.nga.mil/gns/html).
This is a link to the QGIS website where you can download open-source GIS software for viewing, analyzing and manipulating geodata like our downloadable shapefiles.
Shapefile contains VA Public Wifi Hotspots. Updated monthly
ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
License information was derived automatically
A log of dataset alerts open, monitored or resolved on the open data portal. Alerts can include issues as well as deprecation or discontinuation notices.
Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
This file contains European countries in a shapefile format that can be used in python, R or matlab. The file has been created by Drin Marmullaku based on GADM version 4.1 (https://gadm.org/) and distributed according to their license (https://gadm.org/license.html).
Please cite as: Sevdari, Kristian; Marmullaku, Drin (2023). Shapefile of European countries. Technical University of Denmark. Dataset. https://doi.org/10.11583/DTU.23686383 This dataset is distributed under a CCBY-NC-SA 4.0 license
Using the data to create maps for publishing of academic research articles is allowed. Thus you can use the maps you made with GADM data for figures in articles published by PLoS, Springer Nature, Elsevier, MDPI, etc. You are allowed (but not required) to publish these articles (and the maps they contain) under an open license such as CC-BY as is the case with PLoS journals and may be the case with other open access articles. Data for the following countries is covered by a a different license Austria: Creative Commons Attribution-ShareAlike 2.0 (source: Government of Austria)
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This shapefile provides a worldwide geographic division by merging the World Continents division proposed by Esri Data and Maps (2024) to the Global Oceans and Seas version 1 division proposed by the Flanders Marine Institute (2021). Though divisions of continents and oceans/seas are available, the combination of both in a single shapefile is scarce.
The Continents and Oceans/Seas shapefile was carefully processed to remove overlaps between the inputs, and to fill gaps (i.e., areas with no information) by spatially joining these gaps to neighbour polygons. In total, the original world continents input divides land areas into 8 categories (Africa, Antarctica, Asia, Australia, Europe, North America, Oceania, and South America), while the original oceans/seas input divides the oceans/seas into 10 categories (Arctic Ocean, Baltic Sea, Indian Ocean, Mediterranean Region, North Atlantic Ocean, North Pacific Ocean, South Atlantic Ocean, South China and Easter Archipelagic Seas, South Pacific Ocean, and Southern Ocean). Therefore, the resulting world geographic division has 18 possible categories.
References
Esri Data and Maps (2024). World Continents. Available online at https://hub.arcgis.com/datasets/esri::world-continents/about. Accessed on 05 March 2024.
Flanders Marine Institute (2021). Global Oceans and Seas, version 1. Available online at https://www.marineregions.org/. https://doi.org/10.14284/542. Accessed on 04 March 2024.
NOTICE TO PROVISIONAL 2023 LAND USE DATA USERS: Please note that on December 6, 2024 the Department of Water Resources (DWR) published the Provisional 2023 Statewide Crop Mapping dataset. The link for the shapefile format of the data mistakenly linked to the wrong dataset. The link was updated with the appropriate data on January 27, 2025. If you downloaded the Provisional 2023 Statewide Crop Mapping dataset in shapefile format between December 6, 2024 and January 27, we encourage you to redownload the data. The Map Service and Geodatabase formats were correct as posted on December 06, 2024.
Thank you for your interest in DWR land use datasets.
The California Department of Water Resources (DWR) has been collecting land use data throughout the state and using it to develop agricultural water use estimates for statewide and regional planning purposes, including water use projections, water use efficiency evaluations, groundwater model developments, climate change mitigation and adaptations, and water transfers. These data are essential for regional analysis and decision making, which has become increasingly important as DWR and other state agencies seek to address resource management issues, regulatory compliances, environmental impacts, ecosystem services, urban and economic development, and other issues. Increased availability of digital satellite imagery, aerial photography, and new analytical tools make remote sensing-based land use surveys possible at a field scale that is comparable to that of DWR’s historical on the ground field surveys. Current technologies allow accurate large-scale crop and land use identifications to be performed at desired time increments and make possible more frequent and comprehensive statewide land use information. Responding to this need, DWR sought expertise and support for identifying crop types and other land uses and quantifying crop acreages statewide using remotely sensed imagery and associated analytical techniques. Currently, Statewide Crop Maps are available for the Water Years 2014, 2016, 2018- 2022 and PROVISIONALLY for 2023.
Historic County Land Use Surveys spanning 1986 - 2015 may also be accessed using the CADWR Land Use Data Viewer: https://gis.water.ca.gov/app/CADWRLandUseViewer.
For Regional Land Use Surveys follow: https://data.cnra.ca.gov/dataset/region-land-use-surveys.
For County Land Use Surveys follow: https://data.cnra.ca.gov/dataset/county-land-use-surveys.
For a collection of ArcGIS Web Applications that provide information on the DWR Land Use Program and our data products in various formats, visit the DWR Land Use Gallery: https://storymaps.arcgis.com/collections/dd14ceff7d754e85ab9c7ec84fb8790a.
Recommended citation for DWR land use data: California Department of Water Resources. (Water Year for the data). Statewide Crop Mapping—California Natural Resources Agency Open Data. Retrieved “Month Day, YEAR,” from https://data.cnra.ca.gov/dataset/statewide-crop-mapping.
When a natural disaster or disease outbreak occurs there is a rush to establish accurate health care location data that can be used to support people on the ground. This has been demonstrated by events such as the Haiti earthquake and the Ebola epidemic in West Africa. As a result valuable time is wasted establishing accurate and accessible baseline data. Healthsites.io establishes this data and the tools necessary to upload, manage and make the data easily accessible. Global scope The Global Healthsites Mapping Project is an initiative to create an online map of every health facility in the world and make the details of each location easily accessible. Open data collaboration Through collaborations with users, trusted partners and OpenStreetMap the Global Healthsites Mapping Project will capture and validate the location and contact details of every facility and make this data freely available under an Open Data License (ODBL). Accessible The Global Healthsites Mapping Project will make the data accessible over the Internet through an API and other formats such as GeoJSON, Shapefile, KML, CSV. Focus on health care location data The Global Healthsites Mapping Project's design philosophy is the long term curation and validation of health care location data. The healthsites.io map will enable users to discover what healthcare facilities exist at any global location and the associated services and resources.
The Open Street project is an online map making available a global geographical database thanks, among other things, to the GPS system. Its collaborative mode of operation is open to contributors who wish to improve it. The site data.gouv.fr does not accept the format .003 please rename a-batiment-003.zip to a-batiment.zip.003 The site data.gouv.fr does not accept the format .00* please rename a-batiment-00*.zip to a-batiment.zip.00* and unzip the file .001 See the following video for the use of this data: https://www.dailymotion.com/video/k1aPpxfF9YKx0zxKCPo
Dataset containing (5) GIS shapefiles which can be used to visualize a circumpolar overview map of geographical language speaker areas for Arctic Indigenous Peoples languages with additional attribute information about the languages. The language speaker areas show generally the maximum continuous areas where the Indigenous Peoples who spoke those languages lived in a historical context. The exact time range is defined specifically per region. Data from the languages and dialects shapefile was used to make language family and language family branch shapefiles. There is also a separate shapefile with some examples of innovative language revitalization in the region. There is a supporting shapefile of Arctic places to assist when visualizing the data. The 5 shapefiles can be used together or separately. All shapefiles are intended to be used as open resources for education and research. The shapefile for Languages and Dialects (Arctic_In_Lang_Dialect_V1-1_2024-Final.zip) is an updated version 2 from August 30, 2024. Fixes in this version 1.1: 1. Language polygon for "Chilcotin"/"Tsilhqút'ín" included 2. 3 empty remnant attribute entries removed
US Attorney District Shapefile downloaded from online
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Mapping of districts to control zones of German Transmission System Operators (TSOs)
This dataset provides a mapping of districts in Germany at NUTS3 level to control zones that are maintained by four transmission system operators (50Hertz, Amprion, TenneT, TransnetBW). A visualisation of the mapping is provided it GER_NUTS3_TSOs.png.
I can provide no guarantee of the accuracy or completeness of the provided information. In case the control zones of the TSOs change, or an error is detected, I do not assume liability for the error. The output file(s) can also be re-generated with the provided python script (GER_NUTS3_TSOs.py), and manipulated if necessary. In case you detect an error, please reach out to me so we can correct it in order to provide as accurate information as possible.
Licensing
This dataset is created on top of a dataset of German political administrative boundaries at NUTS3 level covering Germany provided by geoBoundaries (DEU_ADM2.shp). geoBoundaries is an online, open license database of global political administrative boundaries (i.e., state, county). For further information, see https://www.geoboundaries.org/.
For the processing, I am also using the dataset "Verwaltungsgebiete 1:2500000" (vg_12500.shp) provided by the "Bundesamt für Kartographie und Geodäsie". The dataset is licensed as "Data licence Germany - attribution - version 2.0", and can be retrieved at https://gdz.bkg.bund.de/index.php/default/verwaltungsgebiete-1-2-500-000-stand-31-12-vg2500-12-31.html. A reference to the license is provided under the following link: https://www.govdata.de/dl-de/by-2-0.
The files GER_NUTS3_TSOs.png, GER_NUTS3_TSOs.shp, GER_NUTS3_TSOs.shx, GER_NUTS3_TSOs.prj, GER_NUTS3_TSOs.dbf and GER_NUTS3_TSOs.cpg are released under the Creative Commons 4.0 Attribution International (CC BY 4.0).
The file GER_NUTS3_TSOs.py is released under a MIT license.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This feature class/shapefile contains locations of Hospitals for 50 US states, Washington D.C., US territories of Puerto Rico, Guam, American Samoa, Northern Mariana Islands, Palau, and Virgin Islands. The dataset only includes hospital facilities based on data acquired from various state departments or federal sources which has been referenced in the SOURCE field. Hospital facilities which do not occur in these sources will be not present in the database. The source data was available in a variety of formats (pdfs, tables, webpages, etc.) which was cleaned and geocoded and then converted into a spatial database. The database does not contain nursing homes or health centers. Hospitals have been categorized into children, chronic disease, critical access, general acute care, long term care, military, psychiatric, rehabilitation, special, and women based on the range of the available values from the various sources after removing similarities.
Welcome to the Ordnance Survey Data Download in ArcGIS Online! This is a feature service that enables ArcGIS users to download OS Open Datasets via the ArcGIS Platform. These downloads come from the OS Open Data Hub.OS Terrain® 50: Visualise simple landscapes in 3D and bring your geographic analysis to life.This dataset comes as a Shapefile (.shp), an ASCII Grid and a Geopackage.Download ShapefileDownload ASCII GridDownload GeopackagePlease see here for the Terms Currency: This dataset points to the OS datahub so will be the most current dataset that they have available.
This dataset contains shapefile boundaries for CA State, counties and places from the US Census Bureau's 2023 MAF/TIGER database. Current geography in the 2023 TIGER/Line Shapefiles generally reflects the boundaries of governmental units in effect as of January 1, 2023.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Summary
Geojson files used to visualize geospatial layers relevant to identifying and assessing trucking fleet decarbonization opportunities with the MIT Climate & Sustainability Consortium's Geospatial Trucking Industry Decarbonization Explorer (Geo-TIDE) tool.
Relevant Links
Link to the online version of the tool (requires creation of a free user account).
Link to GitHub repo with source code to produce this dataset and deploy the Geo-TIDE tool locally.
Funding
This dataset was produced with support from the MIT Climate & Sustainability Consortium.
Original Data Sources
These geojson files draw from and synthesize a number of different datasets and tools. The original data sources and tools are described below:
Filename(s) Description of Original Data Source(s) Link(s) to Download Original Data License and Attribution for Original Data Source(s)
faf5_freight_flows/*.geojson
trucking_energy_demand.geojson
highway_assignment_links_*.geojson
infrastructure_pooling_thought_experiment/*.geojson
Regional and highway-level freight flow data obtained from the Freight Analysis Framework Version 5. Shapefiles for FAF5 region boundaries and highway links are obtained from the National Transportation Atlas Database. Emissions attributes are evaluated by incorporating data from the 2002 Vehicle Inventory and Use Survey and the GREET lifecycle emissions tool maintained by Argonne National Lab.
Shapefile for FAF5 Regions
Shapefile for FAF5 Highway Network Links
FAF5 2022 Origin-Destination Freight Flow database
FAF5 2022 Highway Assignment Results
Attribution for Shapefiles: United States Department of Transportation Bureau of Transportation Statistics National Transportation Atlas Database (NTAD). Available at: https://geodata.bts.gov/search?collection=Dataset.
License for Shapefiles: This NTAD dataset is a work of the United States government as defined in 17 U.S.C. § 101 and as such are not protected by any U.S. copyrights. This work is available for unrestricted public use.
Attribution for Origin-Destination Freight Flow database: National Transportation Research Center in the Oak Ridge National Laboratory with funding from the Bureau of Transportation Statistics and the Federal Highway Administration. Freight Analysis Framework Version 5: Origin-Destination Data. Available from: https://faf.ornl.gov/faf5/Default.aspx. Obtained on Aug 5, 2024. In the public domain.
Attribution for the 2022 Vehicle Inventory and Use Survey Data: United States Department of Transportation Bureau of Transportation Statistics. Vehicle Inventory and Use Survey (VIUS) 2002 [supporting datasets]. 2024. https://doi.org/10.21949/1506070
Attribution for the GREET tool (original publication): Argonne National Laboratory Energy Systems Division Center for Transportation Research. GREET Life-cycle Model. 2014. Available from this link.
Attribution for the GREET tool (2022 updates): Wang, Michael, et al. Summary of Expansions and Updates in GREET® 2022. United States. https://doi.org/10.2172/1891644
grid_emission_intensity/*.geojson
Emission intensity data is obtained from the eGRID database maintained by the United States Environmental Protection Agency.
eGRID subregion boundaries are obtained as a shapefile from the eGRID Mapping Files database.
eGRID database
Shapefile with eGRID subregion boundaries
Attribution for eGRID data: United States Environmental Protection Agency: eGRID with 2022 data. Available from https://www.epa.gov/egrid/download-data. In the public domain.
Attribution for shapefile: United States Environmental Protection Agency: eGRID Mapping Files. Available from https://www.epa.gov/egrid/egrid-mapping-files. In the public domain.
US_elec.geojson
US_hy.geojson
US_lng.geojson
US_cng.geojson
US_lpg.geojson
Locations of direct current fast chargers and refueling stations for alternative fuels along U.S. highways. Obtained directly from the Station Data for Alternative Fuel Corridors in the Alternative Fuels Data Center maintained by the United States Department of Energy Office of Energy Efficiency and Renewable Energy.
US_elec.geojson
US_hy.geojson
US_lng.geojson
US_cng.geojson
US_lpg.geojson
Attribution: U.S. Department of Energy, Energy Efficiency and Renewable Energy. Alternative Fueling Station Corridors. 2024. Available from: https://afdc.energy.gov/corridors. In the public domain.
These data and software code ("Data") are provided by the National Renewable Energy Laboratory ("NREL"), which is operated by the Alliance for Sustainable Energy, LLC ("Alliance"), for the U.S. Department of Energy ("DOE"), and may be used for any purpose whatsoever.
daily_grid_emission_profiles/*.geojson
Hourly emission intensity data obtained from ElectricityMaps.
Original data can be downloaded as csv files from the ElectricityMaps United States of America database
Shapefile with region boundaries used by ElectricityMaps
License: Open Database License (ODbL). Details here: https://www.electricitymaps.com/data-portal
Attribution for csv files: Electricity Maps (2024). United States of America 2022-23 Hourly Carbon Intensity Data (Version January 17, 2024). Electricity Maps Data Portal. https://www.electricitymaps.com/data-portal.
Attribution for shapefile with region boundaries: ElectricityMaps contributors (2024). electricitymaps-contrib (Version v1.155.0) [Computer software]. https://github.com/electricitymaps/electricitymaps-contrib.
gen_cap_2022_state_merged.geojson
trucking_energy_demand.geojson
Grid electricity generation and net summer power capacity data is obtained from the state-level electricity database maintained by the United States Energy Information Administration.
U.S. state boundaries obtained from this United States Department of the Interior U.S. Geological Survey ScienceBase-Catalog.
Annual electricity generation by state
Net summer capacity by state
Shapefile with U.S. state boundaries
Attribution for electricity generation and capacity data: U.S. Energy Information Administration (Aug 2024). Available from: https://www.eia.gov/electricity/data/state/. In the public domain.
electricity_rates_by_state_merged.geojson
Commercial electricity prices are obtained from the Electricity database maintained by the United States Energy Information Administration.
Electricity rate by state
Attribution: U.S. Energy Information Administration (Aug 2024). Available from: https://www.eia.gov/electricity/data.php. In the public domain.
demand_charges_merged.geojson
demand_charges_by_state.geojson
Maximum historical demand charges for each state and zip code are derived from a dataset compiled by the National Renewable Energy Laboratory in this this Data Catalog.
Historical demand charge dataset
The original dataset is compiled by the National Renewable Energy Laboratory (NREL), the U.S. Department of Energy (DOE), and the Alliance for Sustainable Energy, LLC ('Alliance').
Attribution: McLaren, Joyce, Pieter Gagnon, Daniel Zimny-Schmitt, Michael DeMinco, and Eric Wilson. 2017. 'Maximum demand charge rates for commercial and industrial electricity tariffs in the United States.' NREL Data Catalog. Golden, CO: National Renewable Energy Laboratory. Last updated: July 24, 2024. DOI: 10.7799/1392982.
eastcoast.geojson
midwest.geojson
la_i710.geojson
h2la.geojson
bayarea.geojson
saltlake.geojson
northeast.geojson
Highway corridors and regions targeted for heavy duty vehicle infrastructure projects are derived from a public announcement on February 15, 2023 by the United States Department of Energy.
The shapefile with Bay area boundaries is obtained from this Berkeley Library dataset.
The shapefile with Utah county boundaries is obtained from this dataset from the Utah Geospatial Resource Center.
Shapefile for Bay Area country boundaries
Shapefile for counties in Utah
Attribution for public announcement: United States Department of Energy. Biden-Harris Administration Announces Funding for Zero-Emission Medium- and Heavy-Duty Vehicle Corridors, Expansion of EV Charging in Underserved Communities (2023). Available from https://www.energy.gov/articles/biden-harris-administration-announces-funding-zero-emission-medium-and-heavy-duty-vehicle.
Attribution for Bay area boundaries: San Francisco (Calif.). Department Of Telecommunications and Information Services. Bay Area Counties. 2006. In the public domain.
Attribution for Utah boundaries: Utah Geospatial Resource Center & Lieutenant Governor's Office. Utah County Boundaries (2023). Available from https://gis.utah.gov/products/sgid/boundaries/county/.
License for Utah boundaries: Creative Commons 4.0 International License.
incentives_and_regulations/*.geojson
State-level incentives and regulations targeting heavy duty vehicles are collected from the State Laws and Incentives database maintained by the United States Department of Energy's Alternative Fuels Data Center.
Data was collected manually from the State Laws and Incentives database.
Attribution: U.S. Department of Energy, Energy Efficiency and Renewable Energy, Alternative Fuels Data Center. State Laws and Incentives. Accessed on Aug 5, 2024 from: https://afdc.energy.gov/laws/state. In the public domain.
These data and software code ("Data") are provided by the National Renewable Energy Laboratory ("NREL"), which is operated by the Alliance for Sustainable Energy, LLC ("Alliance"), for the U.S. Department of Energy ("DOE"), and may be used for any purpose whatsoever.
costs_and_emissions/*.geojson
diesel_price_by_state.geojson
trucking_energy_demand.geojson
Lifecycle costs and emissions of electric and diesel trucking are evaluated by adapting the model developed by Moreno Sader et al., and calibrated to the Run on Less dataset for the Tesla Semi collected from the 2023 PepsiCo Semi pilot by the North American Council for Freight Efficiency.
In
In the United States, the federal government manages approximately 28% of the land in the United States. Most federal lands are west of the Mississippi River, where almost half of the land by area is managed by the federal government. Federal lands include 193 million acres managed by the US Forest Service in 154 National Forests and 20 National Grasslands, Bureau of Land Management lands that cover 247 million acres in Alaska and the Western United States, 150 million acres managed for wildlife conservation by the US Fish and Wildlife Service, 84 million acres of National Parks and other lands managed by the National Park Service, and over 30 million acres managed by the Department of Defense. The Bureau of Reclamation manages a much smaller land base than the other agencies included in this layer but plays a critical role in managing the country's water resources. The agencies included in this layer are:Bureau of Land ManagementDepartment of DefenseNational Park ServiceUS Fish and Wildlife ServiceUS Forest ServiceDataset SummaryPhenomenon Mapped: United States federal lands managed by six federal agenciesGeographic Extent: 50 United States and the District of Columbia, Puerto Rico, US Virgin Islands, Guam, American Samoa, and Northern Mariana Islands. The layer also includes National Monuments and Wildlife Refuges in the Pacific Ocean, Atlantic Ocean, and the Caribbean Sea.Data Coordinate System: WGS 1984Visible Scale: The data is visible at all scales but draws best at scales greater than 1:2,000,000Source: BLM, DOD, USFS, USFWS, NPS, PADUS 3.0Publication Date: Various - Esri compiled and published this layer in May 2025. See individual agency views for data vintage.There are six layer views available that were created from this service. Each layer uses a filter to extract an individual agency from the service. For more information about the layer views or how to use them in your own project, follow these links:USA Bureau of Land Management LandsUSA Department of Defense LandsUSA National Park Service LandsUSA Fish and Wildlife Service LandsUSA Forest Service LandsWhat can you do with this Layer?This layer is suitable for both visualization and analysis across the ArcGIS system. This layer can be combined with your data and other layers from the ArcGIS Living Atlas of the World in ArcGIS Online and ArcGIS Pro to create powerful web maps that can be used alone or in a story map or other application.Because this layer is part of the ArcGIS Living Atlas of the World it is easy to add to your map:In ArcGIS Online, you can add this layer to a map by selecting Add then Browse Living Atlas Layers. A window will open. Type "federal lands" in the search box and browse to the layer. Select the layer then click Add to Map.In ArcGIS Pro, open a map and select Add Data from the Map Tab. Select Data at the top of the drop down menu. The Add Data dialog box will open on the left side of the box, expand Portal if necessary, then select Living Atlas. Type "federal lands" in the search box, browse to the layer then click OK.In both ArcGIS Online and Pro you can change the layer's symbology and view its attribute table. You can filter the layer to show subsets of the data using the filter button in Online or a definition query in Pro.The data can be exported to a file geodatabase, a shapefile or other format and downloaded using the Export Data button on the top right of this webpage.This layer can be used as an analytic input in both Online and Pro through the Perform Analysis window Online or as an input to a geoprocessing tool, model, or Python script in Pro.The ArcGIS Living Atlas of the World provides an easy way to explore many other beautiful and authoritative maps on hundreds of topics like this one.Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.
TRCA GIS Open data on ArcGIS online. This link will take you to an external site URL: https://trca-camaps.opendata.arcgis.com/