100+ datasets found
  1. Data from: Switching to ArcGIS Pro from ArcMap

    • dados-edu-pt.hub.arcgis.com
    Updated Aug 14, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri Portugal - Educação (2020). Switching to ArcGIS Pro from ArcMap [Dataset]. https://dados-edu-pt.hub.arcgis.com/datasets/switching-to-arcgis-pro-from-arcmap
    Explore at:
    Dataset updated
    Aug 14, 2020
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri Portugal - Educação
    License

    Attribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
    License information was derived automatically

    Description

    The arrival of ArcGIS Pro has brought a challenge to ArcMap users. The new software is sufficiently different in architecture and layout that switching from the old to the new is not a simple process. In some ways, Pro is harder to learn for ArcMap users than for new GIS users, because some workflows have to be unlearned, or at least heavily modified. Current ArcMap users are pressed for time, trying to learn the new software while still completing their daily tasks, so a book that teaches Pro from the start is not an efficient method.Switching to ArcGIS Pro from ArcMap aims to quickly transition ArcMap users to ArcGIS Pro. Rather than teaching Pro from the start, as for a novice user, this book focuses on how Pro is different from ArcMap. Covering the most common and important workflows required for most GIS work, it leverages the user’s prior experience to enable a more rapid adjustment to Pro.AUDIENCEProfessional and scholarly; College/higher education; General/trade.AUTHOR BIOMaribeth H. Price, PhD, South Dakota School of Mines and Technology, has been using Esri products since 1991, teaching college GIS since 1995 and writing textbooks utilizing Esri’s software since 2001. She has extensive familiarity with both ArcMap/ArcCatalog and Pro, both as a user and in the classroom, as well as long experience writing about GIS concepts and developing software tutorials. She teaches GIS workshops, having offered more than 100 workshops to over 1,200 participants since 2000.Pub Date: Print: 2/14/2019 Digital: 1/28/2019 Format: PaperbackISBN: Print: 9781589485440 Digital: 9781589485457 Trim: 8 x 10 in.Price: Print: $49.99 USD Digital: $49.99 USD Pages: 172Table of ContentsPreface1 Contemplating the switch to ArcGIS ProBackgroundSystem requirementsLicensingCapabilities of ArcGIS ProWhen should I switch?Time to exploreObjective 1.1: Downloading the data for these exercisesObjective 1.2: Starting ArcGIS Pro, signing in, creating a project, and exploring the interfaceObjective 1.3: Accessing maps and data from ArcGIS OnlineObjective 1.4: Arranging the windows and panesObjective 1.5: Accessing the helpObjective 1.6: Importing a map document2 Unpacking the GUIBackgroundThe ribbon and tabsPanesViewsTime to exploreObjective 2.1: Getting familiar with the Contents paneObjective 2.2: Learning to work with objects and tabsObjective 2.3: Exploring the Catalog pane3 The projectBackgroundWhat is a project?Items stored in a projectPaths in projectsRenaming projectsTime to exploreObjective 3.1: Exploring different elements of a projectObjective 3.2: Accessing properties of projects, maps, and other items4 Navigating and exploring mapsBackgroundExploring maps2D and 3D navigationTime to exploreObjective 4.1: Learning to use the Map toolsObjective 4.2: Exploring 3D scenes and linking views5 Symbolizing mapsBackgroundAccessing the symbol settings for layersAccessing the labeling propertiesSymbolizing rastersTime to exploreObjective 5.1: Modifying single symbolsObjective 5.2: Creating maps from attributesObjective 5.3: Creating labelsObjective 5.4: Managing labelsObjective 5.5: Symbolizing rasters6 GeoprocessingBackgroundWhat’s differentAnalysis buttons and toolsTool licensingTime to exploreObjective 6.1: Getting familiar with the geoprocessing interfaceObjective 6.2: Performing interactive selectionsObjective 6.3: Performing selections based on attributesObjective 6.4: Performing selections based on locationObjective 6.5: Practicing geoprocessing7 TablesBackgroundGeneral table characteristicsJoining and relating tablesMaking chartsTime to exploreObjective 7.1: Managing table viewsObjective 7.2: Creating and managing properties of a chartObjective 7.3: Calculating statistics for tablesObjective 7.4: Calculating and editing in tables8 LayoutsBackgroundLayouts and map framesLayout editing proceduresImporting map documents and templatesTime to exploreObjective 8.1: Creating the maps for the layoutObjective 8.2: Setting up a layout page with map framesObjective 8.3: Setting map frame extent and scaleObjective 8.4: Formatting the map frameObjective 8.5: Creating and formatting map elementsObjective 8.6: Fine-tuning the legendObjective 8.7: Accessing and copying layouts9 Managing dataBackgroundData modelsManaging the geodatabase schemaCreating domainsManaging data from diverse sourcesProject longevityManaging shared data for work groupsTime to exploreObjective 9.1: Creating a project and exporting data to itObjective 9.2: Creating feature classesObjective 9.3: Creating and managing metadataObjective 9.4: Creating fields and domainsObjective 9.5: Modifying the table schemaObjective 9.6: Sharing data using ArcGIS Online10 EditingBackgroundBasic editing functionsCreating featuresModifying existing featuresCreating and editing annotationTime to exploreObjective 10.1: Understanding the editing tools in ArcGIS ProObjective 10.2: Creating pointsObjective 10.3: Creating linesObjective 10.4: Creating polygonsObjective 10.5: Modifying existing featuresObjective 10.6: Creating an annotation feature classObjective 10.7: Editing annotationObjective 10.8: Creating annotation features11 Moving forwardData sourcesIndex

  2. d

    Introduction to Planetary Image Analysis and Geologic Mapping in ArcGIS Pro

    • catalog.data.gov
    • data.usgs.gov
    Updated Jul 6, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Introduction to Planetary Image Analysis and Geologic Mapping in ArcGIS Pro [Dataset]. https://catalog.data.gov/dataset/introduction-to-planetary-image-analysis-and-geologic-mapping-in-arcgis-pro
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Description

    GIS project files and imagery data required to complete the Introduction to Planetary Image Analysis and Geologic Mapping in ArcGIS Pro tutorial. These data cover the area in and around Jezero crater, Mars.

  3. OpenStreetMap (Blueprint)

    • catalog.data.gov
    • gimi9.com
    • +8more
    Updated Jun 8, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2024). OpenStreetMap (Blueprint) [Dataset]. https://catalog.data.gov/dataset/openstreetmap-blueprint-653c6
    Explore at:
    Dataset updated
    Jun 8, 2024
    Dataset provided by
    Esrihttp://esri.com/
    Description

    This web map features a vector basemap of OpenStreetMap (OSM) data created and hosted by Esri. Esri produced this vector tile basemap in ArcGIS Pro from a live replica of OSM data, hosted by Esri, and rendered using a creative cartographic style emulating a blueprint technical drawing. The vector tiles are updated every few weeks with the latest OSM data. This vector basemap is freely available for any user or developer to build into their web map or web mapping apps.OpenStreetMap (OSM) is an open collaborative project to create a free editable map of the world. Volunteers gather location data using GPS, local knowledge, and other free sources of information and upload it. The resulting free map can be viewed and downloaded from the OpenStreetMap site: www.OpenStreetMap.org. Esri is a supporter of the OSM project and is excited to make this new vector basemap available available to the OSM, GIS, and Developer communities.

  4. U

    ArcGIS Pro 2.9

    • dataverse.ucla.edu
    bin, exe
    Updated Oct 24, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ZHIYUAN YAO; ZHIYUAN YAO (2022). ArcGIS Pro 2.9 [Dataset]. http://doi.org/10.25346/S6/XMSTGI
    Explore at:
    bin(456466432), bin(517275648), bin(512565248), bin(476184576), bin(70467584), exe(42353064), exe(2189383088), exe(394954840)Available download formats
    Dataset updated
    Oct 24, 2022
    Dataset provided by
    UCLA Dataverse
    Authors
    ZHIYUAN YAO; ZHIYUAN YAO
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    ArcGIS Pro 2.9

  5. Paper Cut style for ArcGIS Pro

    • cacgeoportal.com
    Updated Sep 24, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri Styles (2019). Paper Cut style for ArcGIS Pro [Dataset]. https://www.cacgeoportal.com/content/6c01b3d015ce40eca7846941d6313fe8
    Explore at:
    Dataset updated
    Sep 24, 2019
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri Styles
    Description

    This style consists of two, and only two, symbols. One pin point symbol and one paper polygon symbol.But they can be dynamically colored in the symbology panel. Here's a one-minute how to.

  6. M

    DNR Toolbox for ArcGIS Pro

    • gisdata.mn.gov
    esri_toolbox
    Updated Mar 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Natural Resources Department (2025). DNR Toolbox for ArcGIS Pro [Dataset]. https://gisdata.mn.gov/dataset/dnr-pro-toolbox
    Explore at:
    esri_toolboxAvailable download formats
    Dataset updated
    Mar 19, 2025
    Dataset provided by
    Natural Resources Department
    Description

    The Minnesota DNR Toolbox provides a number of convenience geoprocessing tools used regularly by MNDNR staff. Many of these may be useful to the wider public. However, some tools may rely on data that is not available outside of the DNR.

    Toolsets included in MNDNR Tools:
    - Analysis Tools
    - Conversion Tools
    - General Tools
    - LiDAR and DEM Tools
    - Sampling Tools

    The application download includes a comprehensive help document, which you can also access separately here: ArcGISPro_MNDNR_Toolbox_Pro_User_Guide.pdf

    These toolboxes are provided free of charge and are not warrantied for any specific use. We do not provide support or assistance in downloading or using these tools. We do, however, strive to produce high-quality tools and appreciate comments you have about them.

  7. TopoBathy 3D

    • cacgeoportal.com
    • marine-sdi.hub.arcgis.com
    Updated May 13, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2016). TopoBathy 3D [Dataset]. https://www.cacgeoportal.com/datasets/0c69ba5a5d254118841d43f03aa3e97d
    Explore at:
    Dataset updated
    May 13, 2016
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    The TopoBathy 3D layer provides a global seamless topography (land elevation) and bathymetry (water depths) surface to use in ArcGIS 3D applications.What can you do with this layer?This layer is meant to be used as a ground in ArcGIS Online Web Scenes, ArcGIS Earth, and ArcGIS Pro to help visualize your maps and data in 3D.How do I use this layer?In the ArcGIS Online Web Scene Viewer:Sign-in with ArcGIS Online accountOn the Designer toolbar, click Add Layers Click Browse layers and choose Living Atlas.Search for TopoBathy 3DAdd TopoBathy 3D (Elevation Layer)The TopoBathy 3D will get added under Ground. Change basemap to OceansOptionally, add any other operational layers to visualize in 3DIn ArcGIS Pro:Ensure you are logged in with an ArcGIS Online accountOpen a Global SceneOn the Map tab, click Add Data > Elevation Source LayerUnder Portal, click Living Atlas and search for TopoBathy 3DSelect TopoBathy 3D (Elevation Layer) and click OKThe TopoBathy 3D will get added under GroundOptionally, remove other elevation layers from ground and choose the desired basemapDataset Coverage To see the coverage and sources of various datasets comprising this elevation layer, view the Elevation Coverage Map. Additionally, this layer uses data from Maxar’s Precision 3D Digital Terrain Models for parts of the globe.

  8. M

    DNR QuickLayers for ArcGIS Pro 3

    • gisdata.mn.gov
    esri_addin
    Updated Jun 14, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Natural Resources Department (2025). DNR QuickLayers for ArcGIS Pro 3 [Dataset]. https://gisdata.mn.gov/dataset/quick-layers-pro3
    Explore at:
    esri_addinAvailable download formats
    Dataset updated
    Jun 14, 2025
    Dataset provided by
    Natural Resources Department
    Description

    The way to access Layers Quickly.

    Quick Layers is an Add-In for ArcGIS Pro 3 that allows rapid access to the DNR's Geospatial Data Resource Site (GDRS). The GDRS is a data structure that serves core geospatial dataset and applications for not only DNR, but many state agencies, and supports the Minnesota Geospatial Commons. Data added from Quick Layers is pre-symbolized, helping to standardize visualization and map production. Current version: 3.11

    To use Quick Layers with the GDRS, there's no need to download QuickLayers from this location. Instead, download a full copy or a custom subset of the public GDRS (including Quick Layers for ArcGIS Pro 3) using GDRS Manager.

    Quick Layers also allows users to save and share their own pre-symbolized layers, thus increasing efficiency and consistency across the enterprise.

    Installation:

    After using GDRS Manager to create a GDRS, including Quick Layers, add the path to the Quick Layers addin to the list of shared folders:
    1. Open ArcGIS Pro
    2. Project -> Add-In Manager -> Options
    3. Click add folder, and enter the location of the Quick Layers Pro app. For example, if your GDRS is mapped to the V drive, the path would be V:\gdrs\apps\pub\us_mn_state_dnr\quick_layers_pro3
    4. After you do this, the Quick Layers ribbon will be available. To also add Quick Layers to the Quick Access Toolbar at the top, right click Quick Layers, and select Add to Quick Access Toolbar

    The link below is only for those who are using Quick Layers without a GDRS. To get the most functionality out of Quick Layers, don't install it separately, but instead download it as part of a GDRS build using GDRS Manager.

  9. US&R ArcGIS Pro Template e27ed4

    • visionzero.geohub.lacity.org
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The citation is currently not available for this dataset.
    Explore at:
    Dataset updated
    May 31, 2023
    Dataset provided by
    Federal Emergency Management Agencyhttp://www.fema.gov/
    Authors
    FEMA AGOL
    Description

    THIS IS THE OLD PRO TEMPLATE. THE CURRENT VERSION CAN BE FOUND HEREUSAR Pro TemplateLast Update: 11/30/2023, Requires ArcGIS Pro 3.2.xPatch and Update notes can be found here: USR Pro Template Update and Patch Notes.docx (Sign in may be required, use same sign in as you'd use for NSARGC Teams). Small "quality of life" patches and updates to fix minor issues throughout the template will come with little to no warning and will not be noted. If an update includes any bug fixes or makes changes to the template, those changes will be noted in the document above and comments below.This is a file structure with ArcGIS Pro project and layout templates for supporting Urban Search and Rescue Teams in 2024. It points to the latest feature layers and is based on the NWCG Wildfire GIS templates.Special thanks to NIFC and the Wildfire GIS Community for the starting template. For more documentation see NWCG Standards for Geospatial Operations, PMS 936 | NWCGYOU WILL NOT BE ABLE TO ACCESS any incident data unless you are a member of the NSARGC Group.If the template brings you to a screen saying "Invalid Token", you may need to try downloading it again.

  10. O

    Introduction to ArcGIS Pro from UC Riverside

    • data.ct.gov
    application/rdfxml +5
    Updated Aug 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). Introduction to ArcGIS Pro from UC Riverside [Dataset]. https://data.ct.gov/dataset/Introduction-to-ArcGIS-Pro-from-UC-Riverside/nd9t-p2f5
    Explore at:
    csv, application/rssxml, xml, tsv, application/rdfxml, jsonAvailable download formats
    Dataset updated
    Aug 30, 2023
    Description

    {{description}}

  11. Illuminated labels for ArcGIS Pro text

    • cacgeoportal.com
    • hub.arcgis.com
    Updated Mar 19, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri Styles (2019). Illuminated labels for ArcGIS Pro text [Dataset]. https://www.cacgeoportal.com/content/5189d6227cae42de89c1cdfaee396792
    Explore at:
    Dataset updated
    Mar 19, 2019
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri Styles
    Description

    Sometimes a basic solid color for your map's labels and text just isn't going to cut it. Here is an ArcGIS Pro style with light and dark gradient fills and shadow/glow effects that you can apply to map text via the "Text fill symbol" picker in your label pane. Level up those labels! Make them look touchable. Glassy. Shady. Intriguing.Find a how-to here.Save this style, add it to your ArcGIS Pro project, then use it for any text (including labels).**UPDATE**I've added a symbol that makes text look like is being illuminated from below, casting a shadow upwards and behind. Pretty dramatic if you ask me. Here is an example:Happy Mapping! John Nelson

  12. Viewshed

    • rwanda.africageoportal.com
    • africageoportal.com
    • +3more
    Updated Jul 4, 2013
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2013). Viewshed [Dataset]. https://rwanda.africageoportal.com/content/1ff463dbeac14b619b9edbd7a9437037
    Explore at:
    Dataset updated
    Jul 4, 2013
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    The Viewshed analysis layer is used to identify visible areas. You specify the places you are interested in, either from a file or interactively, and the Viewshed service combines this with Esri-curated elevation data to create output polygons of visible areas. Some questions you can answer with the Viewshed task include:What areas can I see from this location? What areas can see me?Can I see the proposed wind farm?What areas can be seen from the proposed fire tower?The maximum number of input features is 1000.Viewshed has the following optional parameters:Maximum Distance: The maximum distance to calculate the viewshed.Maximum Distance Units: The units for the Maximum Distance parameter. The default is meters.DEM Resolution: The source elevation data; the default is 90m resolution SRTM. Other options include 30m, 24m, 10m, and Finest.Observer Height: The height above the surface of the observer. The default value of 1.75 meters is an average height of a person. If you are looking from an elevation location such as an observation tower or a tall building, use that height instead.Observer Height Units: The units for the Observer Height parameter. The default is meters.Surface Offset: The height above the surface of the object you are trying to see. The default value is 0. If you are trying to see buildings or wind turbines add their height here.Surface Offset Units: The units for the Surface Offset parameter. The default is meters.Generalize Viewshed Polygons: Determine if the viewshed polygons are to be generalized or not. The viewshed calculation is based upon a raster elevation model which creates a result with stair-stepped edges. To create a more pleasing appearance, and improve performance, the default behavior is to generalize the polygons. This generalization will not change the accuracy of the result for any location more than one half of the DEM's resolution.By default, this tool currently works worldwide between 60 degrees north and 56 degrees south based on the 3 arc-second (approximately 90 meter) resolution SRTM dataset. Depending upon the DEM resolution pick by the user, different data sources will be used by the tool. For 24m, tool will use global dataset WorldDEM4Ortho (excluding the counties of Azerbaijan, DR Congo and Ukraine) 0.8 arc-second (approximately 24 meter) from Airbus Defence and Space GmbH. For 30m, tool will use 1 arc-second resolution data in North America (Canada, United States, and Mexico) from the USGS National Elevation Dataset (NED), SRTM DEM-S dataset from Geoscience Australia in Australia and SRTM data between 60 degrees north and 56 degrees south in the remaining parts of the world (Africa, South America, most of Europe and continental Asia, the East Indies, New Zealand, and islands of the western Pacific). For 10m, tool will use 1/3 arc-second resolution data in the continental United States from USGS National Elevation Dataset (NED) and approximately 10 meter data covering Netherlands, Norway, Finland, Denmark, Austria, Spain, Japan Estonia, Latvia, Lithuania, Slovakia, Italy, Northern Ireland, Switzerland and Liechtenstein from various authoritative sources.To learn more, read the developer documentation for Viewshed or follow the Learn ArcGIS exercise called I Can See for Miles and Miles. To use this Geoprocessing service in ArcGIS Desktop 10.2.1 and higher, you can either connect to the Ready-to-Use Services, or create an ArcGIS Server connection. Connect to the Ready-to-Use Services by first signing in to your ArcGIS Online Organizational Account:Once you are signed in, the Ready-to-Use Services will appear in the Ready-to-Use Services folder or the Catalog window:If you would like to add a direct connection to the Elevation ArcGIS Server in ArcGIS for Desktop or ArcGIS Pro, use this URL to connect: https://elevation.arcgis.com/arcgis/services. You will also need to provide your account credentials. ArcGIS for Desktop:ArcGIS Pro:The ArcGIS help has additional information about how to do this:Learn how to make a ArcGIS Server Connection in ArcGIS Desktop. Learn more about using geoprocessing services in ArcGIS Desktop.This tool is part of a larger collection of elevation layers that you can use to perform a variety of mapping analysis tasks.

  13. r

    Paths, cycleways and trails (ArcGIS Pro layer package)

    • opendata.redland.qld.gov.au
    • devweb.dga.links.com.au
    Updated Jul 6, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Redland City Council (2023). Paths, cycleways and trails (ArcGIS Pro layer package) [Dataset]. https://opendata.redland.qld.gov.au/content/9cea397d5fdf4723ba243f2106c6aa8e
    Explore at:
    Dataset updated
    Jul 6, 2023
    Dataset authored and provided by
    Redland City Council
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Area covered
    Description

    New Group Layer

  14. National Hydrography Dataset Plus High Resolution

    • hub.arcgis.com
    Updated Mar 16, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2023). National Hydrography Dataset Plus High Resolution [Dataset]. https://hub.arcgis.com/maps/f1f45a3ba37a4f03a5f48d7454e4b654
    Explore at:
    Dataset updated
    Mar 16, 2023
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    The National Hydrography Dataset Plus High Resolution (NHDplus High Resolution) maps the lakes, ponds, streams, rivers and other surface waters of the United States. Created by the US Geological Survey, NHDPlus High Resolution provides mean annual flow and velocity estimates for rivers and streams. Additional attributes provide connections between features facilitating complicated analyses.For more information on the NHDPlus High Resolution dataset see the User’s Guide for the National Hydrography Dataset Plus (NHDPlus) High Resolution.Dataset SummaryPhenomenon Mapped: Surface waters and related features of the United States and associated territoriesGeographic Extent: The Contiguous United States, Hawaii, portions of Alaska, Puerto Rico, Guam, US Virgin Islands, Northern Marianas Islands, and American SamoaProjection: Web Mercator Auxiliary Sphere Visible Scale: Visible at all scales but layer draws best at scales larger than 1:1,000,000Source: USGSUpdate Frequency: AnnualPublication Date: July 2022This layer was symbolized in the ArcGIS Map Viewer and while the features will draw in the Classic Map Viewer the advanced symbology will not. Prior to publication, the network and non-network flowline feature classes were combined into a single flowline layer. Similarly, the Area and Waterbody feature classes were merged under a single schema.Attribute fields were added to the flowline and waterbody layers to simplify symbology and enhance the layer's pop-ups. Fields added include Pop-up Title, Pop-up Subtitle, Esri Symbology (waterbodies only), and Feature Code Description. All other attributes are from the original dataset. No data values -9999 and -9998 were converted to Null values.What can you do with this layer?Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.ArcGIS OnlineAdd this layer to a map in the map viewer. The layer or a map containing it can be used in an application. Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Apply filters. For example you can set a filter to show larger streams and rivers using the mean annual flow attribute or the stream order attribute.Change the layer’s style and symbologyAdd labels and set their propertiesCustomize the pop-upUse as an input to the ArcGIS Online analysis tools. This layer works well as a reference layer with the trace downstream and watershed tools. The buffer tool can be used to draw protective boundaries around streams and the extract data tool can be used to create copies of portions of the data.ArcGIS ProAdd this layer to a 2d or 3d map.Use as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class.Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of the ArcGIS Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.

  15. f

    Geomorphology model (ArcGIS Pro version), input datasets and legend...

    • uvaauas.figshare.com
    • data.niaid.nih.gov
    zip
    Updated Jun 2, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Matheus G.G. De Jong; Henk Pieter Sterk; Stacy Shinneman; A.C. Seijmonsbergen (2023). Geomorphology model (ArcGIS Pro version), input datasets and legend symbology files [Dataset]. http://doi.org/10.21942/uva.13693702.v20
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jun 2, 2023
    Dataset provided by
    University of Amsterdam / Amsterdam University of Applied Sciences
    Authors
    Matheus G.G. De Jong; Henk Pieter Sterk; Stacy Shinneman; A.C. Seijmonsbergen
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    For complete collection of data and models, see https://doi.org/10.21942/uva.c.5290546.Original model developed in 2016-17 in ArcGIS by Henk Pieter Sterk (www.rfase.org), with minor updates in 2021 by Stacy Shinneman and Henk Pieter Sterk. Model used to generate publication results:Hierarchical geomorphological mapping in mountainous areas Matheus G.G. De Jong, Henk Pieter Sterk, Stacy Shinneman & Arie C. Seijmonsbergen. Submitted to Journal of Maps 2020, revisions made in 2021.This model creates tiers (columns) of geomorphological features (Tier 1, Tier 2 and Tier 3) in the landscape of Vorarlberg, Austria, each with an increasing level of detail. The input dataset needed to create this 'three-tier-legend' is a geomorphological map of Vorarlberg with a Tier 3 category (e.g. 1111, for glacially eroded bedrock). The model then automatically adds Tier 1, Tier 2 and Tier 3 categories based on the Tier 3 code in the 'Geomorph' field. The model replaces the input file with an updated shapefile of the geomorphology of Vorarlberg, now including three tiers of geomorphological features. Python script files and .lyr symbology files are also provided here.

  16. d

    Contour Dataset of the Potentiometric Surface of Groundwater-Level Altitudes...

    • catalog.data.gov
    • data.usgs.gov
    • +2more
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Contour Dataset of the Potentiometric Surface of Groundwater-Level Altitudes Near the Planned Highway 270 Bypass, East of Hot Springs, Arkansas, July-August 2017 [Dataset]. https://catalog.data.gov/dataset/contour-dataset-of-the-potentiometric-surface-of-groundwater-level-altitudes-near-the-plan
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    Arkansas, Hot Springs
    Description

    This dataset contains 50-ft contours for the Hot Springs shallowest unit of the Ouachita Mountains aquifer system potentiometric-surface map. The potentiometric-surface shows altitude at which the water level would have risen in tightly-cased wells and represents synoptic conditions during the summer of 2017. Contours were constructed from 59 water-level measurements measured in selected wells (locations in the well point dataset). Major streams and creeks were selected in the study area from the USGS National Hydrography Dataset (U.S. Geological Survey, 2017), and the spring point dataset with 18 spring altitudes calculated from 10-meter digital elevation model (DEM) data (U.S. Geological Survey, 2015; U.S. Geological Survey, 2016). After collecting, processing, and plotting the data, a potentiometric surface was generated using the interpolation method Topo to Raster in ArcMap 10.5 (Esri, 2017a). This tool is specifically designed for the creation of digital elevation models and imposes constraints that ensure a connected drainage structure and a correct representation of the surface from the provided contour data (Esri, 2017a). Once the raster surface was created, 50-ft contour interval were generated using Contour (Spatial Analyst), a spatial analyst tool (available through ArcGIS 3D Analyst toolbox) that creates a line-feature class of contours (isolines) from the raster surface (Esri, 2017b). The Topo to Raster and contouring done by ArcMap 10.5 is a rapid way to interpolate data, but computer programs do not account for hydrologic connections between groundwater and surface water. For this reason, some contours were manually adjusted based on topographical influence, a comparison with the potentiometric surface of Kresse and Hays (2009), and data-point water-level altitudes to more accurately represent the potentiometric surface. Select References: Esri, 2017a, How Topo to Raster works—Help | ArcGIS Desktop, accessed December 5, 2017, at ArcGIS Pro at http://pro.arcgis.com/en/pro-app/tool-reference/3d-analyst/how-topo-to-raster-works.htm. Esri, 2017b, Contour—Help | ArcGIS Desktop, accessed December 5, 2017, at ArcGIS Pro Raster Surface toolset at http://pro.arcgis.com/en/pro-app/tool-reference/3d-analyst/contour.htm. Kresse, T.M., and Hays, P.D., 2009, Geochemistry, Comparative Analysis, and Physical and Chemical Characteristics of the Thermal Waters East of Hot Springs National Park, Arkansas, 2006-09: U.S. Geological Survey 2009–5263, 48 p., accessed November 28, 2017, at https://pubs.usgs.gov/sir/2009/5263/. U.S. Geological Survey, 2015, USGS NED 1 arc-second n35w094 1 x 1 degree ArcGrid 2015, accessed December 5, 2017, at The National Map: Elevation at https://nationalmap.gov/elevation.html. U.S. Geological Survey, 2016, USGS NED 1 arc-second n35w093 1 x 1 degree ArcGrid 2016, accessed December 5, 2017, at The National Map: Elevation at https://nationalmap.gov/elevation.html.

  17. f

    fegn2021 shapefile for ArcGISPro

    • geodata.fnai.org
    • hub.arcgis.com
    Updated Sep 30, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cossppgis (2021). fegn2021 shapefile for ArcGISPro [Dataset]. https://geodata.fnai.org/content/832b16d8f6504ea7bc80665861c0932a
    Explore at:
    Dataset updated
    Sep 30, 2021
    Dataset authored and provided by
    Cossppgis
    Area covered
    Description

    Florida Ecological Greenways Network 2021 (layer name fegn2021_polygon): This vector layer was created from the original raster grid version (fegn2021) created by the University of Florida Center for Landscape Conservation Planning to provide an ecological component to the Statewide Greenways System plan developed by the Department of Environmental Protection, Office of Greenways and Trails (OGT). The FEGN guides OGT ecological greenway conservation efforts and promotes public awareness of the need for and benefits of a statewide ecological greenways network. It is also used as the primary data layer to inform the Florida Forever and other state and regional land acquisition programs regarding the location of the most important wildlife and ecological corridors and large, intact landscapes in the state. The FEGN identifies areas of opportunity for protecting a statewide network of ecological hubs (large areas of ecological significance) and linkages designed to maintain large landscape-scale ecological functions including priority species habitat and ecosystem services throughout the state. Inclusion in the FEGN means the area is either part of a large landscape-scale “hub”, or an ecological corridor connecting two or more hubs. Hubs indicate core landscapes that are large enough to maintain populations of wide-ranging or fragmentation-sensitive species including black bear or panther and areas that are more likely to support functional ecosystem services. Highest priorities indicate the most significant hubs and corridors in relation to completing a functionally connected statewide ecological network, but all priority levels have conservation value. FEGN Priorities 1, 2, and 3 are the most important for protecting a ecologically functional connected statewide network of public and private conservation lands, and these three priority levels (P1, P2, and P3) are now called the Florida Wildlife Corridor as per the Florida Wildlife Corridor legislation passed and signed into law by the Florida Legislature and Governor and 2021, which makes protection of these wildlife and ecological hubs and corridors a high priority as part of a strategic plan for Florida’s future. To accomplish this goal, we need robust state, federal, and local conservation land protection program funding for Florida Forever, Rural and Family Lands Protection Program, Natural Resources Conservation Service easements and incentives, federal Land and Waters Conservation Fund, payments for ecosystem services, etc.For more information http://conservation.dcp.ufl.edu/fegnproject/

  18. d

    Test Resource for OGC Web Services

    • search.dataone.org
    • hydroshare.org
    • +1more
    Updated Apr 15, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jacob Wise Calhoon (2022). Test Resource for OGC Web Services [Dataset]. https://search.dataone.org/view/sha256%3A59bae29350865fc2ca6d4c4d3f5995a2a51b7b0ebb9cc8414122cf46a63846c0
    Explore at:
    Dataset updated
    Apr 15, 2022
    Dataset provided by
    Hydroshare
    Authors
    Jacob Wise Calhoon
    Time period covered
    Aug 6, 2020
    Area covered
    Description

    This resource contains the test data for the GeoServer OGC Web Services tutorials for various GIS applications including ArcGIS Pro, ArcMap, ArcGIS Story Maps, and QGIS. The contents of the data include a polygon shapefile, a polyline shapefile, a point shapefile, and a raster dataset; all of which pertain to the state of Utah, USA. The polygon shapefile is of every county in the state of Utah. The polyline is of every trail in the state of Utah. The point shapefile is the current list of GNIS place names in the state of Utah. The raster dataset covers a region in the center of the state of Utah. All datasets are projected to NAD 1983 Zone 12N.

  19. d

    Tax Parcel Fabric Data

    • catalog.data.gov
    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    • +1more
    Updated Mar 22, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lake County Illinois GIS (2025). Tax Parcel Fabric Data [Dataset]. https://catalog.data.gov/dataset/tax-parcel-fabric-data-460e8
    Explore at:
    Dataset updated
    Mar 22, 2025
    Dataset provided by
    Lake County Illinois GIS
    Description

    Download In State Plane Projection Here The 2024 Parcel Fabric Data is a copy of the Lake County Chief Assessor's Office spatial dataset, consisting of separate layers which represent the boundaries for Tax Parcels, Lots, Units, Subs, Condos, Rights of Way, and Encumbrance parcels, along with points, lines, and PLSS townships for reference, which have all been captured for the 2024 Tax Year.This data is spatial in nature and does not include extensive fields of attributes to which each layer may be associated. This data is provided for use to individuals or entities with an understanding of Esri's ArcGIS Pro (specifically the Parcel Fabric), and those with access to ArcGIS Pro, which is necessary to view or manipulate the data.Casual users can find the standalone Tax Parcel Boundary Data here and Parcel Attribute Data here. Update Frequency: This dataset is updated on a yearly basis.

  20. Digital Geologic-GIS Map of San Miguel Island, California (NPS, GRD, GRI,...

    • catalog.data.gov
    Updated Jun 4, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Digital Geologic-GIS Map of San Miguel Island, California (NPS, GRD, GRI, CHIS, SMIS digital map) adapted from a American Association of Petroleum Geologists Field Trip Guidebook map by Weaver and Doerner (1969) [Dataset]. https://catalog.data.gov/dataset/digital-geologic-gis-map-of-san-miguel-island-california-nps-grd-gri-chis-smis-digital-map
    Explore at:
    Dataset updated
    Jun 4, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    San Miguel Island, California
    Description

    The Digital Geologic-GIS Map of San Miguel Island, California is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (smis_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (smis_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (smis_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) this file (chis_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (chis_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (smis_geology_metadata_faq.pdf). Please read the chis_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: American Association of Petroleum Geologists. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (smis_geology_metadata.txt or smis_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Esri Portugal - Educação (2020). Switching to ArcGIS Pro from ArcMap [Dataset]. https://dados-edu-pt.hub.arcgis.com/datasets/switching-to-arcgis-pro-from-arcmap
Organization logo

Data from: Switching to ArcGIS Pro from ArcMap

Related Article
Explore at:
Dataset updated
Aug 14, 2020
Dataset provided by
Esrihttp://esri.com/
Authors
Esri Portugal - Educação
License

Attribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
License information was derived automatically

Description

The arrival of ArcGIS Pro has brought a challenge to ArcMap users. The new software is sufficiently different in architecture and layout that switching from the old to the new is not a simple process. In some ways, Pro is harder to learn for ArcMap users than for new GIS users, because some workflows have to be unlearned, or at least heavily modified. Current ArcMap users are pressed for time, trying to learn the new software while still completing their daily tasks, so a book that teaches Pro from the start is not an efficient method.Switching to ArcGIS Pro from ArcMap aims to quickly transition ArcMap users to ArcGIS Pro. Rather than teaching Pro from the start, as for a novice user, this book focuses on how Pro is different from ArcMap. Covering the most common and important workflows required for most GIS work, it leverages the user’s prior experience to enable a more rapid adjustment to Pro.AUDIENCEProfessional and scholarly; College/higher education; General/trade.AUTHOR BIOMaribeth H. Price, PhD, South Dakota School of Mines and Technology, has been using Esri products since 1991, teaching college GIS since 1995 and writing textbooks utilizing Esri’s software since 2001. She has extensive familiarity with both ArcMap/ArcCatalog and Pro, both as a user and in the classroom, as well as long experience writing about GIS concepts and developing software tutorials. She teaches GIS workshops, having offered more than 100 workshops to over 1,200 participants since 2000.Pub Date: Print: 2/14/2019 Digital: 1/28/2019 Format: PaperbackISBN: Print: 9781589485440 Digital: 9781589485457 Trim: 8 x 10 in.Price: Print: $49.99 USD Digital: $49.99 USD Pages: 172Table of ContentsPreface1 Contemplating the switch to ArcGIS ProBackgroundSystem requirementsLicensingCapabilities of ArcGIS ProWhen should I switch?Time to exploreObjective 1.1: Downloading the data for these exercisesObjective 1.2: Starting ArcGIS Pro, signing in, creating a project, and exploring the interfaceObjective 1.3: Accessing maps and data from ArcGIS OnlineObjective 1.4: Arranging the windows and panesObjective 1.5: Accessing the helpObjective 1.6: Importing a map document2 Unpacking the GUIBackgroundThe ribbon and tabsPanesViewsTime to exploreObjective 2.1: Getting familiar with the Contents paneObjective 2.2: Learning to work with objects and tabsObjective 2.3: Exploring the Catalog pane3 The projectBackgroundWhat is a project?Items stored in a projectPaths in projectsRenaming projectsTime to exploreObjective 3.1: Exploring different elements of a projectObjective 3.2: Accessing properties of projects, maps, and other items4 Navigating and exploring mapsBackgroundExploring maps2D and 3D navigationTime to exploreObjective 4.1: Learning to use the Map toolsObjective 4.2: Exploring 3D scenes and linking views5 Symbolizing mapsBackgroundAccessing the symbol settings for layersAccessing the labeling propertiesSymbolizing rastersTime to exploreObjective 5.1: Modifying single symbolsObjective 5.2: Creating maps from attributesObjective 5.3: Creating labelsObjective 5.4: Managing labelsObjective 5.5: Symbolizing rasters6 GeoprocessingBackgroundWhat’s differentAnalysis buttons and toolsTool licensingTime to exploreObjective 6.1: Getting familiar with the geoprocessing interfaceObjective 6.2: Performing interactive selectionsObjective 6.3: Performing selections based on attributesObjective 6.4: Performing selections based on locationObjective 6.5: Practicing geoprocessing7 TablesBackgroundGeneral table characteristicsJoining and relating tablesMaking chartsTime to exploreObjective 7.1: Managing table viewsObjective 7.2: Creating and managing properties of a chartObjective 7.3: Calculating statistics for tablesObjective 7.4: Calculating and editing in tables8 LayoutsBackgroundLayouts and map framesLayout editing proceduresImporting map documents and templatesTime to exploreObjective 8.1: Creating the maps for the layoutObjective 8.2: Setting up a layout page with map framesObjective 8.3: Setting map frame extent and scaleObjective 8.4: Formatting the map frameObjective 8.5: Creating and formatting map elementsObjective 8.6: Fine-tuning the legendObjective 8.7: Accessing and copying layouts9 Managing dataBackgroundData modelsManaging the geodatabase schemaCreating domainsManaging data from diverse sourcesProject longevityManaging shared data for work groupsTime to exploreObjective 9.1: Creating a project and exporting data to itObjective 9.2: Creating feature classesObjective 9.3: Creating and managing metadataObjective 9.4: Creating fields and domainsObjective 9.5: Modifying the table schemaObjective 9.6: Sharing data using ArcGIS Online10 EditingBackgroundBasic editing functionsCreating featuresModifying existing featuresCreating and editing annotationTime to exploreObjective 10.1: Understanding the editing tools in ArcGIS ProObjective 10.2: Creating pointsObjective 10.3: Creating linesObjective 10.4: Creating polygonsObjective 10.5: Modifying existing featuresObjective 10.6: Creating an annotation feature classObjective 10.7: Editing annotationObjective 10.8: Creating annotation features11 Moving forwardData sourcesIndex

Search
Clear search
Close search
Google apps
Main menu