92 datasets found
  1. a

    Section 1, Exercise 1: Geography Matters: Analyzing Demographics-Copy-Copy

    • hub.arcgis.com
    • africageoportal.com
    Updated Aug 20, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Africa GeoPortal (2020). Section 1, Exercise 1: Geography Matters: Analyzing Demographics-Copy-Copy [Dataset]. https://hub.arcgis.com/maps/ffd1b8a7ffbf4b758fc15dcc0a6060c3
    Explore at:
    Dataset updated
    Aug 20, 2020
    Dataset authored and provided by
    Africa GeoPortal
    Area covered
    Description

    (by Joseph Kerski)This map is for use in the "What is the spatial pattern of demographic variables around the world?" activity in Section 1 of the Going Places with Spatial Analysiscourse. The map contains population characteristics by country for 2013.These data come from the Population Reference Bureau's 2014 World Population Data Sheet.The Population Reference Bureau (PRB) informs people around the world about population, health, and the environment, empowering them to use that information to advance the well-being of current and future generations.PRB analyzes complex demographic data and research to provide the most objective, accurate, and up-to-date population information in a format that is easily understood by advocates, journalists, and decision makers alike.The 2014 year's data sheet has detailed information on 16 population, health, and environment indicators for more than 200 countries. For infant mortality, total fertility rate, and life expectancy, we have included data from 1970 and 2013 to show change over time. This year's special data column is on carbon emissions.For more information about how PRB compiles its data, see: https://www.prb.org/

  2. California Population Trends by Geography

    • data.cnra.ca.gov
    • data.ca.gov
    • +1more
    csv, website
    Updated Oct 20, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Water Resources (2025). California Population Trends by Geography [Dataset]. https://data.cnra.ca.gov/dataset/population-trends-by-geography
    Explore at:
    website, csv(315822)Available download formats
    Dataset updated
    Oct 20, 2025
    Dataset authored and provided by
    California Department of Water Resourceshttp://www.water.ca.gov/
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Area covered
    California
    Description

    This dataset provides population estimate trends from 1998 to the current year for each of California’s 58 counties, further disaggregated by Detailed Analysis Units (DAUs) - the smallest geographic units historically used by the California Department of Water Resources for water planning as part of the California Water Plan. DAUs are subdivisions of Planning Areas and often align with county boundaries, although a single DAU may span multiple counties. They have traditionally supported water demand estimates based on crop and land use types.

    The population estimates were developed using U.S. Bureau Census 2000, 2010 and 2020 data. Throughout the estimation process, intermediate results were reviewed and adjusted as needed, with professional judgment applied to smooth trends where appropriate.

    Since the California Water Plan is retiring DAUs as its planning and analysis framework, future updates to this dataset will transition away from DAU based geography. Instead, population estimates will be provided based on other geographic units, such as the 8-digit Hydrologic Units (HUC8) defined by the U.S. Geological Survey’s Watershed Boundary Dataset.

    A dashboard is available for visualizing historical population trends by county and DAU.

  3. Population (by City) 2018

    • opendata.atlantaregional.com
    Updated Mar 4, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Georgia Association of Regional Commissions (2020). Population (by City) 2018 [Dataset]. https://opendata.atlantaregional.com/maps/1a4715d0310f4400a6228de676976a87
    Explore at:
    Dataset updated
    Mar 4, 2020
    Dataset provided by
    The Georgia Association of Regional Commissions
    Authors
    Georgia Association of Regional Commissions
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This layer was developed by the Research & Analytics Division of the Atlanta Regional Commission using data from the U.S. Census Bureau.

    The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent.

    The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2014-2018). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available.

    For a deep dive into the data model including every specific metric, see the Infrastructure Manifest. The manifest details ARC-defined naming conventions, field names/descriptions and topics, summary levels; source tables; notes and so forth for all metrics.

    For further explanation of ACS estimates and margin of error, visit Census ACS website.

    Naming conventions:

    Prefixes:

    None

    Count

    p

    Percent

    r

    Rate

    m

    Median

    a

    Mean (average)

    t

    Aggregate (total)

    ch

    Change in absolute terms (value in t2 - value in t1)

    pch

    Percent change ((value in t2 - value in t1) / value in t1)

    chp

    Change in percent (percent in t2 - percent in t1)

    s

    Significance flag for change: 1 = statistically significant with a 90% Confidence Interval, 0 = not statistically significant, blank = cannot be computed

    Suffixes:

    _e18

    Estimate from 2014-18 ACS

    _m18

    Margin of Error from 2014-18 ACS

    _00_v18

    Decennial 2000 in 2018 geography boundary

    _00_18

    Change, 2000-18

    _e10_v18

    Estimate from 2006-10 ACS in 2018 geography boundary

    _m10_v18

    Margin of Error from 2006-10 ACS in 2018 geography boundary

    _e10_18

    Change, 2010-18

  4. Demographic change 2010 - 2023 (all geographies, statewide)

    • gisdata.fultoncountyga.gov
    • hub.arcgis.com
    Updated Feb 22, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Georgia Association of Regional Commissions (2025). Demographic change 2010 - 2023 (all geographies, statewide) [Dataset]. https://gisdata.fultoncountyga.gov/maps/f70f4d7defb94a20987e59061b012bbe
    Explore at:
    Dataset updated
    Feb 22, 2025
    Dataset provided by
    The Georgia Association of Regional Commissions
    Authors
    Georgia Association of Regional Commissions
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    These data were developed by the Research & Analytics Department at the Atlanta Regional Commission using data from the U.S. Census Bureau across all standard and custom geographies at statewide summary level where applicable.For a deep dive into the data model including every specific metric, see the ACS 2019-2023. The manifest details ARC-defined naming conventions, field names/descriptions and topics, summary levels; source tables; notes and so forth for all metrics. Find naming convention prefixes/suffixes, geography definitions and user notes below.Prefixes:NoneCountpPercentrRatemMedianaMean (average)tAggregate (total)chChange in absolute terms (value in t2 - value in t1)pchPercent change ((value in t2 - value in t1) / value in t1)chpChange in percent (percent in t2 - percent in t1)sSignificance flag for change: 1 = statistically significant with a 90% CI, 0 = not statistically significant, blank = cannot be computedSuffixes:_e23Estimate from 2019-23 ACS_m23Margin of Error from 2019-23 ACS_e102006-10 ACS, re-estimated to 2020 geography_m10Margin of Error from 2006-10 ACS, re-estimated to 2020 geography_e10_23Change, 2010-23 (holding constant at 2020 geography)GeographiesAAA = Area Agency on Aging (12 geographic units formed from counties providing statewide coverage)ARC21 = Atlanta Regional Commission modeling area (21 counties merged to a single geographic unit)ARWDB7 = Atlanta Regional Workforce Development Board (7 counties merged to a single geographic unit)BeltLineStatistical (buffer)BeltLineStatisticalSub (subareas)Census Tract (statewide)CFGA23 = Community Foundation for Greater Atlanta (23 counties merged to a single geographic unit)City (statewide)City of Atlanta Council Districts (City of Atlanta)City of Atlanta Neighborhood Planning Unit (City of Atlanta)City of Atlanta Neighborhood Statistical Areas (City of Atlanta)County (statewide)CCDIST = County Commission Districts (statewide where applicable)CCSUPERDIST = County Commission Superdistricts (DeKalb)Georgia House (statewide)Georgia Senate (statewide)HSSA = High School Statistical Area (11 county region)MetroWater15 = Atlanta Metropolitan Water District (15 counties merged to a single geographic unit)Regional Commissions (statewide)State of Georgia (single geographic unit)Superdistrict (ARC region)US Congress (statewide)UWGA13 = United Way of Greater Atlanta (13 counties merged to a single geographic unit)ZIP Code Tabulation Areas (statewide)The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent. The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2019-2023). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available. For further explanation of ACS estimates and margin of error, visit Census ACS website.Source: U.S. Census Bureau, Atlanta Regional CommissionDate: 2019-2023Open Data License: Creative Commons Attribution 4.0 International (CC by 4.0)Link to the data manifest: https://opendata.atlantaregional.com/documents/182e6fcf8201449086b95adf39471831/about

  5. Population 2022 (all geographies, statewide)

    • gisdata.fultoncountyga.gov
    • opendata.atlantaregional.com
    Updated Mar 2, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Georgia Association of Regional Commissions (2024). Population 2022 (all geographies, statewide) [Dataset]. https://gisdata.fultoncountyga.gov/maps/602b48678ffc48e889161507c1bb674a
    Explore at:
    Dataset updated
    Mar 2, 2024
    Dataset provided by
    The Georgia Association of Regional Commissions
    Authors
    Georgia Association of Regional Commissions
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    These data were developed by the Research & Analytics Group at the Atlanta Regional Commission using data from the U.S. Census Bureau across all standard and custom geographies at statewide summary level where applicable.For a deep dive into the data model including every specific metric, see the ACS 2018-2022 Data Manifest. The manifest details ARC-defined naming conventions, field names/descriptions and topics, summary levels; source tables; notes and so forth for all metrics. Find naming convention prefixes/suffixes, geography definitions and user notes below.Prefixes:NoneCountpPercentrRatemMedianaMean (average)tAggregate (total)chChange in absolute terms (value in t2 - value in t1)pchPercent change ((value in t2 - value in t1) / value in t1)chpChange in percent (percent in t2 - percent in t1)sSignificance flag for change: 1 = statistically significant with a 90% CI, 0 = not statistically significant, blank = cannot be computedSuffixes:_e22Estimate from 2018-22 ACS_m22Margin of Error from 2018-22 ACS_e102006-10 ACS, re-estimated to 2020 geography_m10Margin of Error from 2006-10 ACS, re-estimated to 2020 geography_e10_22Change, 2010-22 (holding constant at 2020 geography)GeographiesAAA = Area Agency on Aging (12 geographic units formed from counties providing statewide coverage)ARC21 = Atlanta Regional Commission modeling area (21 counties merged to a single geographic unit)ARWDB7 = Atlanta Regional Workforce Development Board (7 counties merged to a single geographic unit)BeltLineStatistical (buffer)BeltLineStatisticalSub (subareas)Census Tract (statewide)CFGA23 = Community Foundation for Greater Atlanta (23 counties merged to a single geographic unit)City (statewide)City of Atlanta Council Districts (City of Atlanta)City of Atlanta Neighborhood Planning Unit (City of Atlanta)City of Atlanta Neighborhood Statistical Areas (City of Atlanta)County (statewide)Georgia House (statewide)Georgia Senate (statewide)HSSA = High School Statistical Area (11 county region)MetroWater15 = Atlanta Metropolitan Water District (15 counties merged to a single geographic unit)Regional Commissions (statewide)State of Georgia (single geographic unit)Superdistrict (ARC region)US Congress (statewide)UWGA13 = United Way of Greater Atlanta (13 counties merged to a single geographic unit)ZIP Code Tabulation Areas (statewide)The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent. The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2018-2022). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available. For further explanation of ACS estimates and margin of error, visit Census ACS website.Source: U.S. Census Bureau, Atlanta Regional CommissionDate: 2018-2022Data License: Creative Commons Attribution 4.0 International (CC by 4.0)Link to the data manifest: https://opendata.atlantaregional.com/documents/3b86ee614e614199ba66a3ff1ebfe3b5/about

  6. World Cities, Countries & Languages Dataset

    • kaggle.com
    zip
    Updated Sep 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Adil Shamim (2025). World Cities, Countries & Languages Dataset [Dataset]. https://www.kaggle.com/datasets/adilshamim8/world-cities-countries-and-languages-dataset/versions/3
    Explore at:
    zip(82890 bytes)Available download formats
    Dataset updated
    Sep 10, 2025
    Authors
    Adil Shamim
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset provides a structured view of the world’s cities, countries, and languages, derived from the well-known World Database (SQL → CSV). It is designed to be beginner-friendly yet powerful for researchers, analysts, and data scientists who want to explore global demographics, population distribution, and linguistic diversity.

    The dataset is split into three clean, relational tables:

    🔹 city.csv

    • Contains information about the world’s cities.
    • Key columns:

      • ID → Unique city identifier
      • Name → City name
      • CountryCode → Links each city to its country
      • District → Administrative division
      • Population → Population of the city

    🔹 country.csv

    • Describes countries and their attributes.
    • Key columns:

      • Code → Unique country code
      • Name → Country name
      • Continent, Region → Geographic classification
      • SurfaceArea → Area in square kilometers
      • Population → Country’s population
      • GovernmentForm, HeadOfState → Political details

    🔹 countrylanguage.csv

    • Captures languages spoken across countries.
    • Key columns:

      • CountryCode → Links to country.csv
      • Language → Language name
      • IsOfficial → Whether the language is official
      • Percentage → Percentage of speakers in the population

    Why Use This Dataset?

    • Study urbanization and population trends across the globe.
    • Explore language diversity and compare official vs. non-official usage.
    • Perform SQL-style joins across the three tables for deeper analysis.
    • Great for data visualization projects, machine learning experiments, or teaching relational databases.

    Possible Use Cases

    • 📊 Build dashboards to visualize population growth by continent or country.
    • 🌍 Rank cities by size, density, or region.
    • 🗣️ Analyze global language distribution and multilingual countries.
    • 🤖 Use as a practice dataset for SQL queries, joins, and normalization in machine learning pipelines.

    This dataset offers a balanced mix of geography, demography, and linguistics — perfect for analysts, students, and Kaggle competitors alike.

  7. Population (by Westside Future Fund) 2018

    • fultoncountyopendata-fulcogis.opendata.arcgis.com
    • gisdata.fultoncountyga.gov
    Updated Mar 4, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Georgia Association of Regional Commissions (2020). Population (by Westside Future Fund) 2018 [Dataset]. https://fultoncountyopendata-fulcogis.opendata.arcgis.com/datasets/GARC::population-by-westside-future-fund-2018
    Explore at:
    Dataset updated
    Mar 4, 2020
    Dataset provided by
    The Georgia Association of Regional Commissions
    Authors
    Georgia Association of Regional Commissions
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This layer was developed by the Research & Analytics Division of the Atlanta Regional Commission using data from the U.S. Census Bureau.

    The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent.

    The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2014-2018). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available.

    For a deep dive into the data model including every specific metric, see the Infrastructure Manifest. The manifest details ARC-defined naming conventions, field names/descriptions and topics, summary levels; source tables; notes and so forth for all metrics.

    For further explanation of ACS estimates and margin of error, visit Census ACS website.

    Naming conventions:

    Prefixes:

    None

    Count

    p

    Percent

    r

    Rate

    m

    Median

    a

    Mean (average)

    t

    Aggregate (total)

    ch

    Change in absolute terms (value in t2 - value in t1)

    pch

    Percent change ((value in t2 - value in t1) / value in t1)

    chp

    Change in percent (percent in t2 - percent in t1)

    s

    Significance flag for change: 1 = statistically significant with a 90% Confidence Interval, 0 = not statistically significant, blank = cannot be computed

    Suffixes:

    _e18

    Estimate from 2014-18 ACS

    _m18

    Margin of Error from 2014-18 ACS

    _00_v18

    Decennial 2000 in 2018 geography boundary

    _00_18

    Change, 2000-18

    _e10_v18

    Estimate from 2006-10 ACS in 2018 geography boundary

    _m10_v18

    Margin of Error from 2006-10 ACS in 2018 geography boundary

    _e10_18

    Change, 2010-18

  8. w

    Dataset of books called A prologue to population geography

    • workwithdata.com
    Updated Apr 17, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Work With Data (2025). Dataset of books called A prologue to population geography [Dataset]. https://www.workwithdata.com/datasets/books?f=1&fcol0=book&fop0=%3D&fval0=A+prologue+to+population+geography
    Explore at:
    Dataset updated
    Apr 17, 2025
    Dataset authored and provided by
    Work With Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset is about books. It has 2 rows and is filtered where the book is A prologue to population geography. It features 7 columns including author, publication date, language, and book publisher.

  9. ACS 2020 Population

    • hub.arcgis.com
    • opendata.atlantaregional.com
    Updated Apr 21, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Georgia Association of Regional Commissions (2022). ACS 2020 Population [Dataset]. https://hub.arcgis.com/maps/64a6d9a780d845b19f2c4644a18731b6
    Explore at:
    Dataset updated
    Apr 21, 2022
    Dataset provided by
    The Georgia Association of Regional Commissions
    Authors
    Georgia Association of Regional Commissions
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This dataset was developed by the Research & Analytics Group at the Atlanta Regional Commission using data from the U.S. Census Bureau across all standard and custom geographies at statewide summary level where applicable.

    For a deep dive into the data model including every specific metric, see the ACS 2016-2020 Data Manifest. The manifest details ARC-defined naming conventions, field names/descriptions and topics, summary levels; source tables; notes and so forth for all metrics.

    Prefixes:

    None

    Count

    p

    Percent

    r

    Rate

    m

    Median

    a

    Mean (average)

    t

    Aggregate (total)

    ch

    Change in absolute terms (value in t2 - value in t1)

    pch

    Percent change ((value in t2 - value in t1) / value in t1)

    chp

    Change in percent (percent in t2 - percent in t1)

    s

    Significance flag for change: 1 = statistically significant with a 90% CI, 0 = not statistically significant, blank = cannot be computed

    Suffixes:

    _e20

    Estimate from 2016-20 ACS

    _m20

    Margin of Error from 2016-20 ACS

    _e10

    2006-10 ACS, re-estimated to 2020 geography

    _m10

    Margin of Error from 2006-10 ACS, re-estimated to 2020 geography

    _e10_20

    Change, 2010-20 (holding constant at 2020 geography)

    Geographies

    AAA = Area Agency on Aging (12 geographic units formed from counties providing statewide coverage)

    ARWDB7 = Atlanta Regional Workforce Development Board (7 counties merged to a single geographic unit)

    Census Tracts (statewide)

    CFGA23 = Community Foundation for Greater Atlanta (23 counties merged to a single geographic unit)

    City (statewide)

    City of Atlanta Council Districts (City of Atlanta)

    City of Atlanta Neighborhood Planning Unit (City of Atlanta)

    City of Atlanta Neighborhood Planning Unit STV (subarea of City of Atlanta)

    City of Atlanta Neighborhood Statistical Areas (City of Atlanta)

    County (statewide)

    Georgia House (statewide)

    Georgia Senate (statewide)

    MetroWater15 = Atlanta Metropolitan Water District (15 counties merged to a single geographic unit)

    Regional Commissions (statewide)

    State of Georgia (statewide)

    Superdistrict (ARC region)

    US Congress (statewide)

    UWGA13 = United Way of Greater Atlanta (13 counties merged to a single geographic unit)

    WFF = Westside Future Fund (subarea of City of Atlanta)

    ZIP Code Tabulation Areas (statewide)

    The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent.

    The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2016-2020). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available.

    For further explanation of ACS estimates and margin of error, visit Census ACS website.

    Source: U.S. Census Bureau, Atlanta Regional Commission Date: 2016-2020 Data License: Creative Commons Attribution 4.0 International (CC by 4.0)

    Link to the manifest: https://opendata.atlantaregional.com/documents/GARC::acs-2020-data-manifest/about

  10. Demographic by Race 2021 (all geographies, statewide)

    • gisdata.fultoncountyga.gov
    • opendata.atlantaregional.com
    • +1more
    Updated Mar 10, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Georgia Association of Regional Commissions (2023). Demographic by Race 2021 (all geographies, statewide) [Dataset]. https://gisdata.fultoncountyga.gov/maps/b1651445db7a419794f1dc107968d885
    Explore at:
    Dataset updated
    Mar 10, 2023
    Dataset provided by
    The Georgia Association of Regional Commissions
    Authors
    Georgia Association of Regional Commissions
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This dataset was developed by the Research & Analytics Group at the Atlanta Regional Commission using data from the U.S. Census Bureau across all standard and custom geographies at statewide summary level where applicable. For a deep dive into the data model including every specific metric, see the ACS 2017-2021 Data Manifest. The manifest details ARC-defined naming conventions, field names/descriptions and topics, summary levels; source tables; notes and so forth for all metrics. Find naming convention prefixes/suffixes, geography definitions and user notes below.Prefixes:NoneCountpPercentrRatemMedianaMean (average)tAggregate (total)chChange in absolute terms (value in t2 - value in t1)pchPercent change ((value in t2 - value in t1) / value in t1)chpChange in percent (percent in t2 - percent in t1)sSignificance flag for change: 1 = statistically significant with a 90% CI, 0 = not statistically significant, blank = cannot be computedSuffixes:_e21Estimate from 2017-21 ACS_m21Margin of Error from 2017-21 ACS_e102006-10 ACS, re-estimated to 2020 geography_m10Margin of Error from 2006-10 ACS, re-estimated to 2020 geography_e10_21Change, 2010-21 (holding constant at 2020 geography)GeographiesAAA = Area Agency on Aging (12 geographic units formed from counties providing statewide coverage)ARC21 = Atlanta Regional Commission modeling area (21 counties merged to a single geographic unit)ARWDB7 = Atlanta Regional Workforce Development Board (7 counties merged to a single geographic unit)BeltLine (buffer)BeltLine Study (subareas)Census Tract (statewide)CFGA23 = Community Foundation for Greater Atlanta (23 counties merged to a single geographic unit)City (statewide)City of Atlanta Council Districts (City of Atlanta)City of Atlanta Neighborhood Planning Unit (City of Atlanta)City of Atlanta Neighborhood Planning Unit STV (3 NPUs merged to a single geographic unit within City of Atlanta)City of Atlanta Neighborhood Statistical Areas (City of Atlanta)City of Atlanta Neighborhood Statistical Areas E02E06 (2 NSAs merged to single geographic unit within City of Atlanta)County (statewide)Georgia House (statewide)Georgia Senate (statewide)MetroWater15 = Atlanta Metropolitan Water District (15 counties merged to a single geographic unit)Regional Commissions (statewide)SPARCC = Strong, Prosperous And Resilient Communities ChallengeState of Georgia (single geographic unit)Superdistrict (ARC region)US Congress (statewide)UWGA13 = United Way of Greater Atlanta (13 counties merged to a single geographic unit)WFF = Westside Future Fund (subarea of City of Atlanta)ZIP Code Tabulation Areas (statewide)The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent. The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2017-2021). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available. For further explanation of ACS estimates and margin of error, visit Census ACS website.Source: U.S. Census Bureau, Atlanta Regional CommissionDate: 2017-2021Data License: Creative Commons Attribution 4.0 International (CC by 4.0)Link to the data manifest: https://garc.maps.arcgis.com/sharing/rest/content/items/34b9adfdcc294788ba9c70bf433bd4c1/data

  11. a

    Demographic by Race (by Zip Code) 2018

    • hub.arcgis.com
    • opendata.atlantaregional.com
    Updated Mar 4, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Georgia Association of Regional Commissions (2020). Demographic by Race (by Zip Code) 2018 [Dataset]. https://hub.arcgis.com/datasets/d0c4600c15f54351a20f43ff527ad553
    Explore at:
    Dataset updated
    Mar 4, 2020
    Dataset authored and provided by
    Georgia Association of Regional Commissions
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This layer was developed by the Research & Analytics Division of the Atlanta Regional Commission using data from the U.S. Census Bureau.

    The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent.

    The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2014-2018). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available.

    For a deep dive into the data model including every specific metric, see the Infrastructure Manifest. The manifest details ARC-defined naming conventions, field names/descriptions and topics, summary levels; source tables; notes and so forth for all metrics.

    For further explanation of ACS estimates and margin of error, visit Census ACS website.

    Naming conventions:

    Prefixes:

    None

    Count

    p

    Percent

    r

    Rate

    m

    Median

    a

    Mean (average)

    t

    Aggregate (total)

    ch

    Change in absolute terms (value in t2 - value in t1)

    pch

    Percent change ((value in t2 - value in t1) / value in t1)

    chp

    Change in percent (percent in t2 - percent in t1)

    s

    Significance flag for change: 1 = statistically significant with a 90% Confidence Interval, 0 = not statistically significant, blank = cannot be computed

    Suffixes:

    _e18

    Estimate from 2014-18 ACS

    _m18

    Margin of Error from 2014-18 ACS

    _00_v18

    Decennial 2000 in 2018 geography boundary

    _00_18

    Change, 2000-18

    _e10_v18

    Estimate from 2006-10 ACS in 2018 geography boundary

    _m10_v18

    Margin of Error from 2006-10 ACS in 2018 geography boundary

    _e10_18

    Change, 2010-18

  12. n

    Human Life-Table Database

    • neuinfo.org
    • dknet.org
    • +2more
    Updated Oct 11, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Human Life-Table Database [Dataset]. http://identifiers.org/RRID:SCR_006248
    Explore at:
    Dataset updated
    Oct 11, 2024
    Description

    A collection of population life tables covering a multitude of countries and many years. Most of the HLD life tables are life tables for national populations, which have been officially published by national statistical offices. Some of the HLD life tables refer to certain regional or ethnic sub-populations within countries. Parts of the HLD life tables are non-official life tables produced by researchers. Life tables describe the extent to which a generation of people (i.e. life table cohort) dies off with age. Life tables are the most ancient and important tool in demography. They are widely used for descriptive and analytical purposes in demography, public health, epidemiology, population geography, biology and many other branches of science. HLD includes the following types of data: * complete life tables in text format; * abridged life tables in text format; * references to statistical publications and other data sources; * scanned copies of the original life tables as they were published. Three scientific institutions are jointly developing the HLD: the Max Planck Institute for Demographic Research (MPIDR) in Rostock, Germany, the Department of Demography at the University of California at Berkeley, USA and the Institut national d''��tudes d��mographiques (INED) in Paris, France. The MPIDR is responsible for maintaining the database.

  13. ACS2020 Demographic Population ZCTA

    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    • opendata.atlantaregional.com
    • +1more
    Updated Apr 21, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Georgia Association of Regional Commissions (2022). ACS2020 Demographic Population ZCTA [Dataset]. https://arc-gis-hub-home-arcgishub.hub.arcgis.com/datasets/GARC::acs-2020-population?layer=0
    Explore at:
    Dataset updated
    Apr 21, 2022
    Dataset provided by
    The Georgia Association of Regional Commissions
    Authors
    Georgia Association of Regional Commissions
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This dataset was developed by the Research & Analytics Group at the Atlanta Regional Commission using data from the U.S. Census Bureau across all standard and custom geographies at statewide summary level where applicable.

    For a deep dive into the data model including every specific metric, see the ACS 2016-2020 Data Manifest. The manifest details ARC-defined naming conventions, field names/descriptions and topics, summary levels; source tables; notes and so forth for all metrics.

    Prefixes:

    None

    Count

    p

    Percent

    r

    Rate

    m

    Median

    a

    Mean (average)

    t

    Aggregate (total)

    ch

    Change in absolute terms (value in t2 - value in t1)

    pch

    Percent change ((value in t2 - value in t1) / value in t1)

    chp

    Change in percent (percent in t2 - percent in t1)

    s

    Significance flag for change: 1 = statistically significant with a 90% CI, 0 = not statistically significant, blank = cannot be computed

    Suffixes:

    _e20

    Estimate from 2016-20 ACS

    _m20

    Margin of Error from 2016-20 ACS

    _e10

    2006-10 ACS, re-estimated to 2020 geography

    _m10

    Margin of Error from 2006-10 ACS, re-estimated to 2020 geography

    _e10_20

    Change, 2010-20 (holding constant at 2020 geography)

    Geographies

    AAA = Area Agency on Aging (12 geographic units formed from counties providing statewide coverage)

    ARWDB7 = Atlanta Regional Workforce Development Board (7 counties merged to a single geographic unit)

    Census Tracts (statewide)

    CFGA23 = Community Foundation for Greater Atlanta (23 counties merged to a single geographic unit)

    City (statewide)

    City of Atlanta Council Districts (City of Atlanta)

    City of Atlanta Neighborhood Planning Unit (City of Atlanta)

    City of Atlanta Neighborhood Planning Unit STV (subarea of City of Atlanta)

    City of Atlanta Neighborhood Statistical Areas (City of Atlanta)

    County (statewide)

    Georgia House (statewide)

    Georgia Senate (statewide)

    MetroWater15 = Atlanta Metropolitan Water District (15 counties merged to a single geographic unit)

    Regional Commissions (statewide)

    State of Georgia (statewide)

    Superdistrict (ARC region)

    US Congress (statewide)

    UWGA13 = United Way of Greater Atlanta (13 counties merged to a single geographic unit)

    WFF = Westside Future Fund (subarea of City of Atlanta)

    ZIP Code Tabulation Areas (statewide)

    The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent.

    The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2016-2020). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available.

    For further explanation of ACS estimates and margin of error, visit Census ACS website.

    Source: U.S. Census Bureau, Atlanta Regional Commission Date: 2016-2020 Data License: Creative Commons Attribution 4.0 International (CC by 4.0)

    Link to the manifest: https://opendata.atlantaregional.com/documents/GARC::acs-2020-data-manifest/about

  14. H

    The Geography of Money and Politics in the U.S.: Population Density, Social...

    • dataverse.harvard.edu
    • search.dataone.org
    Updated Jan 8, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ryan Kennedy (2019). The Geography of Money and Politics in the U.S.: Population Density, Social Networks and Political Contributions [Dataset]. http://doi.org/10.7910/DVN/XGUAZV
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jan 8, 2019
    Dataset provided by
    Harvard Dataverse
    Authors
    Ryan Kennedy
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    United States
    Description

    We examine the social antecedents for contributing to campaigns, with a particular focus on the role of population density and social networking opportunities. Using 10 years of US campaign contribution data from the Federal Election Commission (FEC) and a national survey of party leaders, we find that recruiting contributors is easier in a densely populated region, where the daily opportunity of individuals being exposed to the same information via their social networks is high. Furthermore, the effect of population density is heterogeneous with respect to mobility: if a region has substantial commuting outflow, the chance of being mobilized from the place of residence decreases, but the chance of mobilization in their place of work increases. This analysis also reveals differences between political parties. Democrats are more dependent on social networking in population dense areas. This difference in the importance of social networking opportunities present in geographical space helps explain macro-level patterns in party fundraising.

  15. ACS2021 Demographic Population ARC21

    • gisdata.fultoncountyga.gov
    Updated Mar 9, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Georgia Association of Regional Commissions (2023). ACS2021 Demographic Population ARC21 [Dataset]. https://gisdata.fultoncountyga.gov/maps/GARC::acs2021-demographic-population-arc21
    Explore at:
    Dataset updated
    Mar 9, 2023
    Dataset provided by
    The Georgia Association of Regional Commissions
    Authors
    Georgia Association of Regional Commissions
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This dataset was developed by the Research & Analytics Group at the Atlanta Regional Commission using data from the U.S. Census Bureau across all standard and custom geographies at statewide summary level where applicable. For a deep dive into the data model including every specific metric, see the ACS 2017-2021 Data Manifest. The manifest details ARC-defined naming conventions, field names/descriptions and topics, summary levels; source tables; notes and so forth for all metrics. Find naming convention prefixes/suffixes, geography definitions and user notes below.Prefixes:NoneCountpPercentrRatemMedianaMean (average)tAggregate (total)chChange in absolute terms (value in t2 - value in t1)pchPercent change ((value in t2 - value in t1) / value in t1)chpChange in percent (percent in t2 - percent in t1)sSignificance flag for change: 1 = statistically significant with a 90% CI, 0 = not statistically significant, blank = cannot be computedSuffixes:_e21Estimate from 2017-21 ACS_m21Margin of Error from 2017-21 ACS_e102006-10 ACS, re-estimated to 2020 geography_m10Margin of Error from 2006-10 ACS, re-estimated to 2020 geography_e10_21Change, 2010-21 (holding constant at 2020 geography)GeographiesAAA = Area Agency on Aging (12 geographic units formed from counties providing statewide coverage)ARC21 = Atlanta Regional Commission modeling area (21 counties merged to a single geographic unit)ARWDB7 = Atlanta Regional Workforce Development Board (7 counties merged to a single geographic unit)BeltLine (buffer)BeltLine Study (subareas)Census Tract (statewide)CFGA23 = Community Foundation for Greater Atlanta (23 counties merged to a single geographic unit)City (statewide)City of Atlanta Council Districts (City of Atlanta)City of Atlanta Neighborhood Planning Unit (City of Atlanta)City of Atlanta Neighborhood Planning Unit STV (3 NPUs merged to a single geographic unit within City of Atlanta)City of Atlanta Neighborhood Statistical Areas (City of Atlanta)City of Atlanta Neighborhood Statistical Areas E02E06 (2 NSAs merged to single geographic unit within City of Atlanta)County (statewide)Georgia House (statewide)Georgia Senate (statewide)MetroWater15 = Atlanta Metropolitan Water District (15 counties merged to a single geographic unit)Regional Commissions (statewide)SPARCC = Strong, Prosperous And Resilient Communities ChallengeState of Georgia (single geographic unit)Superdistrict (ARC region)US Congress (statewide)UWGA13 = United Way of Greater Atlanta (13 counties merged to a single geographic unit)WFF = Westside Future Fund (subarea of City of Atlanta)ZIP Code Tabulation Areas (statewide)The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent. The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2017-2021). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available. For further explanation of ACS estimates and margin of error, visit Census ACS website.Source: U.S. Census Bureau, Atlanta Regional CommissionDate: 2017-2021Data License: Creative Commons Attribution 4.0 International (CC by 4.0)Link to the data manifest: https://garc.maps.arcgis.com/sharing/rest/content/items/34b9adfdcc294788ba9c70bf433bd4c1/data

  16. Z

    Money and Politics

    • data.niaid.nih.gov
    Updated Jan 21, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yu-Ru Lin (2020). Money and Politics [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_834387
    Explore at:
    Dataset updated
    Jan 21, 2020
    Authors
    Yu-Ru Lin
    Description

    The data sets released here has been used in our study on "The Geography of Money and Politics."

    In this study, we examined the social antecedents for contributing to campaigns, with a particular focus on the role of population density and social networking opportunities. Using ten years of US campaign contribution data from the Federal Election Commission (FEC) and a national survey of party leaders, we reported interesting findings regarding the interplay among density and mobility (operationalized by commuting flows). This analysis also reveals differences between political parties. Democrats are more dependent on social networking in dense population areas. This difference in the importance of social networking opportunities present in geographical space helps explain macro-level patterns in party fundraising.

    Our study was based on a collection of data sets, including: 1) FEC contribution, 2) US census, 3) US presidential vote share, 4) earning, and 5) commuting.

    These data were used to create the final analysis dataset consisting of variables in the models described in our R&P paper.

    The MATLAB code can be used to reproduce the results w.r.t. all models specified in the paper.

    More details can be found in the enclosed README files.

    Publication

    If you make use of this data set, please cite:

    Lin, Y.-R., Kennedy, R., Lazer, D. (2017). The Geography of Money and Politics: Population Density, Social Networking and Political Contributions. Research & Politics, 4(4) (doi: 10.1177/2053168017742015)

  17. ACS2023 Demographic Population RC

    • gisdata.fultoncountyga.gov
    • opendata.atlantaregional.com
    • +1more
    Updated Feb 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Georgia Association of Regional Commissions (2025). ACS2023 Demographic Population RC [Dataset]. https://gisdata.fultoncountyga.gov/datasets/GARC::acs2023-demographic-population-rc
    Explore at:
    Dataset updated
    Feb 21, 2025
    Dataset provided by
    The Georgia Association of Regional Commissions
    Authors
    Georgia Association of Regional Commissions
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    These data were developed by the Research & Analytics Department at the Atlanta Regional Commission using data from the U.S. Census Bureau across all standard and custom geographies at statewide summary level where applicable.For a deep dive into the data model including every specific metric, see the ACS 2019-2023. The manifest details ARC-defined naming conventions, field names/descriptions and topics, summary levels; source tables; notes and so forth for all metrics. Find naming convention prefixes/suffixes, geography definitions and user notes below.Prefixes:NoneCountpPercentrRatemMedianaMean (average)tAggregate (total)chChange in absolute terms (value in t2 - value in t1)pchPercent change ((value in t2 - value in t1) / value in t1)chpChange in percent (percent in t2 - percent in t1)sSignificance flag for change: 1 = statistically significant with a 90% CI, 0 = not statistically significant, blank = cannot be computedSuffixes:_e23Estimate from 2019-23 ACS_m23Margin of Error from 2019-23 ACS_e102006-10 ACS, re-estimated to 2020 geography_m10Margin of Error from 2006-10 ACS, re-estimated to 2020 geography_e10_23Change, 2010-23 (holding constant at 2020 geography)GeographiesAAA = Area Agency on Aging (12 geographic units formed from counties providing statewide coverage)ARC21 = Atlanta Regional Commission modeling area (21 counties merged to a single geographic unit)ARWDB7 = Atlanta Regional Workforce Development Board (7 counties merged to a single geographic unit)BeltLineStatistical (buffer)BeltLineStatisticalSub (subareas)Census Tract (statewide)CFGA23 = Community Foundation for Greater Atlanta (23 counties merged to a single geographic unit)City (statewide)City of Atlanta Council Districts (City of Atlanta)City of Atlanta Neighborhood Planning Unit (City of Atlanta)City of Atlanta Neighborhood Statistical Areas (City of Atlanta)County (statewide)CCDIST = County Commission Districts (statewide where applicable)CCSUPERDIST = County Commission Superdistricts (DeKalb)Georgia House (statewide)Georgia Senate (statewide)HSSA = High School Statistical Area (11 county region)MetroWater15 = Atlanta Metropolitan Water District (15 counties merged to a single geographic unit)Regional Commissions (statewide)State of Georgia (single geographic unit)Superdistrict (ARC region)US Congress (statewide)UWGA13 = United Way of Greater Atlanta (13 counties merged to a single geographic unit)ZIP Code Tabulation Areas (statewide)The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent. The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2019-2023). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available. For further explanation of ACS estimates and margin of error, visit Census ACS website.Source: U.S. Census Bureau, Atlanta Regional CommissionDate: 2019-2023Open Data License: Creative Commons Attribution 4.0 International (CC by 4.0)Link to the data manifest: https://opendata.atlantaregional.com/documents/182e6fcf8201449086b95adf39471831/about

  18. d

    Health regions: boundaries and correspondence with census geography, 2011...

    • search.dataone.org
    • borealisdata.ca
    • +1more
    Updated Feb 22, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statistics Canada (2024). Health regions: boundaries and correspondence with census geography, 2011 [Canada] [Excel files, digital mapping files] [Dataset]. http://doi.org/10.5683/SP3/WARN5P
    Explore at:
    Dataset updated
    Feb 22, 2024
    Dataset provided by
    Borealis
    Authors
    Statistics Canada
    Area covered
    Canada
    Description

    This issue describes in detail the health region limits as of October 2011 and their correspondence with the 2006 and 2001 Census geography. Health regions are defined by the provinces and represent administrative areas or regions of interest to health authorities. This product contains correspondence files (linking health regions to census geographic codes) and digital boundary files. User documentation provides an overview of health regions, sources, methods, limitations and product description (file format and layout). In addition to the geographic files, this product also includes 2006 Census data (basic profile) for health regions. For current Health Regions data, refer to Statistics Canada.

  19. u

    Data from: Populations Past Data: Demographic and Socio-economic Data for...

    • datacatalogue.ukdataservice.ac.uk
    Updated Mar 17, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Reid, A, University of Cambridge; Jaadla, H, University of Cambridge; Garrett, E, University of Edinburgh; Schurer, K, University of Cambridge (2025). Populations Past Data: Demographic and Socio-economic Data for Registration Sub-districts of England and Wales, 1851-1911, and Registration Districts of Scotland, 1851-1901 [Dataset]. http://doi.org/10.5255/UKDA-SN-857758
    Explore at:
    Dataset updated
    Mar 17, 2025
    Authors
    Reid, A, University of Cambridge; Jaadla, H, University of Cambridge; Garrett, E, University of Edinburgh; Schurer, K, University of Cambridge
    Time period covered
    Jan 1, 1851 - Jan 1, 1911
    Area covered
    England, Scotland, Wales, United Kingdom
    Description

    This dataset contains a variety of demographic measures (related to fertility, marriage, mortality and migration), plus a range of socio-economic indicators (related to households, age structure, and social class) for the 2000+ Registration Sub Districts (RSDs) in England and Wales for each census year between 1851 and 1911, and for the 600+ Registration Districts of Scotland 1851-1901. The measures have mainly been derived from the computerised individual level census enumerators' books (and household schedules for 1911) enhanced under the I-CeM project. I-CeM does not currently include data for England and Wales 1871, although the project has been able to access a version of the data for that year it does not contain information necessary to calculate many of the variables presented here. Scotland 1911 is also not available. Users should therefore beware that 1871 does not contain data for many of the variables. Additional data has been derived from the tables summarising numbers of births and deaths by year and areas, which were published by the Registrar General of England and Wales in his quarterly, annual and decennial reports of births, deaths and marriages. Data from the decennial reports was obtained from Woods (SN 3552) and we transcribed data from the quarterly and annual reports ourselves. Counts of births and deaths for Scottish Registration Districts were obtained from the Digitising Scotland project at the University of Edinburgh. The dataset builds on SN 8613 and SN 853547 which provide data for a more limited set of variables and for England and Wales only (the same dataset also has two UKDS SN numbers as it was re-routed by UKDS during the deposit process).

    This project will present the first historic population geography of Great Britain during the late nineteenth century. This was a period of unprecedented demographic change, when both mortality and fertility started the dramatic secular declines of the first demographic transition. National trends are well established: mortality decline started in childhood and early adulthood, with infant mortality lagging behind, particularly in urban-industrial areas. The fall in fertility was led by the middle classes but quickly spread throughout society. Urban growth was fuelled by movement from the countryside to the city, but there was also considerable migration overseas, particularly from Scotland, although to some extent outmigration was offset by immigration. There was local and regional variation in these patterns, and a contrast between the demographic experiences of Scotland and of England and Wales. Marriage was later in Scotland but fertility within marriage higher, and the improvement in Scottish mortality was slower than that south of the border. However, while there has been research on local and regional patterns within each country, these have mainly been pursued separately, and it is therefore unclear whether there were real national differences or whether there were local demographic continuities across borders, and if so whether they followed economic, occupational, cultural or even linguistic lines. Understanding population processes involves a holistic appreciation of the interaction between the basic demographic components of fertility, mortality, nuptiality and migration, and how they come together, interacting with economic and cultural processes, to create a specific demographic system via the spread of people and ideas. This project is the first to consider a historical population geography of the whole of Great Britain across the first demographic transition, drawing together measures of nuptiality, fertility, mortality and migration for small geographic areas and unpacking how they interacted to produce the more readily available broad-brush national patterns for Scotland and for England and Wales.

    We will build on our immensely successful project on the fertility of Victorian England and Wales, which used complete count census data for England and Wales to calculate more detailed fertility measures than ever previously possible for some 2000 small geographic areas and 8 social groups, allowing the investigation of intra-urban as well as urban-rural differences in fertility. The new measures allowed us to examine age patterns of fertility across the two countries for the first time. We were also able to calculate contextual variables from the census data which allowed us to undertake spatial analysis of the influences on fertility over time. As well as academic papers, our previous project presented summary data at a fine spatial resolution in an interactive online atlas, populationspast.org, a major new resource which is already being widely used as a teaching tool in both schools and universities.

    In this new project we will calculate comparable measures of fertility and contextual variables using the full count census data for Scotland, 1851 to 1901 inclusive, to complement those for England and Wales. However, our new project will go considerably further and will integrate place-specific measures of mortality and migration, for both Scotland and for England and Wales. We will provide new age-specific data on fertility, mortality and migration for the whole of Great Britain using existing datasets, at a finer geographic level than has previously been possible, and will analyse these spatially and temporally to gain a panoramic understanding of the forces driving this crucial period of demographic and social change. We will expand populationspast.org to bring our new findings to a wide academic and non-academic audience and will provide the data for others to explore interactively.

  20. a

    ABS ASGS Ed3 2021 LGA Population projections 2022-2032 wide

    • digital.atlas.gov.au
    Updated Aug 26, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Digital Atlas of Australia (2025). ABS ASGS Ed3 2021 LGA Population projections 2022-2032 wide [Dataset]. https://digital.atlas.gov.au/datasets/abs-asgs-ed3-2021-lga-population-projections-2022-2032-wide/about
    Explore at:
    Dataset updated
    Aug 26, 2025
    Dataset authored and provided by
    Digital Atlas of Australia
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    These population projections were prepared by the Australian Bureau of Statistics (ABS) for Geoscience Australia. The projections are not official ABS data and are owned by Geoscience Australia. These projections are for Statistical Areas Level 2 (SA2s) and Local Government Areas (LGAs), and are projected out from a base population as at 30 June 2022, by age and sex. Projections are for 30 June 2023 to 2032, with results disaggregated by age and sex.

    Method The cohort-component method was used for these projections. In this method, the base population is projected forward annually by calculating the effect of births, deaths and migration (the components) within each age-sex cohort according to the specified fertility, mortality and overseas and internal migration assumptions. The projected usual resident population by single year of age and sex was produced in four successive stages – national, state/territory, capital city/rest of state, and finally SA2s. Assumptions were made for each level and the resulting projected components and population are constrained to the geographic level above for each year.
    These projections were derived from a combination of assumptions published in Population Projections, Australia, 2022 (base) to 2071 on 23 November 2023, and historical patterns observed within each state/territory.

    Projections – capital city/rest of state regions The base population is 30 June 2022 Estimated Resident Population (ERP) as published in National, state and territory population, June 2022. For fertility, the total fertility rate (at the national level) is based on the medium assumption used in Population Projections, Australia, 2022 (base) to 2071, of 1.6 babies per woman being phased in from 2022 levels over five years to 2027, before remaining steady for the remainder of the projection span. Observed state/territory, and greater capital city level fertility differentials were applied to the national data so that established trends in the state and capital city/rest of state relativities were preserved. Mortality rates are based on the medium assumption used in Population Projections, Australia, 2022 (base) to 2071, and assume that mortality rates will continue to decline across Australia with state/territory differentials persisting. State/territory and capital city/rest of state differentials were used to ensure projected deaths are consistent with the historical trend. Annual net overseas migration (NOM) is based on the medium assumption used in Population Projections, Australia, 2022 (base) to 2071, with an assumed gain (at the national level) of 400,000 in 2022-23, increasing to 315,000 in 2023-24, then declining to 225,000 in 2026-27, after which NOM is assumed to remain constant. State and capital city/rest of state shares are based on a weighted average of NOM data from 2010 to 2019 at the state and territory level to account for the impact of COVID-19. For internal migration, net gains and losses from states and territories and capital city/rest of state regions are based on the medium assumption used in Population Projections, Australia, 2022 (base) to 2071, and assume that net interstate migration will trend towards long-term historic average flows.

    Projections – Statistical Areas Level 2 The base population for each SA2 is the estimated resident population in each area by single year of age and sex, at 30 June 2022, as published in Regional population by age and sex, 2022 on 28 September 2023. The SA2-level fertility and mortality assumptions were derived by combining the medium scenario state/territory assumptions from Population Projections, Australia, 2022 (base) to 2071, with recent fertility and mortality trends in each SA2 based on annual births (by sex) and deaths (by age and sex) published in Regional Population, 2021-22 and Regional Population by Age and Sex, 2022. Assumed overseas and internal migration for each SA2 is based on SA2-specific annual overseas and internal arrivals and departures estimates published in Regional Population, 2021-22 and Regional Population by Age and Sex, 2022. The internal migration data was strengthened with SA2-specific data from the 2021 Census, based on the usual residence one year before Census night question. Assumptions were applied by SA2, age and sex. Assumptions were adjusted for some SA2s, to provide more plausible future population levels, and age and sex distribution changes, including areas where populations may not age over time, for example due to significant resident student and defence force populations. Most assumption adjustments were made via the internal migration component. For some SA2s with zero or a very small population base, but where significant population growth is expected, replacement migration age/sex profiles were applied. All SA2-level components and projected projections are constrained to the medium series of capital city/rest of state data in Population Projections, Australia, 2022 (base) to 2071.

    Projections – Local Government Areas The base population for each LGA is the estimated resident population in each area by single year of age and sex, at 30 June 2022, as published in Regional population by age and sex, 2022 on 28 September 2023. Projections for 30 June 2023 to 2032 were created by converting from the SA2-level population projections to LGAs by age and sex. This was done using an age-specific population correspondence, where the data for each year of the projection span were converted based on 2021 population shares across SA2s. The LGA and SA2 projections are congruous in aggregation as well as in isolation. Unlike the projections prepared at SA2 level, no LGA-specific projection assumptions were used.

    Nature of projections and considerations for usage The nature of the projection method and inherent fluctuations in population dynamics mean that care should be taken when using and interpreting the projection results. The projections are not forecasts, but rather illustrate future changes which would occur if the stated assumptions were to apply over the projection period. These projections do not attempt to allow for non-demographic factors such as major government policy decisions, economic factors, catastrophes, wars and pandemics, which may affect future demographic behaviour. To illustrate a range of possible outcomes, alternative projection series for national, state/territory and capital city/rest of state areas, using different combinations of fertility, mortality, overseas and internal migration assumptions, are prepared. Alternative series are published in Population Projections, Australia, 2022 (base) to 2071. Only one series of SA2-level projections was prepared for this product. Population projections can take account of planning and other decisions by governments known at the time the projections were derived, including sub-state projections published by each state and territory government. The ABS generally does not have access to the policies or decisions of commonwealth, state and local governments and businesses that assist in accurately forecasting small area populations. Migration, especially internal migration, accounts for the majority of projected population change for most SA2s. Volatile and unpredictable small area migration trends, especially in the short-term, can have a significant effect on longer-term projection results. Care therefore should be taken with SA2s with small total populations and very small age-sex cells, especially at older ages. While these projections are calculated at the single year of age level, small numbers, and fluctuations across individual ages in the base population and projection assumptions limit the reliability of SA2-level projections at single year of age level. These fluctuations reduce and reliability improves when the projection results are aggregated to broader age groups such as the five-year age bands in this product. For areas with small elderly populations, results aggregated to 65 and over are more reliable than for the individual age groups above 65. With the exception of areas with high planned population growth, SA2s with a base total population of less than 500 have generally been held constant for the projection period in this product as their populations are too small to be reliably projected at all, however their (small) age/sex distributions may change slightly. These SA2s are listed in the appendix. The base (2022) SA2 population estimates and post-2022 projections by age and sex include small artificial cells, including 1s and 2s. These are the result of a confidentialisation process and forced additivity, to control SA2 and capital city/rest of state age/sex totals, being applied to their original values. SA2s and LGAs in this product are based on the Australian Statistical Geography Standard (ASGS) boundaries as at the 2021 Census (ASGS Edition 3). For further information, see Australian Statistical Geography Standard (ASGS) Edition 3.

    Data and geography references

    Source data publication: Population Projections, Australia, 2022 (base) to 2071 Geographic boundary information: Australian Statistical Geography Standard (ASGS) Edition 3 Further information: Population Projections, Australia methodology Source: Australian Bureau of Statistics (ABS)

    Made possible by the Digital Atlas of Australia

    The Digital Atlas of Australia is a key Australian Government initiative being led by Geoscience Australia, highlighted in the Data and Digital Government Strategy. It brings together trusted datasets from across government in an interactive, secure, and easy-to-use geospatial platform. The Australian Bureau of Statistics (ABS) is working in partnership with Geoscience Australia to establish a set of web services to make ABS data available in the Digital Atlas of Australia.

    Contact the Australian Bureau of Statistics

    Email geography@abs.gov.au if you have any questions or feedback about this
    
Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Africa GeoPortal (2020). Section 1, Exercise 1: Geography Matters: Analyzing Demographics-Copy-Copy [Dataset]. https://hub.arcgis.com/maps/ffd1b8a7ffbf4b758fc15dcc0a6060c3

Section 1, Exercise 1: Geography Matters: Analyzing Demographics-Copy-Copy

Explore at:
Dataset updated
Aug 20, 2020
Dataset authored and provided by
Africa GeoPortal
Area covered
Description

(by Joseph Kerski)This map is for use in the "What is the spatial pattern of demographic variables around the world?" activity in Section 1 of the Going Places with Spatial Analysiscourse. The map contains population characteristics by country for 2013.These data come from the Population Reference Bureau's 2014 World Population Data Sheet.The Population Reference Bureau (PRB) informs people around the world about population, health, and the environment, empowering them to use that information to advance the well-being of current and future generations.PRB analyzes complex demographic data and research to provide the most objective, accurate, and up-to-date population information in a format that is easily understood by advocates, journalists, and decision makers alike.The 2014 year's data sheet has detailed information on 16 population, health, and environment indicators for more than 200 countries. For infant mortality, total fertility rate, and life expectancy, we have included data from 1970 and 2013 to show change over time. This year's special data column is on carbon emissions.For more information about how PRB compiles its data, see: https://www.prb.org/

Search
Clear search
Close search
Google apps
Main menu