Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
This dataset delivers a single, end-to-end resource for training and benchmarking facial liveness-detection systems. By aggregating live sessions and eleven realistic presentation-attack classes into one collection, it accelerates development toward iBeta Level 1/2 compliance and strengthens model robustness against the full spectrum of spoofing tactics
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F20109613%2F6432e95d7b7fef1d271457f172e11e0c%2FFrame%20103-3.png?generation=1753867895186569&alt=media" alt="">
Modern certification pipelines demand proof that a system resists all common attack vectors—not just prints or replays. This dataset delivers those vectors in one place, allowing you to: - Benchmark a model’s true generalisation - Fine-tune against rare but high-impact threats (e.g., silicone or textile masks) - Streamline audits by demonstrating coverage of every ISO 30107-3 attack category
Ideal for companies pursuing or maintaining iBeta Level 1/2 certification, research groups exploring new PAD architectures, and vendors stress-testing production face-verification pipelines
This dataset’s scale, breadth of attack types, and real-world capture conditions make it indispensable for anyone building or evaluating biometric anti-spoofing solutions. Deploy it to harden your systems against today’s—and tomorrow’s—most sophisticated presentation attacks
Attribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
License information was derived automatically
Silicone Mask Attack dataset
The dataset contains 6,500+ videos of attacks from 50 different people, filmed using 5 devices, providing a valuable resource for researching presentation attacks in facial recognition technologies. By focusing on this area, the dataset facilitates experiments designed to improve biometric security and anti-spoofing measures, ultimately aiding in the creation of more robust and reliable authentication systems. By utilizing this dataset, researchers can… See the full description on the dataset page: https://huggingface.co/datasets/UniDataPro/silicone-mask-attack.
Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
Textile 3D Face Mask Attack Dataset
This Dataset is specifically designed to enhance Face Anti-Spoofing and Liveness Detection models by simulating Nylon Mask Attacks — an accessible alternative to expensive silicone and latex mask datasets. These attacks utilize thin elastic fabric masks worn like a balaclava, featuring printed facial images that conform to the wearer's head shape through textile elasticity. The dataset is particularly valuable for PAD model training and iBeta… See the full description on the dataset page: https://huggingface.co/datasets/AxonData/3d_cloth_face_mask_spoofing_dataset.
Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
Latex Mask Dataset for Face Anti-Spoofing and Liveness Detection
Anti spoofing dataset with Latex 3D mask attacks (4 000 videos) for iBeta 2. The Biometric Attack Dataset offers a robust solution for enhancing security in liveness detection systems by simulating 3D latex mask attacks. This dataset is invaluable for assessing and fine-tuning Passive Liveness Detection models, an essential step toward achieving iBeta Level 2 certification. By integrating diverse realistic presentation… See the full description on the dataset page: https://huggingface.co/datasets/AxonData/Latex_Mask_dataset.
Attribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
License information was derived automatically
Face mask dataset for facial recognition
This dataset contains over 11,100+ video recordings of people wearing latex masks, captured using 5 different devices.It is designed for liveness detection algorithms, specifically aimed at enhancing anti-spoofing capabilities in biometric security systems. By utilizing this dataset, researchers can develop more accurate facial recognition technologies, which is crucial for achieving the iBeta Level 2 certification, a benchmark for robust and… See the full description on the dataset page: https://huggingface.co/datasets/UniDataPro/latex-mask-attack.
Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
iBeta Level 2 PAD Anti-Spoofing (3D Masks) — Liveness Detection Training Dataset
Comprehensive biometric dataset for iBeta Level 2 liveness detection training and anti-spoofing research. Emphasis on 3D attacks (masks) and movements for Active liveness (zoom-in/zoom-out, micro-movements), high variability of devices and conditions, high diversity of subjects
Spoofing Attack Types:
Silicone Mask Attacks Latex Mask Attacks Wrapped 3D Paper Mask Attacks Advanced Paper Mask… See the full description on the dataset page: https://huggingface.co/datasets/AxonData/iBeta-Level-2-Certification-Dataset.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
This dataset delivers a single, end-to-end resource for training and benchmarking facial liveness-detection systems. By aggregating live sessions and eleven realistic presentation-attack classes into one collection, it accelerates development toward iBeta Level 1/2 compliance and strengthens model robustness against the full spectrum of spoofing tactics
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F20109613%2F6432e95d7b7fef1d271457f172e11e0c%2FFrame%20103-3.png?generation=1753867895186569&alt=media" alt="">
Modern certification pipelines demand proof that a system resists all common attack vectors—not just prints or replays. This dataset delivers those vectors in one place, allowing you to: - Benchmark a model’s true generalisation - Fine-tune against rare but high-impact threats (e.g., silicone or textile masks) - Streamline audits by demonstrating coverage of every ISO 30107-3 attack category
Ideal for companies pursuing or maintaining iBeta Level 1/2 certification, research groups exploring new PAD architectures, and vendors stress-testing production face-verification pipelines
This dataset’s scale, breadth of attack types, and real-world capture conditions make it indispensable for anyone building or evaluating biometric anti-spoofing solutions. Deploy it to harden your systems against today’s—and tomorrow’s—most sophisticated presentation attacks