49 datasets found
  1. a

    SILVA Release 138

    • arb-silva.de
    arb, fasta, rast
    Updated Dec 16, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    SILVA Team (2019). SILVA Release 138 [Dataset]. https://www.arb-silva.de/documentation/release-138/
    Explore at:
    arb, fasta, rastAvailable download formats
    Dataset updated
    Dec 16, 2019
    Dataset authored and provided by
    SILVA Team
    License

    https://www.arb-silva.de/silva-license-information/https://www.arb-silva.de/silva-license-information/

    Description

    The SILVA database project provides comprehensive, quality checked and regularly updated databases of aligned small (16S / 18S, SSU) and large subunit (23S / 28S, LSU) ribosomal RNA (rRNA) sequences for all three domains of life (Bacteria, Archaea and Eukarya).

  2. Data from: Silva SSU taxonomic training data formatted for DADA2 (Silva...

    • zenodo.org
    application/gzip, bin +1
    Updated Mar 15, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Michael R. McLaren; Michael R. McLaren (2021). Silva SSU taxonomic training data formatted for DADA2 (Silva version 138) [Dataset]. http://doi.org/10.5281/zenodo.3731176
    Explore at:
    application/gzip, bin, txtAvailable download formats
    Dataset updated
    Mar 15, 2021
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Michael R. McLaren; Michael R. McLaren
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    These DADA2-formatted training fasta files were derived from the Silva Project's version 138 release. See https://www.arb-silva.de/documentation/release-138/ for database and citation information. The Silva 138 database is licensed under Creative Commons Attribution 4.0 (CC-BY 4.0); see file "SILVA_LICENSE.txt". The fasta files were generated and checked for consistency with version 132 using the R code in the R-markdown document "silva-v138.Rmd".

  3. 16S V4-V5 metabarcoding reference databases and weighted naive-bayes...

    • zenodo.org
    bin
    Updated Sep 2, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Katherine Silliman; Katherine Silliman; Luke Thompson; Luke Thompson (2023). 16S V4-V5 metabarcoding reference databases and weighted naive-bayes classifiers, dereplicated [Dataset]. http://doi.org/10.5281/zenodo.8302188
    Explore at:
    binAvailable download formats
    Dataset updated
    Sep 2, 2023
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Katherine Silliman; Katherine Silliman; Luke Thompson; Luke Thompson
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    16S metabarcoding databases and naive-bayes classifiers specific to the V4-V5 region. Built from the Silva 138.1 SSU Ref NR 99 database using Qiime2 (version 2023.2) and the q2-clawback plugin. Includes weighted classifiers for two Earth Microbiome Project Ontology (EMPO) 3 habitat types: "sediment (saline)" and "water (saline)" , with data downloaded from Qiita. Sequences were dereplicated with Rescript --p-mode 'uniq' , retaining identical sequence records that have differing taxonomies.

    Primers used:

    EMP 16S 515f: GTGYCAGCMGCCGCGGTAA

    EMP 16S 926r: CCGYCAATTYMTTTRAGTTT

    Stats

    286,948 unique sequences

    309,567 total sequences

    46,254 unique taxa (Level 7)

    File description
    FileDescription
    make new 16S silva V4-V5 database.mdMarkdown with code used to generate databases
    silva-138-99-seqs.qzaFull length Silva 138.1 SSU 99 sequences
    silva-138-99-tax.qzaTaxa for full length Silva 138.1 SSU 99 database
    silva-138_1-99-515f_926r-uniq-seqs.qzaSequences for 16S V4-V5 (primers 515f, 926r), extracted from Silva 138.1 SSU 99, generated by qiime2-2023.2 (forward compatible), dereplicated
    silva-138_1-99-515f_926r-uniq-taxa.qzaTaxa for silva-138_1-99-515f_926r-seqs.qza database, dereplicated
    uniform-silva-138_1-99-515f_926r-uniq-classifier.qzaUnweighted (uniform) naive-bayes classifier for 16S V4-V5 (primers 515f, 926r) extracted from Silva 138.1 SSU 99, generated by qiime2-2023.2 (forward compatible)
    silva-138_1-99-515f_926r-uniq-sediment-saline-classifier.qzaWeighted naive-bayes classifier for 16S V4-V5 (primers 515f, 926r) extracted from Silva 138.1 SSU 99, weighted for sediment-saline, generated by qiime2-2023.2 (forward compatible)
    silva-138_1-99-515f_926r-q2_2023_2-uniq-sediment-saline-weights.qzaWeights used to generate silva-138_1-99-515f_926r-q2_2023_2-sediment-saline-classifier.qza
    silva-138_1-99-515f_926r-uniq-water-saline-classifier.qzaWeighted naive-bayes classifier for 16S V4-V5 (primers 515f, 926r) extracted from Silva 138.1 SSU 99, weighted for water-saline, generated by qiime2-2023.2 (forward compatible)
    silva-138_1-99-515f_926r-uniq-water-saline-weights.qzaWeights used to generate silva-138_1-99-515f_926r-water-saline-classifier.qza

  4. f

    SILVA v132 + v138, NR99, in ARB+UDB11 format

    • figshare.com
    zip
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kasper Skytte Andersen; Morten Simonsen Dueholm (2023). SILVA v132 + v138, NR99, in ARB+UDB11 format [Dataset]. http://doi.org/10.6084/m9.figshare.9994568.v3
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    figshare
    Authors
    Kasper Skytte Andersen; Morten Simonsen Dueholm
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    SILVA release 132 and 138 non-redundant (clustered at 99%) database including typestrains in both ARB and UDB (usearch11) formats. For use with https://github.com/KasperSkytte/AutoTax

  5. Silva 138.1 taxonomy classifiers for use with QIIME 2 q2-feature-classifier

    • zenodo.org
    bin
    Updated Mar 31, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Benjamin D Kaehler; Benjamin D Kaehler (2022). Silva 138.1 taxonomy classifiers for use with QIIME 2 q2-feature-classifier [Dataset]. http://doi.org/10.5281/zenodo.6395539
    Explore at:
    binAvailable download formats
    Dataset updated
    Mar 31, 2022
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Benjamin D Kaehler; Benjamin D Kaehler
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Uniform and weighted naive Bayes classifiers trained on Silva 138.1 data for use with QIIME 2 q2-feature-classifier.

    full-length-average-classifier.qza and 515f-806r-average-classifier.qza are classifiers using weights averaged across 14 EMPO 3 habitat types. If in doubt, use one of these.

    Original weights derived from Qiita, scripts used to derive them, and additional information available at https://github.com/BenKaehler/readytowear.

    Classifiers trained on full-length 16S or 515F/806R region as labelled.

    Full length Silva 138.1 reference sequences and corresponding taxonomies are in ref-seqs.qza an ref-tax.qza.

    If you use any of the weighted classifiers, please cite

    • Kaehler BD, Bokulich NA, McDonald D, Knight R, Caporaso JG, Huttley GA. (2019). Species-level microbial sequence classification is improved by source-environment information. Nature Communications 10: 4643. doi: https://doi.org/10.1038/s41467-019-12669-6

    If you use the any of the classifiers (weighted or otherwise), please cite

    • Bokulich, N.A., Kaehler, B.D., Rideout, J.R. et al. (2018). Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 6, 90. doi: https://doi.org/10.1186/s40168-018-0470-z

    If you use any file from here, please cite:

    • Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucl. Acids Res. 41 (D1): D590-D596

    • Robeson, M. S., O’Rourke, D. R., Kaehler, B. D., Ziemski, M., Dillon, M. R., Foster, J. T., & Bokulich, N. A. (2021). RESCRIPt: Reproducible sequence taxonomy reference database management. PLoS Comp. Bio., 17(11). doi: https://doi.org/10.1371/journal.pcbi.1009581

    Warning: Pre-trained classifiers that can be used with q2-feature-classifier currently present a security risk. If using a pre-trained classifier such as the ones provided here, you should trust the person who trained the classifier and the person who provided you with the qza file.

  6. Silva 138.1 prokaryotic SSU taxonomic training data formatted for DADA2

    • zenodo.org
    • explore.openaire.eu
    • +1more
    application/gzip, txt
    Updated Mar 25, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Michael R. McLaren; Michael R. McLaren; Benjamin J. Callahan; Benjamin J. Callahan (2021). Silva 138.1 prokaryotic SSU taxonomic training data formatted for DADA2 [Dataset]. http://doi.org/10.5281/zenodo.4587955
    Explore at:
    application/gzip, txtAvailable download formats
    Dataset updated
    Mar 25, 2021
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Michael R. McLaren; Michael R. McLaren; Benjamin J. Callahan; Benjamin J. Callahan
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    These training fasta files are derived from the Silva Project's version 138.1 release and formatted for use with DADA2. These files are intended for use in classifying prokaryotic 16S sequencing data and are not appropriate for classifying eukaryotic ASVs.

    See https://benjjneb.github.io/dada2/training.html for information about DADA2 reference databases and https://www.arb-silva.de/documentation/release-138.1/ for database and citation information for Silva 138.1. The Silva 138.1 database is licensed under Creative Commons Attribution 4.0 (CC-BY 4.0); see file "SILVA_LICENSE.txt". These fasta database files were generated and checked for consistency using the R markdown documents in the silva-138.1 folder in https://zenodo.org/record/4587946.

    If you use these files, please cite one or both of the Silva references below (or at the above link) and the DADA2 paper (reference below). I also recommend citing or linking to the Zenodo record for this specific version in your Methods or published source code to record the specific taxonomic database files used in your analysis.

    NOTE: These database files have a known problem in 3/895 families and 59/3936 genera. See https://github.com/mikemc/dada2-reference-databases/blob/main/silva-138.1/v1/bad-taxa.csv for a list of affected taxa and https://github.com/benjjneb/dada2/issues/1293 for more information.

  7. Silva SSU r138.1 training set for IDTAXA

    • figshare.com
    application/gzip
    Updated Mar 1, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Irene Zhang (2024). Silva SSU r138.1 training set for IDTAXA [Dataset]. http://doi.org/10.6084/m9.figshare.25329073.v1
    Explore at:
    application/gzipAvailable download formats
    Dataset updated
    Mar 1, 2024
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Irene Zhang
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Training set for Silva 138.1 for use with the IDTAXA taxonomy caller within the R DECIPHER packageCitation for DECIPHER: Wright ES (2016). “Using DECIPHER v2.0 to Analyze Big Biological Sequence Data in R.” The R Journal, 8(1), 352-359.

  8. t

    Silva nr99 138.1 for ngs4ecoprod - Vdataset - LDM

    • service.tib.eu
    Updated May 16, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Silva nr99 138.1 for ngs4ecoprod - Vdataset - LDM [Dataset]. https://service.tib.eu/ldmservice/dataset/goe-doi-10-25625-bntafd
    Explore at:
    Dataset updated
    May 16, 2025
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Modified version (BLASTn & BLCA ready) of the file SILVA_138.1_SSURef_tax_silva_trunc.fasta.gz for ngs4ecoprod (https://github.com/dschnei1/ngs4ecoprod). Further details of the preparation procedure can be found in README.txt within the archive (silva_NR99_138.1.tar.gz). Original file: https://www.arb-silva.de/fileadmin/silva_databases/release_138.1/Exports/SILVA_138.1_SSURef_NR99_tax_silva_trunc.fasta.gz If you use this database please cite the original authors of the SILVA database: Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucl. Acids Res. 41 (D1): D590-D596 doi: 10.1093/nar/gks1219 The SILVA databases are licensed under Creative Commons Attribution 4.0 (CC-BY 4.0): https://creativecommons.org/licenses/by/4.0/ https://creativecommons.org/licenses/by/4.0/legalcode

  9. t

    Silva nr99 trunc 138.2 - Vdataset - LDM

    • service.tib.eu
    Updated May 16, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Silva nr99 trunc 138.2 - Vdataset - LDM [Dataset]. https://service.tib.eu/ldmservice/dataset/goe-doi-10-25625-pkptau
    Explore at:
    Dataset updated
    May 16, 2025
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Modified version (BLASTn & BLCA ready) of the file SILVA_138.2_SSURef_tax_silva_trunc.fasta.gz. Further details of the preparation procedure can be found in README.txt within the archive (SILVA_138.2_SSURef_NR99.tar.gz). Original file: https://www.arb-silva.de/fileadmin/silva_databases/release_138_2/Exports/SILVA_138.2_SSURef_NR99_tax_silva_trunc.fasta.gz If you use this database please cite the original authors of the SILVA database: Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucl. Acids Res. 41 (D1): D590-D596 doi: 10.1093/nar/gks1219 The SILVA databases are licensed under Creative Commons Attribution 4.0 (CC-BY 4.0): https://creativecommons.org/licenses/by/4.0/ https://creativecommons.org/licenses/by/4.0/legalcode

  10. metadata and silva classifier

    • figshare.com
    txt
    Updated Aug 10, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Apiwat Sangphukieo (2022). metadata and silva classifier [Dataset]. http://doi.org/10.6084/m9.figshare.20430963.v5
    Explore at:
    txtAvailable download formats
    Dataset updated
    Aug 10, 2022
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Apiwat Sangphukieo
    License

    https://www.gnu.org/licenses/gpl-3.0.htmlhttps://www.gnu.org/licenses/gpl-3.0.html

    Description

    metadata and silva classifier

  11. Z

    16S V4-V4 taxonomy classifier

    • data.niaid.nih.gov
    • zenodo.org
    Updated Sep 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Anderson, Sean (2023). 16S V4-V4 taxonomy classifier [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_8392694
    Explore at:
    Dataset updated
    Sep 30, 2023
    Dataset provided by
    Silliman, Katherine
    Anderson, Sean
    Thompson, Luke
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    16S metabarcoding databases and naive-bayes classifier specific to the V4-V5 region. Built from the Silva 138.1 SSU Ref NR 99 database using Qiime2 (version 2021.2).

    Primers used:

    EMP 16S 515f: GTGYCAGCMGCCGCGGTAA

    EMP 16S 926r: CCGYCAATTYMTTTRAGTTT

    File description
    
    
    
    
    
    
    
              File
              Description
    
    
    
    
              silva-138-99-seqs.qza
              Full length Silva 138.1 SSU 99 sequences
    
    
              silva-138-99-tax.qza
              Taxa for full length Silva 138.1 SSU 99 database
    
    
              refseqs_V4-V5.qza
              Sequences for 16S V4-V5 (primers 515f, 926r), extracted from Silva 138.1 SSU 99, generated by qiime2-2021.2 (forward compatible)
    
    
              classifier_V4-V5.qza
              Unweighted (uniform) naive-bayes classifier for 16S V4-V5 (primers 515f, 926r) extracted from Silva 138.1 SSU 99, generated by qiime2-2021.2
    
  12. SILVA_138_NR99_AutoTax

    • figshare.com
    zip
    Updated May 30, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kasper Skytte Andersen; Morten Simonsen Dueholm (2023). SILVA_138_NR99_AutoTax [Dataset]. http://doi.org/10.6084/m9.figshare.12366626.v1
    Explore at:
    zipAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    Kasper Skytte Andersen; Morten Simonsen Dueholm
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Improved version of the SILVA microbial taxonomic database version 138 NR99 as processed through AutoTax, see reference paper.

  13. Silva taxonomic training data formatted for DADA2 (Silva version 138.2)

    • zenodo.org
    application/gzip
    Updated Nov 15, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Benjamin Callahan; Benjamin Callahan (2024). Silva taxonomic training data formatted for DADA2 (Silva version 138.2) [Dataset]. http://doi.org/10.5281/zenodo.14169026
    Explore at:
    application/gzipAvailable download formats
    Dataset updated
    Nov 15, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Benjamin Callahan; Benjamin Callahan
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    These DADA2-formatted training fasta files were derived from the Silva Project's version 138.2 release: https://www.arb-silva.de/

    These fastas were generated by the following commands (using the dada2 R package version 1.35.4):

    path <- "~/tax/Silva/v138_2"
    fn.out.slv <- "~/Desktop/silva_nr99_v138.2_toGenus_trainset.fa.gz"
    dada2:::makeTaxonomyFasta_SilvaNR(file.path(path, "SILVA_138.2_SSURef_NR99_tax_silva.fasta.gz"),
    file.path(path, "tax_slv_ssu_138.2.txt"),
    fn.out.slv)

    fn.out.spc.slv <- "~/Desktop/silva_nr99_v138.2_toSpecies_trainset.fa.gz"
    dada2:::makeTaxonomyFasta_SilvaNR(file.path(path, "SILVA_138.2_SSURef_NR99_tax_silva.fasta.gz"),
    file.path(path, "tax_slv_ssu_138.2.txt"),
    fn.out.spc.slv, include.species=TRUE)

    fn.out.aS.slv <- "~/Desktop/silva_v138.2_assignSpecies.fa.gz"
    dada2:::makeSpeciesFasta_Silva("~/tax/silva/v138_2/SILVA_138.2_SSURef_tax_silva.fasta.gz",
    fn.out.aS.slv)

  14. Taxonomic abundance datasets at Phylum, Class, Order, Family and Genus...

    • figshare.com
    xlsx
    Updated Feb 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kok Yean Von (2025). Taxonomic abundance datasets at Phylum, Class, Order, Family and Genus levels.xlsx [Dataset]. http://doi.org/10.6084/m9.figshare.28502015.v1
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Feb 27, 2025
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Kok Yean Von
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Taxonomic classification of the 16S rDNA sequencing reads was performed using QIIME2, referencing the SILVA 138 database, at the Phylum, Class, Order, Family, and Genus levels.

  15. o

    PRJNA860062 Assigned Taxonomy and QIIME2 Pipeline

    • explore.openaire.eu
    • data.niaid.nih.gov
    • +1more
    Updated Sep 1, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bregje W. Brinkmann (2022). PRJNA860062 Assigned Taxonomy and QIIME2 Pipeline [Dataset]. http://doi.org/10.5281/zenodo.6891711
    Explore at:
    Dataset updated
    Sep 1, 2022
    Authors
    Bregje W. Brinkmann
    Description

    PRJNA860062 Assigned Taxonomy: This upload comprises two datasets with the assigned taxonomy for sequence variants of BioProject PRNJA860062. PRJNA860062_ASVCounts_NCBItaxonomy.txt PRJNA860062_ASVCounts_SILVAtaxonomy.txt BioProject PRNJN860062 compares bacterial profiles of zebrafish larvae microbiota resulting from two different microbial colonization methods. The full description and sequence data for this project can be obtained from the Sequence Read Archive (https://www.ncbi.nlm.nih.gov/bioproject). The dataset with the SILVA taxonomy can directly be obtained using the QIIME2 script included in this upload ('PRJNA860062_QIIME2Script.txt'). As previously noted by Lesack and Birol (2018), SILVA species annotations include nomenclature errors (DOI: 10.1101/441576). Therefore, the dataset with the NCBI taxonomy comprises a manually corrected taxonomy for BioProject PRNJA860062, based on the family to phylum level nomenclature of the NCBI taxonomy browser (https://www.ncbi.nlm.nih.gov/taxonomy). Both files are tab-delimited text files, include the domain to species level taxonomy in the first 7 columns, and include the number of assigned sequence variants (ASVs) per taxon in the final 6 colums, corresponding to BioSample SAMN29820940, SAMN29820941, SAMN29820942, SAMN29820943, SAMN29820944, and SAMN29820945. QIIME 2 Pipeline: The QIIME2 script that was used to obtain the assigned SILVA taxonomy BioProject PRNJA860062 is uploaded as: PRJNA860062_QIIME2Script.txt Input files that are required to run this script, including a manifest text file, sample metadata, and the reference sequences and taxonomy from the SILVA 138 small subunit (16S/18S) rRNA database Ref NR 99, are uploaded in the zipped file: PRJNA860062_InputFiles.zip FASTQ sequence data for BioSample SAMN29820940, SAMN29820941, SAMN29820942, SAMN29820943, SAMN29820944, and SAMN29820945, can be obtained from the Sequence Read Archive under BioProject PRNJA860062 (https://www.ncbi.nlm.nih.gov/bioproject). All output files are uploaded in the zipped file: PRJNA860062_OutputFiles.zip Data provenance, including the versions of python (3.6.7) and python packages, can be acquired by dragging QIIME2 Visualizations (.qzv output files) into the QIIME2 viewing interface (http://view.qiime2.org).

  16. Silva 138.1 database for NGS-4-ECOPROD

    • zenodo.org
    • data.europa.eu
    Updated Jun 26, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dominik Schneider; Dominik Schneider (2023). Silva 138.1 database for NGS-4-ECOPROD [Dataset]. http://doi.org/10.5281/zenodo.7638964
    Explore at:
    Dataset updated
    Jun 26, 2023
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Dominik Schneider; Dominik Schneider
    Description

    Modified version (blastn ready) of the file SILVA_138.1_SSURef_NR99_tax_silva_trunc.fasta.gz for NGS-4-ECOPROD pipeline.

    See https://www.arb-silva.de/no_cache/download/archive/release_138.1/Exports/

    SILVA references:

    Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucl. Acids Res. 41 (D1): D590-D596.

    Yilmaz P, Parfrey LW, Yarza P, Gerken J, Pruesse E, Quast C, Schweer T, Peplies J, Ludwig W, Glöckner FO (2014) The SILVA and "All-species Living Tree Project (LTP)" taxonomic frameworks. Nucl. Acids Res. 42:D643-D648

    Glöckner FO, Yilmaz P, Quast C, Gerken J, Beccati A, Ciuprina A, Bruns G, Yarza P, Peplies J, Westram R, Ludwig W (2017) 25 years of serving the community with ribosomal RNA gene reference databases and tools. J. Biotechnol.

  17. f

    silva_nr_v138_train_set_usearch_SINTAX_compatible.fa

    • figshare.com
    txt
    Updated Apr 30, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Michael Lee (2020). silva_nr_v138_train_set_usearch_SINTAX_compatible.fa [Dataset]. http://doi.org/10.6084/m9.figshare.12226949.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    Apr 30, 2020
    Dataset provided by
    figshare
    Authors
    Michael Lee
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Usearch formatted silva v138 converted from dada2-format (from here: https://zenodo.org/record/3731176#.XqsLVBNKhqU)

  18. Z

    Tutorial output for Tourmaline amplicon sequence processing workflow

    • data.niaid.nih.gov
    • zenodo.org
    Updated Jul 6, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Thompson, Luke (2021). Tutorial output for Tourmaline amplicon sequence processing workflow [Dataset]. https://data.niaid.nih.gov/resources?id=ZENODO_5044532
    Explore at:
    Dataset updated
    Jul 6, 2021
    Dataset authored and provided by
    Thompson, Luke
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Tutorial output for the Tourmaline amplicon sequence processing workflow.

    Tourmaline was run on the test data provided in the directory 00-data, which were downloaded along with the rest of the repository using this command:

    git clone https://github.com/aomlomics/tourmaline

    Reference data were downloaded and symlinked using these commands:

    cd tourmaline/01-imported wget https://data.qiime2.org/2021.2/common/silva-138-99-seqs-515-806.qza wget https://data.qiime2.org/2021.2/common/silva-138-99-tax-515-806.qza ln -s silva-138-99-seqs-515-806.qza refseqs.qza ln -s silva-138-99-tax-515-806.qza reftax.qza

    Paths in 00-data/manifest_pe.csv and 00-data/manifest_se.csv were edited to match the local paths.

    Output for all modes of the workflow were then generated in series:

    conda activate qiime2-2021.2 snakemake dada2_pe_report_unfiltered snakemake dada2_pe_report_filtered snakemake dada2_se_report_unfiltered snakemake dada2_se_report_filtered snakemake deblur_se_report_unfiltered snakemake deblur_se_report_filtered

  19. Supplementary data for draft genome of a member of the ascomycotal fungal...

    • zenodo.org
    • data.niaid.nih.gov
    bin, pdf, zip
    Updated May 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Krithika Arumugam; Sherilyn Ho; Irina Bessarab; Falicia Goh; Mindia Haryono; Ezequiel Santillan; Stefan Wuertz; Yvonne Chow; Rohan Williams; Krithika Arumugam; Sherilyn Ho; Irina Bessarab; Falicia Goh; Mindia Haryono; Ezequiel Santillan; Stefan Wuertz; Yvonne Chow; Rohan Williams (2025). Supplementary data for draft genome of a member of the ascomycotal fungal genus Pseudopithomyces (family Didymosphaeriaceae) [Dataset]. http://doi.org/10.5281/zenodo.7374666
    Explore at:
    bin, pdf, zipAvailable download formats
    Dataset updated
    May 21, 2025
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Krithika Arumugam; Sherilyn Ho; Irina Bessarab; Falicia Goh; Mindia Haryono; Ezequiel Santillan; Stefan Wuertz; Yvonne Chow; Rohan Williams; Krithika Arumugam; Sherilyn Ho; Irina Bessarab; Falicia Goh; Mindia Haryono; Ezequiel Santillan; Stefan Wuertz; Yvonne Chow; Rohan Williams
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    In a recent manuscript, we report a draft genome of the ascomycotal fungal species Pseudopithomyces maydicus (isolate name SBW1) obtained using a culture isolate from brewery wastewater. From a 22 contig assembly, we predict 13502 protein coding gene models, of which 4389 (32.5%) were annotated to KEGG Orthology and identify 39 biosynthetic gene clusters. Here we provide supplementary data from our analysis:

    Supplementary Figure 1
    Sequence alignment between Sanger-sequenced partial 28S LSU-rRNA sequence and the top ranked BLASTN hit from NCBI nr/nt database.

    Supplementary Figure 2
    Pairs plot for contig GC-content, contig coverage and contig length from the P. maydicus assembly.

    Supplementary Data File 1
    Table listing properties of contigs from the P. maydicus assembly.

    Supplementary Data File 2
    Summary of taxonomic classification analysis of recovered 18S SSU-rRNA sequences to the SILVA 138 database.

    Supplementary Data File 3
    Alignment of Sanger-sequenced partial 28S LSU-rRNA sequence against three 28S LSU-rRNA gene sequences recovered from the P. maydicus long read genome assembly and a set of 62 28S LSU-rRNA sequences from members of genus Psuedopithomyces (NCBI Nucleotide searched for “Pseudopithomyces AND 28S" on 30th May 2022).

    Supplementary Data File 4
    MASH similarity statistics obtained by comparing the P. maydicus long read genome assembly sequence to 9563 fungal genomes obtained from NCBI. The reference genomes from NCBI were downloaded using the NCBI ‘dataset’ (version 13.6.0) command line tool (datasets_13.6.0 download genome taxon 4751 --filename fungi.zip --assembly-level complete_genome,chromosome,scaffold,contig --exclude-gff3 --exclude-protein --exclude-rna).

    Supplementary Data File 5
    BlastKOALA annotation data for all proteins predicted from P. maydicus long read assembly.

    Supplementary Results
    Complete output from the antiSMASH6 analysis of the P. maydicus long read assembly.

  20. SILVAv138_DB

    • figshare.com
    application/gzip
    Updated Apr 15, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Elinne Becket (2023). SILVAv138_DB [Dataset]. http://doi.org/10.6084/m9.figshare.22639330.v1
    Explore at:
    application/gzipAvailable download formats
    Dataset updated
    Apr 15, 2023
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    Elinne Becket
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    SILVA v138 DB for use in BIOL 351 lab teaching

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
SILVA Team (2019). SILVA Release 138 [Dataset]. https://www.arb-silva.de/documentation/release-138/

SILVA Release 138

Related Article
Explore at:
arb, fasta, rastAvailable download formats
Dataset updated
Dec 16, 2019
Dataset authored and provided by
SILVA Team
License

https://www.arb-silva.de/silva-license-information/https://www.arb-silva.de/silva-license-information/

Description

The SILVA database project provides comprehensive, quality checked and regularly updated databases of aligned small (16S / 18S, SSU) and large subunit (23S / 28S, LSU) ribosomal RNA (rRNA) sequences for all three domains of life (Bacteria, Archaea and Eukarya).

Search
Clear search
Close search
Google apps
Main menu