71 datasets found
  1. s

    SimilarWeb Pricing History

    • saaspricepulse.com
    json
    Updated Nov 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    SaaS Price Pulse (2025). SimilarWeb Pricing History [Dataset]. https://www.saaspricepulse.com/tools/similarweb
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Nov 7, 2025
    Dataset authored and provided by
    SaaS Price Pulse
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Nov 8, 2025
    Measurement technique
    Automated web scraping with AI-powered price extraction
    Description

    Historical pricing data for SimilarWeb from 2025 to 2025. 1 data points tracking plan prices, features, and changes over time.

  2. Summary of results comparing Google Analytics and SimilarWeb for total...

    • plos.figshare.com
    • datasetcatalog.nlm.nih.gov
    xls
    Updated Jun 13, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bernard J. Jansen; Soon-gyo Jung; Joni Salminen (2023). Summary of results comparing Google Analytics and SimilarWeb for total visits, unique visitors, bounce rate, and average session duration. [Dataset]. http://doi.org/10.1371/journal.pone.0268212.t006
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 13, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Bernard J. Jansen; Soon-gyo Jung; Joni Salminen
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Difference uses Google Analytics as the Baseline. Results based on Paired t-Test for Hypotheses Supported.

  3. Similarweb (SMWB) Stock Price Outlook Sees Shift (Forecast)

    • kappasignal.com
    Updated Oct 14, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2025). Similarweb (SMWB) Stock Price Outlook Sees Shift (Forecast) [Dataset]. https://www.kappasignal.com/2025/10/similarweb-smwb-stock-price-outlook.html
    Explore at:
    Dataset updated
    Oct 14, 2025
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Similarweb (SMWB) Stock Price Outlook Sees Shift

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  4. Host country of organization for 86 websites in study.

    • plos.figshare.com
    • datasetcatalog.nlm.nih.gov
    xls
    Updated Jun 15, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bernard J. Jansen; Soon-gyo Jung; Joni Salminen (2023). Host country of organization for 86 websites in study. [Dataset]. http://doi.org/10.1371/journal.pone.0268212.t003
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 15, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Bernard J. Jansen; Soon-gyo Jung; Joni Salminen
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Host country of organization for 86 websites in study.

  5. Comparison of definitions of total visits, unique visitors, bounce rate, and...

    • plos.figshare.com
    xls
    Updated Jun 13, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bernard J. Jansen; Soon-gyo Jung; Joni Salminen (2023). Comparison of definitions of total visits, unique visitors, bounce rate, and session duration conceptually and for the two analytics platforms: Google Analytics and SimilarWeb. [Dataset]. http://doi.org/10.1371/journal.pone.0268212.t002
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 13, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Bernard J. Jansen; Soon-gyo Jung; Joni Salminen
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Comparison of definitions of total visits, unique visitors, bounce rate, and session duration conceptually and for the two analytics platforms: Google Analytics and SimilarWeb.

  6. Most visited price comparison websites in Hungary 2021, by traffic share

    • statista.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista, Most visited price comparison websites in Hungary 2021, by traffic share [Dataset]. https://www.statista.com/statistics/1312875/hungary-traffic-share-of-the-most-popular-price-comparison-websites/
    Explore at:
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2021
    Area covered
    Hungary
    Description

    Árukereső was the most popular price comparison portal in Hungary in 2021, based on the traffic share measured by SimilarWeb. Árgép was the second most visited price comparison site over the same time period.

  7. f

    Website type for the 86 websites in study.

    • figshare.com
    • datasetcatalog.nlm.nih.gov
    xls
    Updated Jun 13, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bernard J. Jansen; Soon-gyo Jung; Joni Salminen (2023). Website type for the 86 websites in study. [Dataset]. http://doi.org/10.1371/journal.pone.0268212.t005
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 13, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Bernard J. Jansen; Soon-gyo Jung; Joni Salminen
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Website type for the 86 websites in study.

  8. Industry vertical of organization for 86 websites in study.

    • plos.figshare.com
    xls
    Updated Jun 15, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bernard J. Jansen; Soon-gyo Jung; Joni Salminen (2023). Industry vertical of organization for 86 websites in study. [Dataset]. http://doi.org/10.1371/journal.pone.0268212.t004
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 15, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Bernard J. Jansen; Soon-gyo Jung; Joni Salminen
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Industry vertical of organization for 86 websites in study.

  9. W

    Website Costs Survey Data

    • webfx.com
    Updated Feb 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    WebFX (2025). Website Costs Survey Data [Dataset]. https://www.webfx.com/web-design/pricing/website-costs/
    Explore at:
    Dataset updated
    Feb 10, 2025
    Dataset authored and provided by
    WebFX
    Variables measured
    Website Costs, Website Costs Breakdown, Website Management Fees, How Much It Costs to Build a Website
    Description

    Survey of 2,000 businesses on how much they spend on their website and their website costs

  10. w

    Global Website Analytics Tool Market Research Report: By Deployment Type...

    • wiseguyreports.com
    Updated Oct 29, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Global Website Analytics Tool Market Research Report: By Deployment Type (Cloud-Based, On-Premises, Hybrid), By End User (Small and Medium Enterprises, Large Enterprises, E-commerce, Marketing Agencies, Government), By Functionality (Traffic Analysis, User Behavior Analysis, Conversion Rate Optimization, SEO Analysis), By Pricing Model (Subscription-Based, One-Time License, Freemium) and By Regional (North America, Europe, South America, Asia Pacific, Middle East and Africa) - Forecast to 2035 [Dataset]. https://www.wiseguyreports.com/reports/website-analytics-tool-market
    Explore at:
    Dataset updated
    Oct 29, 2025
    License

    https://www.wiseguyreports.com/pages/privacy-policyhttps://www.wiseguyreports.com/pages/privacy-policy

    Time period covered
    Oct 25, 2025
    Area covered
    Global
    Description
    BASE YEAR2024
    HISTORICAL DATA2019 - 2023
    REGIONS COVEREDNorth America, Europe, APAC, South America, MEA
    REPORT COVERAGERevenue Forecast, Competitive Landscape, Growth Factors, and Trends
    MARKET SIZE 20244.37(USD Billion)
    MARKET SIZE 20254.71(USD Billion)
    MARKET SIZE 203510.0(USD Billion)
    SEGMENTS COVEREDDeployment Type, End User, Functionality, Pricing Model, Regional
    COUNTRIES COVEREDUS, Canada, Germany, UK, France, Russia, Italy, Spain, Rest of Europe, China, India, Japan, South Korea, Malaysia, Thailand, Indonesia, Rest of APAC, Brazil, Mexico, Argentina, Rest of South America, GCC, South Africa, Rest of MEA
    KEY MARKET DYNAMICSincreasing online presence, data-driven decision making, growing e-commerce sector, demand for real-time analytics, rising mobile traffic
    MARKET FORECAST UNITSUSD Billion
    KEY COMPANIES PROFILEDStatcounter, Chartbeat, Kissmetrics, SAP, Piwik PRO, Crazy Egg, Google, Heap, Microsoft, Adobe, Salesforce, SimilarWeb, Mixpanel, IBM, Oracle
    MARKET FORECAST PERIOD2025 - 2035
    KEY MARKET OPPORTUNITIESIncreased demand for real-time data, Integration with AI-driven analytics, Rising adoption of e-commerce platforms, Enhanced focus on user experience, Growing need for data privacy compliance
    COMPOUND ANNUAL GROWTH RATE (CAGR) 7.8% (2025 - 2035)
  11. g

    Website Traffic Dataset

    • gts.ai
    json
    Updated Aug 23, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GTS (2024). Website Traffic Dataset [Dataset]. https://gts.ai/dataset-download/website-traffic-dataset/
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Aug 23, 2024
    Dataset provided by
    GLOBOSE TECHNOLOGY SOLUTIONS PRIVATE LIMITED
    Authors
    GTS
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Explore our detailed website traffic dataset featuring key metrics like page views, session duration, bounce rate, traffic source, and conversion rates.

  12. Web Design Services in the US - Market Research Report (2015-2030)

    • ibisworld.com
    Updated Jul 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    IBISWorld (2025). Web Design Services in the US - Market Research Report (2015-2030) [Dataset]. https://www.ibisworld.com/united-states/market-research-reports/web-design-services-industry/
    Explore at:
    Dataset updated
    Jul 15, 2025
    Dataset authored and provided by
    IBISWorld
    License

    https://www.ibisworld.com/about/termsofuse/https://www.ibisworld.com/about/termsofuse/

    Time period covered
    2015 - 2030
    Area covered
    United States
    Description

    The growth of the Internet since its inception has fueled strong demand and profitability for web design services, as both businesses and households increasingly conduct activities online. The pandemic accelerated this trend, forcing businesses to upgrade their digital presence amid lockdowns and remote work, which resulted in significant revenue gains for web designers in 2020. This trend continued in 2021 as the strong economic recovery boosted corporate profit and gave businesses greater funds to invest in the industry’s services. More recently, high inflation and rising interest rates have raised costs and curtailed demand, with some businesses opting for cheaper alternatives like templates rather than custom web design, contributing to a drop in revenue in 2022. Despite these challenges, rising stock prices linked to AI advancements pushed business income substantially upward, enabling further investment in web design through 2023 and 2024 and benefiting revenue. However, high inflation and rising interest rates have recently raised costs and curtailed demand, with some businesses opting for cheaper alternatives like templates rather than custom web design. In response to shifting client expectations, web designers now prioritize mobile-first design, rapid performance, personalization and interactive content. These adaptations, along with investments in new technologies, have allowed web designers—especially smaller ones—to differentiate themselves and sustain long-term growth. Overall, revenue for web design services companies has swelled at a CAGR of 2.3% over the past five years, reaching $47.4 billion in 2025. This includes a 1.5% rise in revenue in that year. Market saturation will limit revenue growth for website designers moving forward. With nearly all US adults now using the Internet, opportunities for finding new customers are dwindling as internet usage approaches universality. As a result, major providers may turn to mergers and acquisitions to maintain market share, while smaller companies will likely focus on niche markets or specific geographies to secure stable income. Additionally, tariffs imposed by the Trump administration could further restrain demand by increasing consumer prices, reducing disposable income and pushing the economy toward recession. In response, web designers may expand geographically to find new clients. Amid these headwinds, AI and automation technologies are transforming design workflows, increasing efficiency while fostering a greater need for skilled workers and enabling more tailored services. Companies are also adapting by prioritizing inclusivity and sustainability, attracting broader demographics and eco-conscious clients. Overall, revenue for web design services providers is forecast to inch upward at a CAGR of 1.1% over the next five years, reaching $49.9 billion in 2030.

  13. g

    Research indices using web scraped price data | gimi9.com

    • gimi9.com
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Research indices using web scraped price data | gimi9.com [Dataset]. https://gimi9.com/dataset/uk_research-indices-using-web-scraped-price-data/
    Explore at:
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    Web scraping is a tool for extracting information from the underlying HTML code of websites. ONS has been conducting research into these technologies and, since May 2014, has been scraping prices from the websites of three retailers. Last year, ONS released two updates that constructed experimental price indices from the data. In this release, we provide updates to the experimental indices, and an analysis of the different methods used to clean and classify the data.

  14. Company Datasets for Business Profiling

    • datarade.ai
    Updated Feb 23, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Oxylabs (2017). Company Datasets for Business Profiling [Dataset]. https://datarade.ai/data-products/company-datasets-for-business-profiling-oxylabs
    Explore at:
    .json, .xml, .csv, .xlsAvailable download formats
    Dataset updated
    Feb 23, 2017
    Dataset provided by
    Oxy Labs
    Authors
    Oxylabs
    Area covered
    Andorra, Northern Mariana Islands, Canada, Bangladesh, Isle of Man, Nepal, British Indian Ocean Territory, Tunisia, Taiwan, Moldova (Republic of)
    Description

    Company Datasets for valuable business insights!

    Discover new business prospects, identify investment opportunities, track competitor performance, and streamline your sales efforts with comprehensive Company Datasets.

    These datasets are sourced from top industry providers, ensuring you have access to high-quality information:

    • Owler: Gain valuable business insights and competitive intelligence. -AngelList: Receive fresh startup data transformed into actionable insights. -CrunchBase: Access clean, parsed, and ready-to-use business data from private and public companies. -Craft.co: Make data-informed business decisions with Craft.co's company datasets. -Product Hunt: Harness the Product Hunt dataset, a leader in curating the best new products.

    We provide fresh and ready-to-use company data, eliminating the need for complex scraping and parsing. Our data includes crucial details such as:

    • Company name;
    • Size;
    • Founding date;
    • Location;
    • Industry;
    • Revenue;
    • Employee count;
    • Competitors.

    You can choose your preferred data delivery method, including various storage options, delivery frequency, and input/output formats.

    Receive datasets in CSV, JSON, and other formats, with storage options like AWS S3 and Google Cloud Storage. Opt for one-time, monthly, quarterly, or bi-annual data delivery.

    With Oxylabs Datasets, you can count on:

    • Fresh and accurate data collected and parsed by our expert web scraping team.
    • Time and resource savings, allowing you to focus on data analysis and achieving your business goals.
    • A customized approach tailored to your specific business needs.
    • Legal compliance in line with GDPR and CCPA standards, thanks to our membership in the Ethical Web Data Collection Initiative.

    Pricing Options:

    Standard Datasets: choose from various ready-to-use datasets with standardized data schemas, priced from $1,000/month.

    Custom Datasets: Tailor datasets from any public web domain to your unique business needs. Contact our sales team for custom pricing.

    Experience a seamless journey with Oxylabs:

    • Understanding your data needs: We work closely to understand your business nature and daily operations, defining your unique data requirements.
    • Developing a customized solution: Our experts create a custom framework to extract public data using our in-house web scraping infrastructure.
    • Delivering data sample: We provide a sample for your feedback on data quality and the entire delivery process.
    • Continuous data delivery: We continuously collect public data and deliver custom datasets per the agreed frequency.

    Unlock the power of data with Oxylabs' Company Datasets and supercharge your business insights today!

  15. d

    Swash Web Browsing Clickstream Data - 1.5M Worldwide Users - GDPR Compliant

    • datarade.ai
    .csv, .xls
    Updated Jun 27, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Swash (2023). Swash Web Browsing Clickstream Data - 1.5M Worldwide Users - GDPR Compliant [Dataset]. https://datarade.ai/data-products/swash-blockchain-bitcoin-and-web3-enthusiasts-swash
    Explore at:
    .csv, .xlsAvailable download formats
    Dataset updated
    Jun 27, 2023
    Dataset authored and provided by
    Swash
    Area covered
    Saint Vincent and the Grenadines, Belarus, Jamaica, Jordan, Liechtenstein, Russian Federation, Uzbekistan, India, Latvia, Monaco
    Description

    Unlock the Power of Behavioural Data with GDPR-Compliant Clickstream Insights.

    Swash clickstream data offers a comprehensive and GDPR-compliant dataset sourced from users worldwide, encompassing both desktop and mobile browsing behaviour. Here's an in-depth look at what sets us apart and how our data can benefit your organisation.

    User-Centric Approach: Unlike traditional data collection methods, we take a user-centric approach by rewarding users for the data they willingly provide. This unique methodology ensures transparent data collection practices, encourages user participation, and establishes trust between data providers and consumers.

    Wide Coverage and Varied Categories: Our clickstream data covers diverse categories, including search, shopping, and URL visits. Whether you are interested in understanding user preferences in e-commerce, analysing search behaviour across different industries, or tracking website visits, our data provides a rich and multi-dimensional view of user activities.

    GDPR Compliance and Privacy: We prioritise data privacy and strictly adhere to GDPR guidelines. Our data collection methods are fully compliant, ensuring the protection of user identities and personal information. You can confidently leverage our clickstream data without compromising privacy or facing regulatory challenges.

    Market Intelligence and Consumer Behaviuor: Gain deep insights into market intelligence and consumer behaviour using our clickstream data. Understand trends, preferences, and user behaviour patterns by analysing the comprehensive user-level, time-stamped raw or processed data feed. Uncover valuable information about user journeys, search funnels, and paths to purchase to enhance your marketing strategies and drive business growth.

    High-Frequency Updates and Consistency: We provide high-frequency updates and consistent user participation, offering both historical data and ongoing daily delivery. This ensures you have access to up-to-date insights and a continuous data feed for comprehensive analysis. Our reliable and consistent data empowers you to make accurate and timely decisions.

    Custom Reporting and Analysis: We understand that every organisation has unique requirements. That's why we offer customisable reporting options, allowing you to tailor the analysis and reporting of clickstream data to your specific needs. Whether you need detailed metrics, visualisations, or in-depth analytics, we provide the flexibility to meet your reporting requirements.

    Data Quality and Credibility: We take data quality seriously. Our data sourcing practices are designed to ensure responsible and reliable data collection. We implement rigorous data cleaning, validation, and verification processes, guaranteeing the accuracy and reliability of our clickstream data. You can confidently rely on our data to drive your decision-making processes.

  16. Stock Market: Historical Data of Top 10 Companies

    • kaggle.com
    zip
    Updated Jul 18, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Khushi Pitroda (2023). Stock Market: Historical Data of Top 10 Companies [Dataset]. https://www.kaggle.com/datasets/khushipitroda/stock-market-historical-data-of-top-10-companies
    Explore at:
    zip(486977 bytes)Available download formats
    Dataset updated
    Jul 18, 2023
    Authors
    Khushi Pitroda
    Description

    The dataset contains a total of 25,161 rows, each row representing the stock market data for a specific company on a given date. The information collected through web scraping from www.nasdaq.com includes the stock prices and trading volumes for the companies listed, such as Apple, Starbucks, Microsoft, Cisco Systems, Qualcomm, Meta, Amazon.com, Tesla, Advanced Micro Devices, and Netflix.

    Data Analysis Tasks:

    1) Exploratory Data Analysis (EDA): Analyze the distribution of stock prices and volumes for each company over time. Visualize trends, seasonality, and patterns in the stock market data using line charts, bar plots, and heatmaps.

    2)Correlation Analysis: Investigate the correlations between the closing prices of different companies to identify potential relationships. Calculate correlation coefficients and visualize correlation matrices.

    3)Top Performers Identification: Identify the top-performing companies based on their stock price growth and trading volumes over a specific time period.

    4)Market Sentiment Analysis: Perform sentiment analysis using Natural Language Processing (NLP) techniques on news headlines related to each company. Determine whether positive or negative news impacts the stock prices and volumes.

    5)Volatility Analysis: Calculate the volatility of each company's stock prices using metrics like Standard Deviation or Bollinger Bands. Analyze how volatile stocks are in comparison to others.

    Machine Learning Tasks:

    1)Stock Price Prediction: Use time-series forecasting models like ARIMA, SARIMA, or Prophet to predict future stock prices for a particular company. Evaluate the models' performance using metrics like Mean Squared Error (MSE) or Root Mean Squared Error (RMSE).

    2)Classification of Stock Movements: Create a binary classification model to predict whether a stock will rise or fall on the next trading day. Utilize features like historical price changes, volumes, and technical indicators for the predictions. Implement classifiers such as Logistic Regression, Random Forest, or Support Vector Machines (SVM).

    3)Clustering Analysis: Cluster companies based on their historical stock performance using unsupervised learning algorithms like K-means clustering. Explore if companies with similar stock price patterns belong to specific industry sectors.

    4)Anomaly Detection: Detect anomalies in stock prices or trading volumes that deviate significantly from the historical trends. Use techniques like Isolation Forest or One-Class SVM for anomaly detection.

    5)Reinforcement Learning for Portfolio Optimization: Formulate the stock market data as a reinforcement learning problem to optimize a portfolio's performance. Apply algorithms like Q-Learning or Deep Q-Networks (DQN) to learn the optimal trading strategy.

    The dataset provided on Kaggle, titled "Stock Market Stars: Historical Data of Top 10 Companies," is intended for learning purposes only. The data has been gathered from public sources, specifically from web scraping www.nasdaq.com, and is presented in good faith to facilitate educational and research endeavors related to stock market analysis and data science.

    It is essential to acknowledge that while we have taken reasonable measures to ensure the accuracy and reliability of the data, we do not guarantee its completeness or correctness. The information provided in this dataset may contain errors, inaccuracies, or omissions. Users are advised to use this dataset at their own risk and are responsible for verifying the data's integrity for their specific applications.

    This dataset is not intended for any commercial or legal use, and any reliance on the data for financial or investment decisions is not recommended. We disclaim any responsibility or liability for any damages, losses, or consequences arising from the use of this dataset.

    By accessing and utilizing this dataset on Kaggle, you agree to abide by these terms and conditions and understand that it is solely intended for educational and research purposes.

    Please note that the dataset's contents, including the stock market data and company names, are subject to copyright and other proprietary rights of the respective sources. Users are advised to adhere to all applicable laws and regulations related to data usage, intellectual property, and any other relevant legal obligations.

    In summary, this dataset is provided "as is" for learning purposes, without any warranties or guarantees, and users should exercise due diligence and judgment when using the data for any purpose.

  17. Success.ai | Intent Data | 15k Topics for Keyword, Sentiment, and Web...

    • datarade.ai
    Updated Oct 22, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Success.ai (2024). Success.ai | Intent Data | 15k Topics for Keyword, Sentiment, and Web Activity data – Best Price Guarantee [Dataset]. https://datarade.ai/data-products/success-ai-intent-data-15k-topics-for-keyword-sentiment-success-ai
    Explore at:
    .bin, .json, .xml, .csv, .xls, .sql, .txtAvailable download formats
    Dataset updated
    Oct 22, 2024
    Dataset provided by
    Area covered
    Tuvalu, Pakistan, El Salvador, New Zealand, Tonga, United States of America, Denmark, United Arab Emirates, Solomon Islands, Mali
    Description

    Success.ai is dedicated to providing advanced consumer insights that empower businesses to understand and predict consumer behaviors effectively. Our datasets are crafted from diverse online interactions, including keyword searches, sentiment analysis, and web activity, paired with detailed geodemographic data to offer a holistic view of consumer trends.

    Utilize Our Consumer Insights to Enhance Your Business Strategies:

    • Keyword Data Analysis: Understand what your potential customers are searching for with detailed keyword data. This information is crucial for optimizing SEO strategies and aligning your content with consumer interests.
    • Sentiment Analysis: Gauge public opinion and sentiment trends across various demographics to tailor your marketing messages or product features.
    • Web Activity Insights: Track how consumers interact online to refine your online marketing strategies and improve user engagement.
    • Geodemographic Profiling: Employ detailed demographic and geographic data to segment your marketing campaigns and personalize outreach efforts.
    • Consumer Behavior Reports: Analyze consumer purchasing patterns and preferences to forecast future trends and adjust your business approach accordingly.

    Why Success.ai Stands Out:

    • Tailored Data Solutions: Our data solutions are customized to meet specific industry needs, ensuring relevancy and applicability.
    • Real-Time Data Processing: We offer the latest insights with continuous updates, keeping your business ahead of the curve.
    • Precision and Compliance: Our data collection methods are not only precise but also strictly adhere to global privacy standards, ensuring ethical usage and data reliability.
    • Affordable Pricing: We provide competitive pricing models that guarantee the best value for extensive data insights.

    Empower Your Business With Data-Driven Decisions:

    • Email Marketing: Utilize our data to craft targeted email campaigns that resonate with specific consumer segments.
    • Online Marketing: Enhance your digital presence by aligning your strategies with real-time consumer data insights.
    • B2B Lead Generation: Identify and engage potential business clients by understanding their industry-specific behaviors and needs.
    • Sales Data Enrichment: Enrich your sales strategies with comprehensive consumer data to boost conversion rates.
    • Competitive Intelligence: Stay ahead of the competition by leveraging detailed insights into consumer behaviors and market trends.

    With Success.ai, transform vast data into actionable insights that drive business growth and strategic innovation. Connect with us today to learn how our Consumer Insights Data can revolutionize your approach to market analysis and consumer engagement.

    Experience the competitive edge with Success.ai, where we don't just offer data; we deliver market leadership.

  18. d

    Hotel Prices and Booking data from OTA websites and travel websites

    • datarade.ai
    Updated Mar 5, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Datahut (2022). Hotel Prices and Booking data from OTA websites and travel websites [Dataset]. https://datarade.ai/data-products/hotel-prices-and-booking-data-from-ota-websites-and-travel-we-datahut
    Explore at:
    Dataset updated
    Mar 5, 2022
    Dataset authored and provided by
    Datahut
    Area covered
    Jordan, Martinique, Sint Maarten (Dutch part), Uzbekistan, Haiti, Czech Republic, Nepal, Vietnam, Guyana, Korea (Democratic People's Republic of)
    Description

    The OTA, booking websites have a ton of information like pricing, promotions, occupancy reviews, etc about hotels. Our data as a service offering helps our customers get this data through web scraping. The data is refreshed every day and delivered to our customers via Amazon S3, The most common use cases are competitive intelligence and marketing spend optimization.

  19. d

    Price Optimization (Normalized)

    • search.dataone.org
    • dataverse.harvard.edu
    Updated Oct 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Anez, Diomar; Anez, Dimar (2025). Price Optimization (Normalized) [Dataset]. http://doi.org/10.7910/DVN/URFT2I
    Explore at:
    Dataset updated
    Oct 29, 2025
    Dataset provided by
    Harvard Dataverse
    Authors
    Anez, Diomar; Anez, Dimar
    Description

    This dataset provides processed and normalized/standardized indices for the management tool group focused on 'Price Optimization', including related concepts like Dynamic Pricing and Price Optimization Models. Derived from five distinct raw data sources, these indices are specifically designed for comparative longitudinal analysis, enabling the examination of trends and relationships across different empirical domains (web search, literature, academic publishing, and executive adoption). The data presented here represent transformed versions of the original source data, aimed at achieving metric comparability. Users requiring the unprocessed source data should consult the corresponding Price Optimization dataset in the Management Tool Source Data (Raw Extracts) Dataverse. Data Files and Processing Methodologies: Google Trends File (Prefix: GT_): Normalized Relative Search Interest (RSI) Input Data: Native monthly RSI values from Google Trends (Jan 2004 - Jan 2025) for the query "price optimization" + "dynamic pricing" + "price optimization strategy". Processing: None. Utilizes the original base-100 normalized Google Trends index. Output Metric: Monthly Normalized RSI (Base 100). Frequency: Monthly. Google Books Ngram Viewer File (Prefix: GB_): Normalized Relative Frequency Input Data: Annual relative frequency values from Google Books Ngram Viewer (1950-2022, English corpus, no smoothing) for the query Price Optimization + Pricing Optimization + Dynamic Pricing Models + Optimal Pricing + Dynamic Pricing. Processing: Annual relative frequency series normalized (peak year = 100). Output Metric: Annual Normalized Relative Frequency Index (Base 100). Frequency: Annual. Crossref.org File (Prefix: CR_): Normalized Relative Publication Share Index Input Data: Absolute monthly publication counts matching Price Optimization-related keywords [("price optimization" OR ...) AND (...) - see raw data for full query] in titles/abstracts (1950-2025), alongside total monthly Crossref publications. Deduplicated via DOIs. Processing: Monthly relative share calculated (Price Opt. Count / Total Count). Monthly relative share series normalized (peak month's share = 100). Output Metric: Monthly Normalized Relative Publication Share Index (Base 100). Frequency: Monthly. Bain & Co. Survey - Usability File (Prefix: BU_): Normalized Usability Index Input Data: Original usability percentages (%) from Bain surveys for specific years: Price Optimization Models (2004, 2008, 2010, 2012, 2014, 2017). Note: Not reported before 2004 or after 2017. Processing: Normalization: Original usability percentages normalized relative to its historical peak (Max % = 100). Output Metric: Biennial Estimated Normalized Usability Index (Base 100 relative to historical peak). Frequency: Biennial (Approx.). Bain & Co. Survey - Satisfaction File (Prefix: BS_): Standardized Satisfaction Index Input Data: Original average satisfaction scores (1-5 scale) from Bain surveys for specific years: Price Optimization Models (2004-2017). Note: Not reported before 2004 or after 2017. Processing: Standardization (Z-scores): Using Z = (X - 3.0) / 0.891609. Index Scale Transformation: Index = 50 + (Z * 22). Output Metric: Biennial Standardized Satisfaction Index (Center=50, Range?[1,100]). Frequency: Biennial (Approx.). File Naming Convention: Files generally follow the pattern: PREFIX_Tool_Processed.csv or similar, where the PREFIX indicates the data source (GT_, GB_, CR_, BU_, BS_). Consult the parent Dataverse description (Management Tool Comparative Indices) for general context and the methodological disclaimer. For original extraction details (specific keywords, URLs, etc.), refer to the corresponding Price Optimization dataset in the Raw Extracts Dataverse. Comprehensive project documentation provides full details on all processing steps.

  20. c

    web 2 vs web 3 Price Prediction Data

    • coinbase.com
    Updated Nov 12, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). web 2 vs web 3 Price Prediction Data [Dataset]. https://www.coinbase.com/price-prediction/base-web-2-vs-web-3-5cf6
    Explore at:
    Dataset updated
    Nov 12, 2025
    Variables measured
    Growth Rate, Predicted Price
    Measurement technique
    User-defined projections based on compound growth. This is not a formal financial forecast.
    Description

    This dataset contains the predicted prices of the asset web 2 vs web 3 over the next 16 years. This data is calculated initially using a default 5 percent annual growth rate, and after page load, it features a sliding scale component where the user can then further adjust the growth rate to their own positive or negative projections. The maximum positive adjustable growth rate is 100 percent, and the minimum adjustable growth rate is -100 percent.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
SaaS Price Pulse (2025). SimilarWeb Pricing History [Dataset]. https://www.saaspricepulse.com/tools/similarweb

SimilarWeb Pricing History

Explore at:
jsonAvailable download formats
Dataset updated
Nov 7, 2025
Dataset authored and provided by
SaaS Price Pulse
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Time period covered
Nov 8, 2025
Measurement technique
Automated web scraping with AI-powered price extraction
Description

Historical pricing data for SimilarWeb from 2025 to 2025. 1 data points tracking plan prices, features, and changes over time.

Search
Clear search
Close search
Google apps
Main menu