Facebook
TwitterTraffic analytics, rankings, and competitive metrics for similarweb.com as of August 2025
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Feature comparison matrix of Google alternative search engines
Facebook
Twitterhttps://webtechsurvey.com/termshttps://webtechsurvey.com/terms
A complete list of live websites using the Same But Different technology, compiled through global website indexing conducted by WebTechSurvey.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains two subsets of labeled website data, specifically created to enhance the performance of Homepage2Vec, a multi-label model for website classification. The datasets were generated using Large Language Models (LLMs) to provide more accurate and diverse topic annotations for websites, addressing a limitation of existing Homepage2Vec training data.
Key Features:
Dataset Composition:
Intended Use:
Additional Information:
Acknowledgments:
This dataset was created as part of a project at EPFL's Data Science Lab (DLab) in collaboration with Prof. Robert West and Tiziano Piccardi.
Facebook
TwitterThis API is providing the information of press releases issued by the authorized institutions and other similar press releases issued by the HKMA in the past regarding fraudulent bank websites, phishing E-mails and similar scams information.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset explores the differences between Google's Core Web Vitals and Bing's performance metrics, providing insights into how these different page experience signals impact search engine rankings. It covers the key metrics measured by each search engine, their approaches to performance evaluation, and the real-world impact on local business rankings. The data includes analysis of measurement techniques, industry benchmarks, and the evolving role of page speed in search algorithms.
Facebook
TwitterThe share of individuals watching paid content on websites like Netflix and HBO in Norway generally increased from 2009 to 2020. In 2009, the share amounted to three percent of respondents, whereas in 2020 it reached ** percent.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Preliminary research efforts regarding Social Media Platforms and their contribution to website traffic in LAMs. Through the Similar Web API, the leading social networks (Facebook, Twitter, Youtube, Instagram, Reddit, Pinterest, LinkedIn) that drove traffic to each one of the 220 cases in our dataset were identified and analyzed in the first sheet. Aggregated results proved that Facebook platform was responsible for 46.1% of social traffic (second sheet).
Facebook
Twitterhttps://webtechsurvey.com/termshttps://webtechsurvey.com/terms
A complete list of live websites using the Like Post technology, compiled through global website indexing conducted by WebTechSurvey.
Facebook
Twitterhttps://semrush.ebundletools.com/company/legal/terms-of-service/https://semrush.ebundletools.com/company/legal/terms-of-service/
built-different.co is ranked #13815 in GB with 201.22K Traffic. Categories: . Learn more about website traffic, market share, and more!
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
2022
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for All Employees, Museums, Historical Sites, and Similar Institutions (CEU7071200001) from Jan 1990 to Aug 2025 about museums, amusements, leisure, hospitality, establishment survey, employment, and USA.
Facebook
TwitterAmong selected consumer electronics retailers worldwide, thegioididong.com recorded the highest bounce rate in July 2025, at approximately ***** percent. apple.com had a slightly lower bounce rate of nearly ***** percent. Among selected consumer electronics e-tailers, sony.com had the lowest bounce rate at ***** percent. Bounce rate is a marketing term used in web traffic analysis reflecting the percentage of visitors who enter the site and then leave without taking any further action, like making a purchase or viewing other pages within the website ("bounce"). A sector with growth potential With one of the lowest online shopping cart abandonment rates globally in 2022, consumer electronics is a burgeoning e-commerce segment that places itself at the crossroads between technological progress and digital transformation. Boosted by the pandemic-induced surge in online shopping, the global market size of consumer electronics e-commerce was estimated at more than *** billion U.S. dollars in 2021 and forecast to nearly double less than five years later. Amazon and Apple lead the charts in electronics e-commerce With more than ** billion U.S. dollars in e-commerce net sales in the consumer electronics segment in 2022, apple.com was the uncontested industry leader. The global powerhouse surpassed e-commerce giants amazon.com and jd.com with more than *** billion U.S. dollars difference in online sales in the consumer electronics category.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States - Expensed Purchases of Software for Museums, Historical Sites, and Similar Institutions, All Establishments, Employer Firms was 128.00000 Mil. of $ in January of 2022, according to the United States Federal Reserve. Historically, United States - Expensed Purchases of Software for Museums, Historical Sites, and Similar Institutions, All Establishments, Employer Firms reached a record high of 128.00000 in January of 2022 and a record low of 20.00000 in January of 2005. Trading Economics provides the current actual value, an historical data chart and related indicators for United States - Expensed Purchases of Software for Museums, Historical Sites, and Similar Institutions, All Establishments, Employer Firms - last updated from the United States Federal Reserve on September of 2025.
Facebook
Twitterhttps://semrush.ebundletools.com/company/legal/terms-of-service/https://semrush.ebundletools.com/company/legal/terms-of-service/
same.new is ranked #23109 in IN with 533.98K Traffic. Categories: . Learn more about website traffic, market share, and more!
Facebook
TwitterThe Easiest Way to Collect Data from the Internet Download anything you see on the internet into spreadsheets within a few clicks using our ready-made web crawlers or a few lines of code using our APIs
We have made it as simple as possible to collect data from websites
Easy to Use Crawlers Amazon Product Details and Pricing Scraper Amazon Product Details and Pricing Scraper Get product information, pricing, FBA, best seller rank, and much more from Amazon.
Google Maps Search Results Google Maps Search Results Get details like place name, phone number, address, website, ratings, and open hours from Google Maps or Google Places search results.
Twitter Scraper Twitter Scraper Get tweets, Twitter handle, content, number of replies, number of retweets, and more. All you need to provide is a URL to a profile, hashtag, or an advance search URL from Twitter.
Amazon Product Reviews and Ratings Amazon Product Reviews and Ratings Get customer reviews for any product on Amazon and get details like product name, brand, reviews and ratings, and more from Amazon.
Google Reviews Scraper Google Reviews Scraper Scrape Google reviews and get details like business or location name, address, review, ratings, and more for business and places.
Walmart Product Details & Pricing Walmart Product Details & Pricing Get the product name, pricing, number of ratings, reviews, product images, URL other product-related data from Walmart.
Amazon Search Results Scraper Amazon Search Results Scraper Get product search rank, pricing, availability, best seller rank, and much more from Amazon.
Amazon Best Sellers Amazon Best Sellers Get the bestseller rank, product name, pricing, number of ratings, rating, product images, and more from any Amazon Bestseller List.
Google Search Scraper Google Search Scraper Scrape Google search results and get details like search rank, paid and organic results, knowledge graph, related search results, and more.
Walmart Product Reviews & Ratings Walmart Product Reviews & Ratings Get customer reviews for any product on Walmart.com and get details like product name, brand, reviews, and ratings.
Scrape Emails and Contact Details Scrape Emails and Contact Details Get emails, addresses, contact numbers, social media links from any website.
Walmart Search Results Scraper Walmart Search Results Scraper Get Product details such as pricing, availability, reviews, ratings, and more from Walmart search results and categories.
Glassdoor Job Listings Glassdoor Job Listings Scrape job details such as job title, salary, job description, location, company name, number of reviews, and ratings from Glassdoor.
Indeed Job Listings Indeed Job Listings Scrape job details such as job title, salary, job description, location, company name, number of reviews, and ratings from Indeed.
LinkedIn Jobs Scraper Premium LinkedIn Jobs Scraper Scrape job listings on LinkedIn and extract job details such as job title, job description, location, company name, number of reviews, and more.
Redfin Scraper Premium Redfin Scraper Scrape real estate listings from Redfin. Extract property details such as address, price, mortgage, redfin estimate, broker name and more.
Yelp Business Details Scraper Yelp Business Details Scraper Scrape business details from Yelp such as phone number, address, website, and more from Yelp search and business details page.
Zillow Scraper Premium Zillow Scraper Scrape real estate listings from Zillow. Extract property details such as address, price, Broker, broker name and more.
Amazon product offers and third party sellers Amazon product offers and third party sellers Get product pricing, delivery details, FBA, seller details, and much more from the Amazon offer listing page.
Realtor Scraper Premium Realtor Scraper Scrape real estate listings from Realtor.com. Extract property details such as Address, Price, Area, Broker and more.
Target Product Details & Pricing Target Product Details & Pricing Get product details from search results and category pages such as pricing, availability, rating, reviews, and 20+ data points from Target.
Trulia Scraper Premium Trulia Scraper Scrape real estate listings from Trulia. Extract property details such as Address, Price, Area, Mortgage and more.
Amazon Customer FAQs Amazon Customer FAQs Get FAQs for any product on Amazon and get details like the question, answer, answered user name, and more.
Yellow Pages Scraper Yellow Pages Scraper Get details like business name, phone number, address, website, ratings, and more from Yellow Pages search results.
Facebook
TwitterAs of February 2025, English was the most popular language for web content, with over 49.4 percent of websites using it. Spanish ranked second, with six percent of web content, while the content in the German language followed, with 5.6 percent. English as the leading online language United States and India, the countries with the most internet users after China, are also the world's biggest English-speaking markets. The internet user base in both countries combined, as of January 2023, was over a billion individuals. This has led to most of the online information being created in English. Consequently, even those who are not native speakers may use it for convenience. Global internet usage by regions As of October 2024, the number of internet users worldwide was 5.52 billion. In the same period, Northern Europe and North America were leading in terms of internet penetration rates worldwide, with around 97 percent of its populations accessing the internet.
Facebook
Twitterhttps://www.semrush.com/company/legal/terms-of-service/https://www.semrush.com/company/legal/terms-of-service/
oh-like.com is ranked #122362 in TH with 1.2K Traffic. Categories: Online Services. Learn more about website traffic, market share, and more!
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for All Employees: Leisure and Hospitality: Museums, Historical Sites, and Similar Institutions in Illinois (SMU17000007071200001SA) from Jan 1990 to Aug 2025 about museums, leisure, hospitality, IL, employment, and USA.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Code:
Packet_Features_Generator.py & Features.py
To run this code:
pkt_features.py [-h] -i TXTFILE [-x X] [-y Y] [-z Z] [-ml] [-s S] -j
-h, --help show this help message and exit -i TXTFILE input text file -x X Add first X number of total packets as features. -y Y Add first Y number of negative packets as features. -z Z Add first Z number of positive packets as features. -ml Output to text file all websites in the format of websiteNumber1,feature1,feature2,... -s S Generate samples using size s. -j
Purpose:
Turns a text file containing lists of incomeing and outgoing network packet sizes into separate website objects with associative features.
Uses Features.py to calcualte the features.
startMachineLearning.sh & machineLearning.py
To run this code:
bash startMachineLearning.sh
This code then runs machineLearning.py in a tmux session with the nessisary file paths and flags
Options (to be edited within this file):
--evaluate-only to test 5 fold cross validation accuracy
--test-scaling-normalization to test 6 different combinations of scalers and normalizers
Note: once the best combination is determined, it should be added to the data_preprocessing function in machineLearning.py for future use
--grid-search to test the best grid search hyperparameters - note: the possible hyperparameters must be added to train_model under 'if not evaluateOnly:' - once best hyperparameters are determined, add them to train_model under 'if evaluateOnly:'
Purpose:
Using the .ml file generated by Packet_Features_Generator.py & Features.py, this program trains a RandomForest Classifier on the provided data and provides results using cross validation. These results include the best scaling and normailzation options for each data set as well as the best grid search hyperparameters based on the provided ranges.
Data
Encrypted network traffic was collected on an isolated computer visiting different Wikipedia and New York Times articles, different Google search queres (collected in the form of their autocomplete results and their results page), and different actions taken on a Virtual Reality head set.
Data for this experiment was stored and analyzed in the form of a txt file for each experiment which contains:
First number is a classification number to denote what website, query, or vr action is taking place.
The remaining numbers in each line denote:
The size of a packet,
and the direction it is traveling.
negative numbers denote incoming packets
positive numbers denote outgoing packets
Figure 4 Data
This data uses specific lines from the Virtual Reality.txt file.
The action 'LongText Search' refers to a user searching for "Saint Basils Cathedral" with text in the Wander app.
The action 'ShortText Search' refers to a user searching for "Mexico" with text in the Wander app.
The .xlsx and .csv file are identical
Each file includes (from right to left):
The origional packet data,
each line of data organized from smallest to largest packet size in order to calculate the mean and standard deviation of each packet capture,
and the final Cumulative Distrubution Function (CDF) caluclation that generated the Figure 4 Graph.
Facebook
TwitterTraffic analytics, rankings, and competitive metrics for similarweb.com as of August 2025