42 datasets found
  1. Leading websites worldwide 2024, by monthly visits

    • statista.com
    • old-kremlin.ru
    • +3more
    Updated Mar 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Leading websites worldwide 2024, by monthly visits [Dataset]. https://www.statista.com/statistics/1201880/most-visited-websites-worldwide/
    Explore at:
    Dataset updated
    Mar 24, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Nov 2024
    Area covered
    Worldwide
    Description

    In November 2024, Google.com was the most popular website worldwide with 136 billion average monthly visits. The online platform has held the top spot as the most popular website since June 2010, when it pulled ahead of Yahoo into first place. Second-ranked YouTube generated more than 72.8 billion monthly visits in the measured period. The internet leaders: search, social, and e-commerce Social networks, search engines, and e-commerce websites shape the online experience as we know it. While Google leads the global online search market by far, YouTube and Facebook have become the world’s most popular websites for user generated content, solidifying Alphabet’s and Meta’s leadership over the online landscape. Meanwhile, websites such as Amazon and eBay generate millions in profits from the sale and distribution of goods, making the e-market sector an integral part of the global retail scene. What is next for online content? Powering social media and websites like Reddit and Wikipedia, user-generated content keeps moving the internet’s engines. However, the rise of generative artificial intelligence will bring significant changes to how online content is produced and handled. ChatGPT is already transforming how online search is performed, and news of Google's 2024 deal for licensing Reddit content to train large language models (LLMs) signal that the internet is likely to go through a new revolution. While AI's impact on the online market might bring both opportunities and challenges, effective content management will remain crucial for profitability on the web.

  2. Distribution of search.yahoo.com traffic 2024, by country

    • statista.com
    Updated Jan 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tiago Bianchi (2025). Distribution of search.yahoo.com traffic 2024, by country [Dataset]. https://www.statista.com/topics/7644/search-engines-alternatives-to-google/
    Explore at:
    Dataset updated
    Jan 29, 2025
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Tiago Bianchi
    Description

    In January 2024, the United States accounted for over 41 percent of traffic to the online search website search.yahoo.com. Brazil and India ranked second and third, accounting for 6.43 percent and 4.78 percent of web visits to the platform each. Meanwhile, the domain Yahoo.com also received a similar distribution of its traffic from the United States, although with different composing the rest of its ranking.

  3. d

    Search Engine Comparison Data

    • dorik.com
    Updated Sep 9, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Zaki Rezwana Chowdhury (2024). Search Engine Comparison Data [Dataset]. https://dorik.com/blog/alternative-search-engines
    Explore at:
    Dataset updated
    Sep 9, 2024
    Authors
    Zaki Rezwana Chowdhury
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Variables measured
    Geo-Blocking, Search Quality, Privacy Protection, Additional Features, Environmental Impact, Ads/Sponsored Results, Censorship of Information
    Description

    Feature comparison matrix of Google alternative search engines

  4. similarweb.com Website Traffic, Ranking, Analytics [June 2025]

    • semrush.com
    Updated Jul 12, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Semrush (2025). similarweb.com Website Traffic, Ranking, Analytics [June 2025] [Dataset]. https://www.semrush.com/website/similarweb.com/overview/
    Explore at:
    Dataset updated
    Jul 12, 2025
    Dataset authored and provided by
    Semrushhttps://fr.semrush.com/
    License

    https://www.semrush.com/company/legal/terms-of-service/https://www.semrush.com/company/legal/terms-of-service/

    Time period covered
    Jul 12, 2025
    Area covered
    Worldwide
    Variables measured
    visits, backlinks, bounceRate, pagesPerVisit, authorityScore, organicKeywords, avgVisitDuration, referringDomains, trafficByCountry, paidSearchTraffic, and 3 more
    Measurement technique
    Semrush Traffic Analytics; Click-stream data
    Description

    similarweb.com is ranked #1500 in IN with 15.58M Traffic. Categories: Information Technology, Online Services. Learn more about website traffic, market share, and more!

  5. Z

    Network Traffic Analysis: Data and Code

    • data.niaid.nih.gov
    • zenodo.org
    Updated Jun 12, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Honig, Joshua (2024). Network Traffic Analysis: Data and Code [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_11479410
    Explore at:
    Dataset updated
    Jun 12, 2024
    Dataset provided by
    Soni, Shreena
    Chan-Tin, Eric
    Ferrell, Nathan
    Honig, Joshua
    Homan, Sophia
    Moran, Madeline
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Code:

    Packet_Features_Generator.py & Features.py

    To run this code:

    pkt_features.py [-h] -i TXTFILE [-x X] [-y Y] [-z Z] [-ml] [-s S] -j

    -h, --help show this help message and exit -i TXTFILE input text file -x X Add first X number of total packets as features. -y Y Add first Y number of negative packets as features. -z Z Add first Z number of positive packets as features. -ml Output to text file all websites in the format of websiteNumber1,feature1,feature2,... -s S Generate samples using size s. -j

    Purpose:

    Turns a text file containing lists of incomeing and outgoing network packet sizes into separate website objects with associative features.

    Uses Features.py to calcualte the features.

    startMachineLearning.sh & machineLearning.py

    To run this code:

    bash startMachineLearning.sh

    This code then runs machineLearning.py in a tmux session with the nessisary file paths and flags

    Options (to be edited within this file):

    --evaluate-only to test 5 fold cross validation accuracy

    --test-scaling-normalization to test 6 different combinations of scalers and normalizers

    Note: once the best combination is determined, it should be added to the data_preprocessing function in machineLearning.py for future use

    --grid-search to test the best grid search hyperparameters - note: the possible hyperparameters must be added to train_model under 'if not evaluateOnly:' - once best hyperparameters are determined, add them to train_model under 'if evaluateOnly:'

    Purpose:

    Using the .ml file generated by Packet_Features_Generator.py & Features.py, this program trains a RandomForest Classifier on the provided data and provides results using cross validation. These results include the best scaling and normailzation options for each data set as well as the best grid search hyperparameters based on the provided ranges.

    Data

    Encrypted network traffic was collected on an isolated computer visiting different Wikipedia and New York Times articles, different Google search queres (collected in the form of their autocomplete results and their results page), and different actions taken on a Virtual Reality head set.

    Data for this experiment was stored and analyzed in the form of a txt file for each experiment which contains:

    First number is a classification number to denote what website, query, or vr action is taking place.

    The remaining numbers in each line denote:

    The size of a packet,

    and the direction it is traveling.

    negative numbers denote incoming packets

    positive numbers denote outgoing packets

    Figure 4 Data

    This data uses specific lines from the Virtual Reality.txt file.

    The action 'LongText Search' refers to a user searching for "Saint Basils Cathedral" with text in the Wander app.

    The action 'ShortText Search' refers to a user searching for "Mexico" with text in the Wander app.

    The .xlsx and .csv file are identical

    Each file includes (from right to left):

    The origional packet data,

    each line of data organized from smallest to largest packet size in order to calculate the mean and standard deviation of each packet capture,

    and the final Cumulative Distrubution Function (CDF) caluclation that generated the Figure 4 Graph.

  6. Cosmetic companies' website search traffic in France 2020

    • statista.com
    Updated Sep 15, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2022). Cosmetic companies' website search traffic in France 2020 [Dataset]. https://www.statista.com/statistics/1180478/website-traffic-cosmetic-companies-search-traffic-france/
    Explore at:
    Dataset updated
    Sep 15, 2022
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jan 2020
    Area covered
    France
    Description

    As online shopping experienced an exponential growth during the months of the COVID-19 induced lockdown in France, the source wanted to measure the share of search traffic of the different cosmetic websites. Thus, we note that around 24 percent of visits to Beautysuccess.fr come from search traffic, that is to say, visits made coming from search engines such as Google.

  7. Curlie Dataset - Language-agnostic Website Embedding and Classification

    • figshare.com
    application/gzip
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sylvain Lugeon; Tiziano Piccardi (2023). Curlie Dataset - Language-agnostic Website Embedding and Classification [Dataset]. http://doi.org/10.6084/m9.figshare.19406693.v5
    Explore at:
    application/gzipAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Sylvain Lugeon; Tiziano Piccardi
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    **************** Full Curlie dataset **************** Curlie.org is presented as the largest human-edited directory of the Web. It contains 3M+ multilingual webpage classified in a hierarchical taxonomy that is language-specific, but regrouping the same 14 top-level categories. Unfortunately, the Curlie administrators do not provide a downloadable archive of this valuable content. Therefore, we decided to release our own dataset that results from a in-depth scrapping of the Curlie website. This dataset contains webpages URL alongside with the category path (label) where they are referenced in Curlie. For example, the International Ski Federation website (www.fis-ski.com) is referenced under the category path Sports/Winter/Sports/Skiing/Associations. The category path is language-specific and we provide a mapping between english and other languages for alignment. The URLs have been filtered to only contain homepages (URL with empty path). Each distinct URL is indexed with a unique identifier (uid). curlie.csv.gz > [url, uid, label, lang] x 2,275,150 samples mapping.json.gz > [english_label, matchings] x 35,946 labels **************** Processed Curlie dataset **************** We provide here the ground data used to train Homepage2Vec. URLs have been further filtered out: websites listed under the Regional top-category are dropped, as well as non-accessible websites. This filtering yields 933,416 valid entries. The labels are aligned across languages and reduced to the 14 top-categories (classes). There are 885,582 distinct URLs, for which the associated classes are represented with a binary class vector (an URL can belong to multiple classes). We provide the HTML content for each distinct URL. We also provide a visual encoding, it was obtained by forwarding a screenshot of the homepage trough a ResNet deep-learning model pretrained on ImageNet. Finally, we provide the training and testing sets for reproduction concerns. curlie_filtered.csv.gz > [url, uid, label, lang] x 933,416 samples class_vector.json.gz > [uid, class_vector] x 885,582 samples html_content.json.gz > [uid, html] x 885,582 samples visual_encoding.json.gz > [uid, visual_encoding] x 885,582 samples class_names.txt > [class_name] x 14 classes train_uid.txt > [uid] x 797,023 samples test_uid.txt > [uid] x 88,559 samples **************** Enriched Curlie dataset **************** Thanks to Homepage2Vec, we release an enriched version of Curlie. For each distinct URL, we provide the class probability vector (14 classes) and the latent space embedding (100 dimensions). outputs.json.gz > [uid, url, score, embedding] x 885,582 samples **************** Pretrained Homepage2Vec**************** h2v_1000_100.zip > Model pretrained on all features h2v_1000_100_text_only.zip > Model pretrained only on textual features (no visual features from screenshots) **************** Notes **************** CSV file can be read with python: import pandas as pd df = pd.read_csv(“curlie.csv.gz“, index_col=0) JSON files have one record per line and can be read with python: import json import gzip with gzip.open("html_content.json.gz", "rt", encoding="utf-8") as file: for line in file: data = json.loads(line) …

  8. H

    Buy Guest Post on Jpost

    • dataverse.harvard.edu
    Updated Jan 26, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Harvard Dataverse (2022). Buy Guest Post on Jpost [Dataset]. http://doi.org/10.7910/DVN/P09ECQ
    Explore at:
    Dataset updated
    Jan 26, 2022
    Dataset provided by
    Harvard Dataverse
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    What is a high quality website? Over the years the whole SEO industry is talking about the need of producing high quality content and top experts came up with the clever quote ‘Content is king’, meaning that content is the success factor of any website. While this is true, does it mean that a website with good content is also a high quality website? The answer is NO. Good content is not enough. It is one of the factors (the most important) that separates low from high quality sites but good content alone does not complete the puzzle of what is considered by Google as a high quality website. Now you can get the high quality on high quality sites like Nytimes, Jpost, Huffpost and Forbes etc. You can also buy Jpost guest Post at a reasonable price from the best guest post service. What is SEO SEO is short for ‘Search Engine Optimization’. It refers to the process of increasing a websites traffic flow by optimizing several aspects of a website; such as your on-page SEO, technical SEO & off-site SEO,. Your SEO strategy should ideally be planned around your content strategy. For this you will require three elements, 1.) keywords, 2.) links and 3.) substance to piece your content strategy together. Guest Post on High quality sites can improve your SEO ranking. To improve ranking and boost ranking, buy Guest Post on Jpost from the high quality guest post service. Characteristics of a high quality website A high quality website has the following characteristics: Unique content Content is unique both within the website itself (i.e. each page has unique content and not similar to other pages), but also compared to other websites. Demonstrate Expertise Content is produced by experts based on research and or experience. If for example the subject is health related, then the advice should be provided by qualified authors who can professionally give advice for the particular subject. Unbiased content Content is detail and describes both sides of a story and is not promoting a single product, idea or service. Accessibility A high quality website has versions for non PC users as well. It is important that mobile and tablet users can access the website without any usability issues. Usability Can the user navigate the website easily; is the website user friendly? Attention to detail Content is easy to read with images (if applicable) and free of spelling and grammar mistakes. Does it seem that the owner cares on what is published on the website or is it for the purpose of having content in order to run ads? SEO Optimized Optimizing a web site for search engines has many benefits but it is important not to overdo it. A good quality web site needs to have non-optimized content as well. This is my opinion and although some people may disagree it is a fact that over-optimization can sometimes generate the opposite results. The reason is that algorithms can sometimes interpret over-optimization as an attempt to game the system and they may take measures to prevent this from happening. Balance between content and ads It is not something bad for a website to have ads or promotions but these should not distract the users from finding the information they need. Speed A high quality website loads fast. A fast website will rank higher and create more conventions, sales and loyal readers. Social Social media changed our lives, the way we communicate but also the way we assess quality. It is expected for a good product to have good reviews, Facebook likes and Tweets. Before you make a decision to buy or not, you may examine these social factors as well. Likewise, It is also expected for a good website to be socially accepted and recognized i.e. have Facebook followers, RSS subscribers etc. User Engagement and Interaction Do users spend enough time on the site and read more than one pages before they leave? Do they interact with the content by adding comments, making suggestions, getting into conversations etc.? Better than the competition When you take a specific keyword, is your website better than your competitors? Does it deserve one of the top positions if judged without bias?

  9. b

    Corporate Website — Analytics — Top 100 search terms

    • data.brisbane.qld.gov.au
    csv, excel, json
    Updated Jul 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Corporate Website — Analytics — Top 100 search terms [Dataset]. https://data.brisbane.qld.gov.au/explore/dataset/corporate-website-analytics-top-100-search-terms/
    Explore at:
    json, csv, excelAvailable download formats
    Dataset updated
    Jul 29, 2025
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Monthly analytics reports for the Brisbane City Council website

    Information regarding the sessions for Brisbane City Council website during the month including search terms used.

  10. H

    Buy Guest Post on Techtimes

    • dataverse.harvard.edu
    Updated Jan 26, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Harvard Dataverse (2022). Buy Guest Post on Techtimes [Dataset]. http://doi.org/10.7910/DVN/FDXSTO
    Explore at:
    Dataset updated
    Jan 26, 2022
    Dataset provided by
    Harvard Dataverse
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    What is a high quality website? Over the years the whole SEO industry is talking about the need of producing high quality content and top experts came up with the clever quote ‘Content is king’, meaning that content is the success factor of any website. While this is true, does it mean that a website with good content is also a high quality website? The answer is NO. Good content is not enough. It is one of the factors (the most important) that separates low from high quality sites but good content alone does not complete the puzzle of what is considered by Google as a high quality website. Now you can get the high quality on high quality sites like Techtimes, Vanguardngr, Nytimes, Forbes etc. You can also buy Techtimes guest Post at a reasonable price from the best guest post service. What is SEO SEO is short for ‘Search Engine Optimization’. It refers to the process of increasing a websites traffic flow by optimizing several aspects of a website; such as your on-page SEO, technical SEO & off-site SEO,. Your SEO strategy should ideally be planned around your content strategy. For this you will require three elements, 1.) keywords, 2.) links and 3.) substance to piece your content strategy together. Guest Post on High quality sites can improve your SEO ranking. To improve ranking and boost ranking, buy Guest Post on Techtimes from the high quality guest post service. Characteristics of a high quality website A high quality website has the following characteristics: Unique content Content is unique both within the website itself (i.e. each page has unique content and not similar to other pages), but also compared to other websites. Demonstrate Expertise Content is produced by experts based on research and or experience. If for example the subject is health related, then the advice should be provided by qualified authors who can professionally give advice for the particular subject. Unbiased content Content is detail and describes both sides of a story and is not promoting a single product, idea or service. Accessibility A high quality website has versions for non PC users as well. It is important that mobile and tablet users can access the website without any usability issues. Usability Can the user navigate the website easily; is the website user friendly? Attention to detail Content is easy to read with images (if applicable) and free of spelling and grammar mistakes. Does it seem that the owner cares on what is published on the website or is it for the purpose of having content in order to run ads? SEO Optimized Optimizing a web site for search engines has many benefits but it is important not to overdo it. A good quality web site needs to have non-optimized content as well. This is my opinion and although some people may disagree it is a fact that over-optimization can sometimes generate the opposite results. The reason is that algorithms can sometimes interpret over-optimization as an attempt to game the system and they may take measures to prevent this from happening. Balance between content and ads It is not something bad for a website to have ads or promotions but these should not distract the users from finding the information they need. Speed A high quality website loads fast. A fast website will rank higher and create more conventions, sales and loyal readers. Social Social media changed our lives, the way we communicate but also the way we assess quality. It is expected for a good product to have good reviews, Facebook likes and Tweets. Before you make a decision to buy or not, you may examine these social factors as well. Likewise, It is also expected for a good website to be socially accepted and recognized i.e. have Facebook followers, RSS subscribers etc. User Engagement and Interaction Do users spend enough time on the site and read more than one pages before they leave? Do they interact with the content by adding comments, making suggestions, getting into conversations etc.? Better than the competition When you take a specific keyword, is your website better than your competitors? Does it deserve one of the top positions if judged without bias?

  11. Z

    Transparency in Keyword Faceted Search: a dataset of Google Shopping html...

    • data.niaid.nih.gov
    • zenodo.org
    Updated Jan 24, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hoang Van Tien (2020). Transparency in Keyword Faceted Search: a dataset of Google Shopping html pages [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_1491556
    Explore at:
    Dataset updated
    Jan 24, 2020
    Dataset provided by
    Hoang Van Tien
    De Nicola Rocco
    Cozza Vittoria
    Petrocchi Marinella
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset contains a collection of around 2,000 HTML pages: these web pages contain the search results obtained in return to queries for different products, searched by a set of synthetic users surfing Google Shopping (US version) from different locations, in July, 2016.

    Each file in the collection has a name where there is indicated the location from where the search has been done, the userID, and the searched product: no_email_LOCATION_USERID.PRODUCT.shopping_testing.#.html

    The locations are Philippines (PHI), United States (US), India (IN). The userIDs: 26 to 30 for users searching from Philippines, 1 to 5 from US, 11 to 15 from India.

    Products have been choice following 130 keywords (e.g., MP3 player, MP4 Watch, Personal organizer, Television, etc.).

    In the following, we describe how the search results have been collected.

    Each user has a fresh profile. The creation of a new profile corresponds to launch a new, isolated, web browser client instance and open the Google Shopping US web page.

    To mimic real users, the synthetic users can browse, scroll pages, stay on a page, and click on links.

    A fully-fledged web browser is used to get the correct desktop version of the website under investigation. This is because websites could be designed to behave according to user agents, as witnessed by the differences between the mobile and desktop versions of the same website.

    The prices are the retail ones displayed by Google Shopping in US dollars (thus, excluding shipping fees).

    Several frameworks have been proposed for interacting with web browsers and analysing results from search engines. This research adopts OpenWPM. OpenWPM is automatised with Selenium to efficiently create and manage different users with isolated Firefox and Chrome client instances, each of them with their own associated cookies.

    The experiments run, on average, 24 hours. In each of them, the software runs on our local server, but the browser's traffic is redirected to the designated remote servers (i.e., to India), via tunneling in SOCKS proxies. This way, all commands are simultaneously distributed over all proxies. The experiments adopt the Mozilla Firefox browser (version 45.0) for the web browsing tasks and run under Ubuntu 14.04. Also, for each query, we consider the first page of results, counting 40 products. Among them, the focus of the experiments is mostly on the top 10 and top 3 results.

    Due to connection errors, one of the Philippine profiles have no associated results. Also, for Philippines, a few keywords did not lead to any results: videocassette recorders, totes, umbrellas. Similarly, for US, no results were for totes and umbrellas.

    The search results have been analyzed in order to check if there were evidence of price steering, based on users' location.

    One term of usage applies:

    In any research product whose findings are based on this dataset, please cite

    @inproceedings{DBLP:conf/ircdl/CozzaHPN19, author = {Vittoria Cozza and Van Tien Hoang and Marinella Petrocchi and Rocco {De Nicola}}, title = {Transparency in Keyword Faceted Search: An Investigation on Google Shopping}, booktitle = {Digital Libraries: Supporting Open Science - 15th Italian Research Conference on Digital Libraries, {IRCDL} 2019, Pisa, Italy, January 31 - February 1, 2019, Proceedings}, pages = {29--43}, year = {2019}, crossref = {DBLP:conf/ircdl/2019}, url = {https://doi.org/10.1007/978-3-030-11226-4_3}, doi = {10.1007/978-3-030-11226-4_3}, timestamp = {Fri, 18 Jan 2019 23:22:50 +0100}, biburl = {https://dblp.org/rec/bib/conf/ircdl/CozzaHPN19}, bibsource = {dblp computer science bibliography, https://dblp.org} }

  12. ScrapeHero Data Cloud - Free and Easy to use

    • datarade.ai
    .json, .csv
    Updated Apr 11, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Scrapehero (2022). ScrapeHero Data Cloud - Free and Easy to use [Dataset]. https://datarade.ai/data-products/scrapehero-data-cloud-free-and-easy-to-use-scrapehero
    Explore at:
    .json, .csvAvailable download formats
    Dataset updated
    Apr 11, 2022
    Dataset provided by
    ScrapeHero
    Authors
    Scrapehero
    Area covered
    Bhutan, Bahamas, Ghana, Slovakia, Anguilla, Portugal, Chad, Niue, Dominica, Bahrain
    Description

    The Easiest Way to Collect Data from the Internet Download anything you see on the internet into spreadsheets within a few clicks using our ready-made web crawlers or a few lines of code using our APIs

    We have made it as simple as possible to collect data from websites

    Easy to Use Crawlers Amazon Product Details and Pricing Scraper Amazon Product Details and Pricing Scraper Get product information, pricing, FBA, best seller rank, and much more from Amazon.

    Google Maps Search Results Google Maps Search Results Get details like place name, phone number, address, website, ratings, and open hours from Google Maps or Google Places search results.

    Twitter Scraper Twitter Scraper Get tweets, Twitter handle, content, number of replies, number of retweets, and more. All you need to provide is a URL to a profile, hashtag, or an advance search URL from Twitter.

    Amazon Product Reviews and Ratings Amazon Product Reviews and Ratings Get customer reviews for any product on Amazon and get details like product name, brand, reviews and ratings, and more from Amazon.

    Google Reviews Scraper Google Reviews Scraper Scrape Google reviews and get details like business or location name, address, review, ratings, and more for business and places.

    Walmart Product Details & Pricing Walmart Product Details & Pricing Get the product name, pricing, number of ratings, reviews, product images, URL other product-related data from Walmart.

    Amazon Search Results Scraper Amazon Search Results Scraper Get product search rank, pricing, availability, best seller rank, and much more from Amazon.

    Amazon Best Sellers Amazon Best Sellers Get the bestseller rank, product name, pricing, number of ratings, rating, product images, and more from any Amazon Bestseller List.

    Google Search Scraper Google Search Scraper Scrape Google search results and get details like search rank, paid and organic results, knowledge graph, related search results, and more.

    Walmart Product Reviews & Ratings Walmart Product Reviews & Ratings Get customer reviews for any product on Walmart.com and get details like product name, brand, reviews, and ratings.

    Scrape Emails and Contact Details Scrape Emails and Contact Details Get emails, addresses, contact numbers, social media links from any website.

    Walmart Search Results Scraper Walmart Search Results Scraper Get Product details such as pricing, availability, reviews, ratings, and more from Walmart search results and categories.

    Glassdoor Job Listings Glassdoor Job Listings Scrape job details such as job title, salary, job description, location, company name, number of reviews, and ratings from Glassdoor.

    Indeed Job Listings Indeed Job Listings Scrape job details such as job title, salary, job description, location, company name, number of reviews, and ratings from Indeed.

    LinkedIn Jobs Scraper Premium LinkedIn Jobs Scraper Scrape job listings on LinkedIn and extract job details such as job title, job description, location, company name, number of reviews, and more.

    Redfin Scraper Premium Redfin Scraper Scrape real estate listings from Redfin. Extract property details such as address, price, mortgage, redfin estimate, broker name and more.

    Yelp Business Details Scraper Yelp Business Details Scraper Scrape business details from Yelp such as phone number, address, website, and more from Yelp search and business details page.

    Zillow Scraper Premium Zillow Scraper Scrape real estate listings from Zillow. Extract property details such as address, price, Broker, broker name and more.

    Amazon product offers and third party sellers Amazon product offers and third party sellers Get product pricing, delivery details, FBA, seller details, and much more from the Amazon offer listing page.

    Realtor Scraper Premium Realtor Scraper Scrape real estate listings from Realtor.com. Extract property details such as Address, Price, Area, Broker and more.

    Target Product Details & Pricing Target Product Details & Pricing Get product details from search results and category pages such as pricing, availability, rating, reviews, and 20+ data points from Target.

    Trulia Scraper Premium Trulia Scraper Scrape real estate listings from Trulia. Extract property details such as Address, Price, Area, Mortgage and more.

    Amazon Customer FAQs Amazon Customer FAQs Get FAQs for any product on Amazon and get details like the question, answer, answered user name, and more.

    Yellow Pages Scraper Yellow Pages Scraper Get details like business name, phone number, address, website, ratings, and more from Yellow Pages search results.

  13. Distribution of search.yahoo.com traffic 2025, by country

    • statista.com
    Updated Jul 8, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Distribution of search.yahoo.com traffic 2025, by country [Dataset]. https://www.statista.com/statistics/1386767/distribution-of-visitors-to-yahoocom-by-country/
    Explore at:
    Dataset updated
    Jul 8, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    May 2025
    Area covered
    Worldwide
    Description

    In May 2025, the United States accounted for over ** percent of traffic to the online search website search.yahoo.com. Taiwan and the United Kingdom ranked second and third, accounting for **** percent and **** percent of web visits to the platform each. Meanwhile, the domain Yahoo.com also received a similar distribution of its traffic from the United States and the countries composing the rest of its ranking.

  14. NYC STEW-MAP Staten Island organizations' website hyperlink webscrape

    • catalog.data.gov
    • s.cnmilf.com
    Updated Nov 21, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. EPA Office of Research and Development (ORD) (2022). NYC STEW-MAP Staten Island organizations' website hyperlink webscrape [Dataset]. https://catalog.data.gov/dataset/nyc-stew-map-staten-island-organizations-website-hyperlink-webscrape
    Explore at:
    Dataset updated
    Nov 21, 2022
    Dataset provided by
    United States Environmental Protection Agencyhttp://www.epa.gov/
    Area covered
    New York, Staten Island
    Description

    The data represent web-scraping of hyperlinks from a selection of environmental stewardship organizations that were identified in the 2017 NYC Stewardship Mapping and Assessment Project (STEW-MAP) (USDA 2017). There are two data sets: 1) the original scrape containing all hyperlinks within the websites and associated attribute values (see "README" file); 2) a cleaned and reduced dataset formatted for network analysis. For dataset 1: Organizations were selected from from the 2017 NYC Stewardship Mapping and Assessment Project (STEW-MAP) (USDA 2017), a publicly available, spatial data set about environmental stewardship organizations working in New York City, USA (N = 719). To create a smaller and more manageable sample to analyze, all organizations that intersected (i.e., worked entirely within or overlapped) the NYC borough of Staten Island were selected for a geographically bounded sample. Only organizations with working websites and that the web scraper could access were retained for the study (n = 78). The websites were scraped between 09 and 17 June 2020 to a maximum search depth of ten using the snaWeb package (version 1.0.1, Stockton 2020) in the R computational language environment (R Core Team 2020). For dataset 2: The complete scrape results were cleaned, reduced, and formatted as a standard edge-array (node1, node2, edge attribute) for network analysis. See "READ ME" file for further details. References: R Core Team. (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/. Version 4.0.3. Stockton, T. (2020). snaWeb Package: An R package for finding and building social networks for a website, version 1.0.1. USDA Forest Service. (2017). Stewardship Mapping and Assessment Project (STEW-MAP). New York City Data Set. Available online at https://www.nrs.fs.fed.us/STEW-MAP/data/. This dataset is associated with the following publication: Sayles, J., R. Furey, and M. Ten Brink. How deep to dig: effects of web-scraping search depth on hyperlink network analysis of environmental stewardship organizations. Applied Network Science. Springer Nature, New York, NY, 7: 36, (2022).

  15. e

    PROSITE profiles

    • ebi.ac.uk
    Updated Feb 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). PROSITE profiles [Dataset]. https://www.ebi.ac.uk/interpro/
    Explore at:
    Dataset updated
    Feb 5, 2025
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    PROSITE is a database of protein families and domains. It consists of biologically significant sites, patterns and profiles that help to reliably identify to which known protein family a new sequence belongs. PROSITE is based at the Swiss Institute of Bioinformatics (SIB), Geneva, Switzerland.

  16. Web Design Services in the US - Market Research Report (2015-2030)

    • ibisworld.com
    Updated Sep 30, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    IBISWorld (2019). Web Design Services in the US - Market Research Report (2015-2030) [Dataset]. https://www.ibisworld.com/united-states/market-research-reports/web-design-services-industry/
    Explore at:
    Dataset updated
    Sep 30, 2019
    Dataset authored and provided by
    IBISWorld
    License

    https://www.ibisworld.com/about/termsofuse/https://www.ibisworld.com/about/termsofuse/

    Time period covered
    2015 - 2030
    Area covered
    United States
    Description

    Web design service companies have experienced significant growth over the past few years, driven by the expanding use of the Internet. As online operations have become more widespread, businesses and consumers have increasingly recognized the importance of maintaining an online presence, leading to robust demand for web design services and boosting the industry’s profit. The rise in broadband connections and online business activities further spotlight this trend, making web design a vital component of modern commerce and communication. This solid foundation suggests the industry has been thriving despite facing some economic turbulence related to global events and shifting financial climates. Over the past few years, web design companies have navigated a dynamic landscape marked by both opportunities and challenges. Strong economic conditions have typically favored the industry, with rising disposable incomes and low unemployment rates encouraging both consumers and businesses to invest in professional web design. Despite this, the sector also faced hurdles such as high inflation, which made cost increases necessary and pushed some customers towards cheaper substitutes such as website templates and in-house production, causing a slump in revenue in 2022. Despite these obstacles, the industry has demonstrated resilience against rising interest rates and economic uncertainties by focusing on enhancing user experience and accessibility. Overall, revenue for web design service companies is anticipated to rise at a CAGR of 2.2% during the current period, reaching $43.5 billion in 2024. This includes a 2.2% jump in revenue in that year. Looking ahead, web design companies will continue to do well, as the strong performance of the US economy will likely support ongoing demand for web design services, bolstered by higher consumer spending and increased corporate profit. On top of this, government investment, especially at the state and local levels, will provide further revenue streams as public agencies seek to upgrade their web presence. Innovation remains key, with a particular emphasis on designing for mobile devices as more activities shift to on-the-go platforms. Companies that can effectively adapt to these trends and invest in new technologies will likely capture a significant market share, fostering an environment where entry remains feasible yet competitive. Overall, revenue for web design service providers is forecast to swell at a CAGR of 1.9% during the outlook period, reaching $47.7 billion in 2029.

  17. e

    SMART

    • ebi.ac.uk
    Updated Feb 14, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2020). SMART [Dataset]. https://www.ebi.ac.uk/interpro/
    Explore at:
    Dataset updated
    Feb 14, 2020
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    SMART (a Simple Modular Architecture Research Tool) allows the identification and annotation of genetically mobile domains and the analysis of domain architectures. SMART is based at EMBL, Heidelberg, Germany.

  18. e

    CATH-Gene3D

    • ebi.ac.uk
    Updated Oct 21, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2020). CATH-Gene3D [Dataset]. https://www.ebi.ac.uk/interpro/
    Explore at:
    Dataset updated
    Oct 21, 2020
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The CATH-Gene3D database describes protein families and domain architectures in complete genomes. Protein families are formed using a Markov clustering algorithm, followed by multi-linkage clustering according to sequence identity. Mapping of predicted structure and sequence domains is undertaken using hidden Markov models libraries representing CATH and Pfam domains. CATH-Gene3D is based at University College, London, UK.

  19. D

    Website Design Services Market Report | Global Forecast From 2025 To 2033

    • dataintelo.com
    csv, pdf, pptx
    Updated Jan 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2025). Website Design Services Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/global-website-design-services-market
    Explore at:
    pdf, pptx, csvAvailable download formats
    Dataset updated
    Jan 7, 2025
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Website Design Services Market Outlook



    The global website design services market size was valued at approximately USD 45 billion in 2023 and is projected to reach USD 85 billion by 2032, expanding at a CAGR of 7.5% over the forecast period. This significant growth can be attributed to an increasing need for businesses to establish a robust online presence, evolving consumer behaviors, and the rising penetration of the internet across the globe.



    One of the primary growth factors driving the website design services market is the accelerating shift towards digital transformation. As businesses across various sectors recognize the importance of having a dynamic and user-friendly online presence, the demand for professional website design services has seen a substantial increase. Companies, both large and small, are investing heavily in their digital platforms to enhance user experience, improve search engine ranking, and facilitate online transactions. This trend is particularly prominent in sectors like retail, where e-commerce is becoming the primary shopping channel for many consumers.



    Additionally, the continuous advancements in web technologies and tools have played a critical role in propelling the market forward. The introduction of new design software, improved coding languages, and enhanced content management systems have made it easier for designers to create more sophisticated and functional websites. These technological innovations not only streamline the design process but also allow for more creative and customized solutions, catering to the specific needs of different industries and user preferences. This ongoing evolution in web design capabilities is expected to further boost market growth over the coming years.



    Another significant factor contributing to the market's expansion is the growing emphasis on mobile-first design. With the majority of internet users now accessing the web via smartphones and tablets, businesses are prioritizing responsive and mobile-friendly website designs. This shift towards mobile optimization is not only crucial for improving user experience but also essential for maintaining competitive advantage and achieving higher search engine rankings. Consequently, the demand for website design services that specialize in responsive design and mobile optimization is on the rise, further driving market growth.



    The regional outlook for the website design services market reveals a strong performance across various geographies. North America and Europe currently lead the market, driven by high internet penetration rates, advanced technological infrastructure, and a large number of businesses seeking professional website design solutions. Meanwhile, the Asia Pacific region is expected to witness the highest growth rate during the forecast period, fueled by the rapid digitalization efforts, increasing number of SMEs, and the expanding e-commerce sector in countries like China and India. Latin America and the Middle East & Africa are also anticipated to experience notable growth, supported by improving internet accessibility and growing awareness of the importance of an online presence.



    Website Builder Platforms have revolutionized the way businesses and individuals create their online presence. These platforms offer a range of tools and features that simplify the website creation process, making it accessible to users without technical expertise. With drag-and-drop functionality, customizable templates, and integrated hosting solutions, website builder platforms enable users to design and launch professional-looking websites quickly and efficiently. This ease of use has made them particularly popular among small businesses and individual professionals who seek cost-effective and time-efficient solutions for establishing their digital footprint. As the demand for online presence continues to grow, website builder platforms are likely to play an increasingly important role in the website design services market.



    Service Type Analysis



    The website design services market can be segmented based on service type into custom website design, template-based website design, responsive web design, e-commerce website design, and others. Each of these service types caters to different needs and preferences of businesses and individuals, thereby contributing uniquely to the overall market growth.



    Custom website design services are particularly favored by businesses that requ

  20. e

    SUPERFAMILY

    • ebi.ac.uk
    Updated Nov 8, 2010
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2010). SUPERFAMILY [Dataset]. https://www.ebi.ac.uk/interpro/
    Explore at:
    Dataset updated
    Nov 8, 2010
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    SUPERFAMILY is a library of profile hidden Markov models that represent all proteins of known structure. The library is based on the SCOP classification of proteins: each model corresponds to a SCOP domain and aims to represent the entire SCOP superfamily that the domain belongs to. SUPERFAMILY is based at the University of Bristol, UK.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2025). Leading websites worldwide 2024, by monthly visits [Dataset]. https://www.statista.com/statistics/1201880/most-visited-websites-worldwide/
Organization logo

Leading websites worldwide 2024, by monthly visits

Explore at:
97 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Mar 24, 2025
Dataset authored and provided by
Statistahttp://statista.com/
Time period covered
Nov 2024
Area covered
Worldwide
Description

In November 2024, Google.com was the most popular website worldwide with 136 billion average monthly visits. The online platform has held the top spot as the most popular website since June 2010, when it pulled ahead of Yahoo into first place. Second-ranked YouTube generated more than 72.8 billion monthly visits in the measured period. The internet leaders: search, social, and e-commerce Social networks, search engines, and e-commerce websites shape the online experience as we know it. While Google leads the global online search market by far, YouTube and Facebook have become the world’s most popular websites for user generated content, solidifying Alphabet’s and Meta’s leadership over the online landscape. Meanwhile, websites such as Amazon and eBay generate millions in profits from the sale and distribution of goods, making the e-market sector an integral part of the global retail scene. What is next for online content? Powering social media and websites like Reddit and Wikipedia, user-generated content keeps moving the internet’s engines. However, the rise of generative artificial intelligence will bring significant changes to how online content is produced and handled. ChatGPT is already transforming how online search is performed, and news of Google's 2024 deal for licensing Reddit content to train large language models (LLMs) signal that the internet is likely to go through a new revolution. While AI's impact on the online market might bring both opportunities and challenges, effective content management will remain crucial for profitability on the web.

Search
Clear search
Close search
Google apps
Main menu