24 datasets found
  1. similarweb.com Website Traffic, Ranking, Analytics [July 2025]

    • semrush.com
    • stb2.digiseotools.com
    Updated Aug 12, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Semrush (2025). similarweb.com Website Traffic, Ranking, Analytics [July 2025] [Dataset]. https://www.semrush.com/website/similarweb.com/overview/
    Explore at:
    Dataset updated
    Aug 12, 2025
    Dataset authored and provided by
    Semrushhttps://fr.semrush.com/
    License

    https://www.semrush.com/company/legal/terms-of-service/https://www.semrush.com/company/legal/terms-of-service/

    Time period covered
    Aug 12, 2025
    Area covered
    Worldwide
    Variables measured
    visits, backlinks, bounceRate, pagesPerVisit, authorityScore, organicKeywords, avgVisitDuration, referringDomains, trafficByCountry, paidSearchTraffic, and 3 more
    Measurement technique
    Semrush Traffic Analytics; Click-stream data
    Description

    similarweb.com is ranked #1119 in IN with 18.51M Traffic. Categories: Information Technology, Online Services. Learn more about website traffic, market share, and more!

  2. Data from: Analysis of the Quantitative Impact of Social Networks General...

    • figshare.com
    • produccioncientifica.ucm.es
    doc
    Updated Oct 14, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    David Parra; Santiago Martínez Arias; Sergio Mena Muñoz (2022). Analysis of the Quantitative Impact of Social Networks General Data.doc [Dataset]. http://doi.org/10.6084/m9.figshare.21329421.v1
    Explore at:
    docAvailable download formats
    Dataset updated
    Oct 14, 2022
    Dataset provided by
    Figsharehttp://figshare.com/
    figshare
    Authors
    David Parra; Santiago Martínez Arias; Sergio Mena Muñoz
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    General data recollected for the studio " Analysis of the Quantitative Impact of Social Networks on Web Traffic of Cybermedia in the 27 Countries of the European Union". Four research questions are posed: what percentage of the total web traffic generated by cybermedia in the European Union comes from social networks? Is said percentage higher or lower than that provided through direct traffic and through the use of search engines via SEO positioning? Which social networks have a greater impact? And is there any degree of relationship between the specific weight of social networks in the web traffic of a cybermedia and circumstances such as the average duration of the user's visit, the number of page views or the bounce rate understood in its formal aspect of not performing any kind of interaction on the visited page beyond reading its content? To answer these questions, we have first proceeded to a selection of the cybermedia with the highest web traffic of the 27 countries that are currently part of the European Union after the United Kingdom left on December 31, 2020. In each nation we have selected five media using a combination of the global web traffic metrics provided by the tools Alexa (https://www.alexa.com/), which ceased to be operational on May 1, 2022, and SimilarWeb (https:// www.similarweb.com/). We have not used local metrics by country since the results obtained with these first two tools were sufficiently significant and our objective is not to establish a ranking of cybermedia by nation but to examine the relevance of social networks in their web traffic. In all cases, cybermedia whose property corresponds to a journalistic company have been selected, ruling out those belonging to telecommunications portals or service providers; in some cases they correspond to classic information companies (both newspapers and televisions) while in others they refer to digital natives, without this circumstance affecting the nature of the research proposed.
    Below we have proceeded to examine the web traffic data of said cybermedia. The period corresponding to the months of October, November and December 2021 and January, February and March 2022 has been selected. We believe that this six-month stretch allows possible one-time variations to be overcome for a month, reinforcing the precision of the data obtained. To secure this data, we have used the SimilarWeb tool, currently the most precise tool that exists when examining the web traffic of a portal, although it is limited to that coming from desktops and laptops, without taking into account those that come from mobile devices, currently impossible to determine with existing measurement tools on the market. It includes:

    Web traffic general data: average visit duration, pages per visit and bounce rate Web traffic origin by country Percentage of traffic generated from social media over total web traffic Distribution of web traffic generated from social networks Comparison of web traffic generated from social netwoks with direct and search procedures

  3. f

    Summary of results comparing Google Analytics and SimilarWeb for total...

    • plos.figshare.com
    • datasetcatalog.nlm.nih.gov
    xls
    Updated Jun 13, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bernard J. Jansen; Soon-gyo Jung; Joni Salminen (2023). Summary of results comparing Google Analytics and SimilarWeb for total visits, unique visitors, bounce rate, and average session duration. [Dataset]. http://doi.org/10.1371/journal.pone.0268212.t006
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 13, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Bernard J. Jansen; Soon-gyo Jung; Joni Salminen
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Difference uses Google Analytics as the Baseline. Results based on Paired t-Test for Hypotheses Supported.

  4. M

    Similarweb Free Cash Flow 2020-2025 | SMWB

    • macrotrends.net
    csv
    Updated Jul 31, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MACROTRENDS (2025). Similarweb Free Cash Flow 2020-2025 | SMWB [Dataset]. https://www.macrotrends.net/stocks/charts/SMWB/similarweb/free-cash-flow
    Explore at:
    csvAvailable download formats
    Dataset updated
    Jul 31, 2025
    Dataset authored and provided by
    MACROTRENDS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2010 - 2025
    Area covered
    United States
    Description

    Similarweb free cash flow from 2020 to 2025. Free cash flow can be defined as a measure of financial performance calculated as operating cash flow minus capital expenditures.

  5. A

    Alternative Data Market Report

    • archivemarketresearch.com
    doc, pdf, ppt
    Updated Aug 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Archive Market Research (2025). Alternative Data Market Report [Dataset]. https://www.archivemarketresearch.com/reports/alternative-data-market-5021
    Explore at:
    doc, ppt, pdfAvailable download formats
    Dataset updated
    Aug 23, 2025
    Dataset authored and provided by
    Archive Market Research
    License

    https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    global
    Variables measured
    Market Size
    Description

    The Alternative Data Market size was valued at USD 7.20 billion in 2023 and is projected to reach USD 126.50 billion by 2032, exhibiting a CAGR of 50.6 % during the forecasts period. The use and processing of information that is not in financial databases is known as the alternative data market. Such data involves posts in social networks, satellite images, credit card transactions, web traffic and many others. It is mostly used in financial field to make the investment decisions, managing risks and analyzing competitors, giving a more general view on market trends as well as consumers’ attitude. It has been found that there is increasing requirement for the obtaining of data from unconventional sources as firms strive to nose ahead in highly competitive markets. Some current trend are the finding of AI and machine learning to drive large sets of data and the broadening utilization of the so called “Alternative Data” across industries that are not only the finance industry. Recent developments include: In April 2023, Thinknum Alternative Data launched new data fields to its employee sentiment datasets for people analytics teams and investors to use this as an 'employee NPS' proxy, and support highly-rated employers set up interviews through employee referrals. , In September 2022, Thinknum Alternative Data announced its plan to combine data Similarweb, SensorTower, Thinknum, Caplight, and Pathmatics with Lagoon, a sophisticated infrastructure platform to deliver an alternative data source for investment research, due diligence, deal sourcing and origination, and post-acquisition strategies in private markets. , In May 2022, M Science LLC launched a consumer spending trends platform, providing daily, weekly, monthly, and semi-annual visibility into consumer behaviors and competitive benchmarking. The consumer spending platform provided real-time insights into consumer spending patterns for Australian brands and an unparalleled business performance analysis. .

  6. C

    Competitor Analysis Tools Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated Apr 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). Competitor Analysis Tools Report [Dataset]. https://www.datainsightsmarket.com/reports/competitor-analysis-tools-1943431
    Explore at:
    doc, pdf, pptAvailable download formats
    Dataset updated
    Apr 24, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The market for competitor analysis tools is experiencing robust growth, driven by the increasing importance of competitive intelligence in today's dynamic business landscape. The surge in digital marketing and the need for businesses, both SMEs and large enterprises, to understand their competitive positioning fuels demand for sophisticated tools offering comprehensive data analysis and actionable insights. Cloud-based solutions are dominating the market due to their scalability, accessibility, and cost-effectiveness compared to on-premises deployments. Key players like SEMrush, Ahrefs, and SimilarWeb are establishing strong market presence through continuous innovation, comprehensive feature sets, and targeted marketing strategies. However, the market also faces challenges, including the rising costs of data acquisition and the complexity of integrating various tools into existing workflows. The competitive landscape is characterized by a mix of established players and emerging niche providers. Differentiation is achieved through unique data sources, specialized analytics capabilities, and the ability to integrate seamlessly with other marketing and business intelligence platforms. The North American and European markets currently hold a significant share, owing to high technology adoption and established digital marketing ecosystems. However, growth is expected in Asia-Pacific regions as businesses in developing economies increasingly adopt digital strategies and seek competitive advantages. The forecast period (2025-2033) suggests continued expansion, propelled by technological advancements like AI-powered insights and the expanding use of social media analytics within competitor analysis. The market's segmentation reflects varying needs across different business sizes and deployment preferences. While large enterprises typically opt for comprehensive, feature-rich solutions capable of handling large datasets and integrating with various systems, SMEs often prioritize cost-effective, user-friendly tools providing essential insights. The choice between cloud-based and on-premises solutions depends on factors like IT infrastructure, security considerations, and budget constraints. As the market matures, we anticipate further consolidation through mergers and acquisitions, and the emergence of more specialized tools catering to specific industry needs. The overall trajectory indicates continued strong growth, with a focus on enhanced data analysis, improved user experiences, and seamless integration within broader business intelligence platforms.

  7. Host country of organization for 86 websites in study.

    • plos.figshare.com
    xls
    Updated Jun 15, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bernard J. Jansen; Soon-gyo Jung; Joni Salminen (2023). Host country of organization for 86 websites in study. [Dataset]. http://doi.org/10.1371/journal.pone.0268212.t003
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 15, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Bernard J. Jansen; Soon-gyo Jung; Joni Salminen
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Host country of organization for 86 websites in study.

  8. f

    Comparison of definitions of total visits, unique visitors, bounce rate, and...

    • plos.figshare.com
    xls
    Updated Jun 13, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bernard J. Jansen; Soon-gyo Jung; Joni Salminen (2023). Comparison of definitions of total visits, unique visitors, bounce rate, and session duration conceptually and for the two analytics platforms: Google Analytics and SimilarWeb. [Dataset]. http://doi.org/10.1371/journal.pone.0268212.t002
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 13, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Bernard J. Jansen; Soon-gyo Jung; Joni Salminen
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Comparison of definitions of total visits, unique visitors, bounce rate, and session duration conceptually and for the two analytics platforms: Google Analytics and SimilarWeb.

  9. SimilarWeb (SMWB) - Tracking Digital Trends: Will it Drive Growth?...

    • kappasignal.com
    Updated Oct 5, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). SimilarWeb (SMWB) - Tracking Digital Trends: Will it Drive Growth? (Forecast) [Dataset]. https://www.kappasignal.com/2024/10/similarweb-smwb-tracking-digital-trends.html
    Explore at:
    Dataset updated
    Oct 5, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    SimilarWeb (SMWB) - Tracking Digital Trends: Will it Drive Growth?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  10. SMWB Similarweb Ltd. Ordinary Shares (Forecast)

    • kappasignal.com
    Updated Dec 7, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2022). SMWB Similarweb Ltd. Ordinary Shares (Forecast) [Dataset]. https://www.kappasignal.com/2022/12/smwb-similarweb-ltd-ordinary-shares.html
    Explore at:
    Dataset updated
    Dec 7, 2022
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    SMWB Similarweb Ltd. Ordinary Shares

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  11. f

    Website type for the 86 websites in study.

    • figshare.com
    • datasetcatalog.nlm.nih.gov
    xls
    Updated Jun 13, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bernard J. Jansen; Soon-gyo Jung; Joni Salminen (2023). Website type for the 86 websites in study. [Dataset]. http://doi.org/10.1371/journal.pone.0268212.t005
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 13, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Bernard J. Jansen; Soon-gyo Jung; Joni Salminen
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Website type for the 86 websites in study.

  12. f

    Industry vertical of organization for 86 websites in study.

    • figshare.com
    • plos.figshare.com
    xls
    Updated Jun 15, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bernard J. Jansen; Soon-gyo Jung; Joni Salminen (2023). Industry vertical of organization for 86 websites in study. [Dataset]. http://doi.org/10.1371/journal.pone.0268212.t004
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 15, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Bernard J. Jansen; Soon-gyo Jung; Joni Salminen
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Industry vertical of organization for 86 websites in study.

  13. Similarweb's Surge: A Sign of Digital Dominance? (SMWB) (Forecast)

    • kappasignal.com
    Updated May 22, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). Similarweb's Surge: A Sign of Digital Dominance? (SMWB) (Forecast) [Dataset]. https://www.kappasignal.com/2024/05/similarwebs-surge-sign-of-digital.html
    Explore at:
    Dataset updated
    May 22, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Similarweb's Surge: A Sign of Digital Dominance? (SMWB)

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  14. Traffic Acquisition to LAMs Websites

    • zenodo.org
    • data.niaid.nih.gov
    Updated Apr 30, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ioannis C. Drivas; Ioannis C. Drivas; Dimitrios Kouis; Dimitrios Kouis (2022). Traffic Acquisition to LAMs Websites [Dataset]. http://doi.org/10.5281/zenodo.6505277
    Explore at:
    Dataset updated
    Apr 30, 2022
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Ioannis C. Drivas; Ioannis C. Drivas; Dimitrios Kouis; Dimitrios Kouis
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Preliminary research efforts regarding Social Media Platforms and their contribution to website traffic in LAMs. Through the Similar Web API, the leading social networks (Facebook, Twitter, Youtube, Instagram, Reddit, Pinterest, LinkedIn) that drove traffic to each one of the 220 cases in our dataset were identified and analyzed in the first sheet. Aggregated results proved that Facebook platform was responsible for 46.1% of social traffic (second sheet).

  15. A

    Alternative Data Platform Report

    • marketreportanalytics.com
    doc, pdf, ppt
    Updated Apr 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Report Analytics (2025). Alternative Data Platform Report [Dataset]. https://www.marketreportanalytics.com/reports/alternative-data-platform-55013
    Explore at:
    ppt, pdf, docAvailable download formats
    Dataset updated
    Apr 3, 2025
    Dataset authored and provided by
    Market Report Analytics
    License

    https://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The Alternative Data Platform market is experiencing robust growth, driven by the increasing need for businesses across diverse sectors to leverage non-traditional data sources for improved decision-making. The market, estimated at $5 billion in 2025, is projected to expand significantly over the forecast period (2025-2033), fueled by a Compound Annual Growth Rate (CAGR) of 25%. This growth is primarily attributed to several key factors. Firstly, the rising adoption of cloud-based solutions offers scalability and cost-effectiveness, attracting businesses of all sizes. Secondly, the expanding application of alternative data in areas like fraud detection (BFSI), supply chain optimization (Retail and Logistics), and market prediction (IT and Telecommunications) is pushing market expansion. Furthermore, the increasing availability and affordability of alternative data sources, combined with advancements in data analytics and machine learning, are enabling businesses to extract greater value from these non-traditional datasets. While data security and privacy concerns present a challenge, the overall market outlook remains overwhelmingly positive. The market segmentation reveals strong growth across various applications and types. The BFSI sector is a major driver due to its need for enhanced risk management and fraud prevention. The cloud-based segment dominates the market due to its flexibility and accessibility. North America currently holds the largest market share, followed by Europe and Asia Pacific, reflecting the higher level of technological advancement and adoption in these regions. However, the Asia Pacific region is poised for significant growth due to increasing digitalization and rising investments in data analytics infrastructure. The competitive landscape is dynamic, with a mix of established players and emerging startups offering diverse solutions. The success of individual companies depends on their ability to innovate, provide reliable data, ensure data security, and offer user-friendly platforms. Competition is likely to intensify as more companies enter this rapidly evolving market.

  16. Dynamic web page change content detection

    • zenodo.org
    Updated Apr 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Damir Pozderac; Damir Pozderac; Ehlimana Cogo; Ehlimana Cogo; Irfan Prazina; Irfan Prazina; Emir Cogo; Emir Cogo; Šeila Bećirović; Šeila Bećirović; Vensada Okanovic; Vensada Okanovic (2025). Dynamic web page change content detection [Dataset]. http://doi.org/10.5281/zenodo.12699013
    Explore at:
    Dataset updated
    Apr 30, 2025
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Damir Pozderac; Damir Pozderac; Ehlimana Cogo; Ehlimana Cogo; Irfan Prazina; Irfan Prazina; Emir Cogo; Emir Cogo; Šeila Bećirović; Šeila Bećirović; Vensada Okanovic; Vensada Okanovic
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset contains 4 parts. "SimilarWeb dataset with screenshots" is created by scraping web elements, their CSS, and corresponding screenshots in three different time intervals for around 100 web pages. Based on this data, the "SimilarWeb dataset with SSIM column" is created with the target column containing the structural similarity index measure (SSIM) of the captured screenshots. This part of the dataset is used to train machine learning regression models. To evaluate approach, "Accessible web pages dataset" and "General use web pages dataset" parts of the dataset are used.

  17. Information Organizations and Websites Performance

    • kaggle.com
    Updated Sep 17, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Information Management Research Lab (2020). Information Organizations and Websites Performance [Dataset]. http://doi.org/10.34740/kaggle/dsv/1494933
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Sep 17, 2020
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Information Management Research Lab
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Description

    Notice: You can check the new version 0.9.6 at the official page of Information Management Lab and at the Google Data Studio as well.

    Description of the Report and Topic Justification

    Now that the ICTs have matured, Information Organizations such as Libraries, Archives and Museums, also known as LAMs, proceed into the utilization of web technologies that are capable to expand the visibility and findability of their content. Within the current flourishing era of the semantic web, LAMs have voluminous amounts of web-based collections that are presented and digitally preserved through their websites. However, prior efforts indicate that LAMs suffer from fragmentation regarding the determination of well-informed strategies for improving the visibility and findability of their content on the Web (Vállez and Ventura, 2020; Krstić and Masliković, 2019; Voorbij, 2010). Several reasons related to this drawback. As such, administrators’ lack of data analytics competency in extracting and utilizing technical and behavioral datasets for improving visibility and awareness from analytics platforms; the difficulties in understanding web metrics that integrated into performance measurement systems; and hence the reduced capabilities in defining key performance indicators for greater usability, visibility, and awareness.

    In this enriched and updated technical report, the authors proceed into an examination of 504 unique websites of Libraries, Archives and Museums from all over the world. It is noted that the current report has been expanded by up to 14,81% of the prior one Version 0.9.5 of 439 domains examinations. The report aims to visualize the performance of the websites in terms of technical aspects such as their adequacy to metadata description of their content and collections, their loading speed, and security. This constitutes an important stepping-stone for optimization, as the higher the alignment with the technical compliencies, the greater the users’ behavior and usability within the examined websites, and thus their findability and visibility level in search engines (Drivas et al. 2020; Mavridis and Symeonidis 2015; Agarwal et al. 2012).

    One step further, within this version, we include behavioral analytics about users engagement with the content of the LAMs websites. More specifically, web analytics metrics are included such as Visit Duration, Pages per Visit, and Bounce Rates for 121 domains. We also include web analytics regarding the channels that these websites acquire their users, such as Direct traffic, Search Engines, Referral, Social Media, Email, and Display Advertising. SimilarWeb API was used to gather web data about the involved metrics.

    In the first pages of this report, general information is presented regarding the names of the examined organizations. This also includes their type, their geographical location, information about the adopted Content Management Systems (CMSs), and web server software types of integration per website. Furthermore, several other data are visualized related to the size of the examined Information Organizations in terms of the number of unique webpages within a website, the number of images, internal and external links and so on.

    Moreover, as a team, we proceed into the development of several factors that are capable to quantify the performance of websites. Reliability analysis takes place for measuring the internal consistency and discriminant validity of the proposed factors and their included variables. For testing the reliability, cohesion, and consistency of the included metrics, Cronbach’s Alpha (a), McDonald’s ω and Guttman λ-2 and λ-6 are used.
    - For Cronbach’s, a range of .550 up to .750 indicates an acceptable level of reliability and .800 or higher a very good level (Ursachi, Horodnic, and Zait, 2015). - McDonald’s ω indicator has the advantage to measure the strength of the association between the proposed variables. More specifically, the closer to .999 the higher the strength association between the variables and vice versa (Şimşek and Noyan, 2013). - Gutman’s λ-2 and λ-6 work verifiably to Cronbach’s a as they estimate the trustworthiness of variance of the gathered web analytics metrics. Low values less than .450 indicate high bias among the harvested web metrics, while values higher than .600 and above increase the trustworthiness of the sample (Callender and Osburn, 1979). -Kaiser–Meyer–Olkin (KMO) and Bartlett’s Test of Sphericity indicators are used for measuring the cohesion of the involved metrics. KMO and Bartlett’s test indicates that the closer the value is to .999 amongst the involved items, the higher the cohesion and consistency of them for potential categorization (Dziuban and S...

  18. fanvue.com Website Traffic, Ranking, Analytics [July 2025]

    • semrush.com
    Updated Aug 12, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Semrush (2025). fanvue.com Website Traffic, Ranking, Analytics [July 2025] [Dataset]. https://www.semrush.com/website/fanvue.com/overview/
    Explore at:
    Dataset updated
    Aug 12, 2025
    Dataset authored and provided by
    Semrushhttps://fr.semrush.com/
    License

    https://www.semrush.com/company/legal/terms-of-service/https://www.semrush.com/company/legal/terms-of-service/

    Time period covered
    Aug 12, 2025
    Area covered
    Worldwide
    Variables measured
    visits, backlinks, bounceRate, pagesPerVisit, authorityScore, organicKeywords, avgVisitDuration, referringDomains, trafficByCountry, paidSearchTraffic, and 3 more
    Measurement technique
    Semrush Traffic Analytics; Click-stream data
    Description

    fanvue.com is ranked #4835 in US with 9.61M Traffic. Categories: . Learn more about website traffic, market share, and more!

  19. teepublic.com Website Traffic, Ranking, Analytics [July 2025]

    • semrush.com
    Updated Aug 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Semrush (2025). teepublic.com Website Traffic, Ranking, Analytics [July 2025] [Dataset]. https://www.semrush.com/website/teepublic.com/overview/
    Explore at:
    Dataset updated
    Aug 11, 2025
    Dataset authored and provided by
    Semrushhttps://fr.semrush.com/
    License

    https://www.semrush.com/company/legal/terms-of-service/https://www.semrush.com/company/legal/terms-of-service/

    Time period covered
    Aug 11, 2025
    Area covered
    Worldwide
    Variables measured
    visits, backlinks, bounceRate, pagesPerVisit, authorityScore, organicKeywords, avgVisitDuration, referringDomains, trafficByCountry, paidSearchTraffic, and 3 more
    Measurement technique
    Semrush Traffic Analytics; Click-stream data
    Description

    teepublic.com is ranked #1889 in US with 7.83M Traffic. Categories: Retail, Apparel and Fashion, Online Services. Learn more about website traffic, market share, and more!

  20. C

    Customer Behavior Analysis Tool Report

    • archivemarketresearch.com
    doc, pdf, ppt
    Updated Jan 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Archive Market Research (2025). Customer Behavior Analysis Tool Report [Dataset]. https://www.archivemarketresearch.com/reports/customer-behavior-analysis-tool-11242
    Explore at:
    ppt, pdf, docAvailable download formats
    Dataset updated
    Jan 23, 2025
    Dataset authored and provided by
    Archive Market Research
    License

    https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    Market Size and Drivers: The global Customer Behavior Analysis Tool market is expected to reach a value of USD 12.5 billion by 2033, growing at a CAGR of 12.3% from 2025 to 2033. Rapidly evolving customer behavior, the surge in e-commerce, and the need for personalized marketing experiences are key drivers of market growth. The growing adoption of cloud-based solutions and the advancements in AI and machine learning technologies are further fueling market expansion. Competitive Landscape and Regional Distribution: The market landscape is highly competitive, with established players such as Similarweb, Google, and Facebook leading the pack. Other notable players include Zoho, Kissmetrics, Brand24, Brandwatch, Woopra, Mixpanel, Hotjar, Smartlook, HubSpot, Trifacta, Crazyegg, Sprout Social, Amplitude, Heap, FullStory, Tableau, Segment, Vertica, VWO, Userpilot, SAP, Teradata, Oracle, Salesforce, and Manthan System. North America holds the largest market share due to the presence of major technology hubs and early adoption of advanced analytics tools. Asia Pacific is expected to witness significant growth during the forecast period, primarily driven by rising digital penetration and the growth of e-commerce in the region.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Semrush (2025). similarweb.com Website Traffic, Ranking, Analytics [July 2025] [Dataset]. https://www.semrush.com/website/similarweb.com/overview/
Organization logo

similarweb.com Website Traffic, Ranking, Analytics [July 2025]

Explore at:
Dataset updated
Aug 12, 2025
Dataset authored and provided by
Semrushhttps://fr.semrush.com/
License

https://www.semrush.com/company/legal/terms-of-service/https://www.semrush.com/company/legal/terms-of-service/

Time period covered
Aug 12, 2025
Area covered
Worldwide
Variables measured
visits, backlinks, bounceRate, pagesPerVisit, authorityScore, organicKeywords, avgVisitDuration, referringDomains, trafficByCountry, paidSearchTraffic, and 3 more
Measurement technique
Semrush Traffic Analytics; Click-stream data
Description

similarweb.com is ranked #1119 in IN with 18.51M Traffic. Categories: Information Technology, Online Services. Learn more about website traffic, market share, and more!

Search
Clear search
Close search
Google apps
Main menu