14 datasets found
  1. Data from: Analysis of the Quantitative Impact of Social Networks General...

    • figshare.com
    • produccioncientifica.ucm.es
    doc
    Updated Oct 14, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    David Parra; Santiago Martínez Arias; Sergio Mena Muñoz (2022). Analysis of the Quantitative Impact of Social Networks General Data.doc [Dataset]. http://doi.org/10.6084/m9.figshare.21329421.v1
    Explore at:
    docAvailable download formats
    Dataset updated
    Oct 14, 2022
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    David Parra; Santiago Martínez Arias; Sergio Mena Muñoz
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    General data recollected for the studio " Analysis of the Quantitative Impact of Social Networks on Web Traffic of Cybermedia in the 27 Countries of the European Union". Four research questions are posed: what percentage of the total web traffic generated by cybermedia in the European Union comes from social networks? Is said percentage higher or lower than that provided through direct traffic and through the use of search engines via SEO positioning? Which social networks have a greater impact? And is there any degree of relationship between the specific weight of social networks in the web traffic of a cybermedia and circumstances such as the average duration of the user's visit, the number of page views or the bounce rate understood in its formal aspect of not performing any kind of interaction on the visited page beyond reading its content? To answer these questions, we have first proceeded to a selection of the cybermedia with the highest web traffic of the 27 countries that are currently part of the European Union after the United Kingdom left on December 31, 2020. In each nation we have selected five media using a combination of the global web traffic metrics provided by the tools Alexa (https://www.alexa.com/), which ceased to be operational on May 1, 2022, and SimilarWeb (https:// www.similarweb.com/). We have not used local metrics by country since the results obtained with these first two tools were sufficiently significant and our objective is not to establish a ranking of cybermedia by nation but to examine the relevance of social networks in their web traffic. In all cases, cybermedia whose property corresponds to a journalistic company have been selected, ruling out those belonging to telecommunications portals or service providers; in some cases they correspond to classic information companies (both newspapers and televisions) while in others they refer to digital natives, without this circumstance affecting the nature of the research proposed.
    Below we have proceeded to examine the web traffic data of said cybermedia. The period corresponding to the months of October, November and December 2021 and January, February and March 2022 has been selected. We believe that this six-month stretch allows possible one-time variations to be overcome for a month, reinforcing the precision of the data obtained. To secure this data, we have used the SimilarWeb tool, currently the most precise tool that exists when examining the web traffic of a portal, although it is limited to that coming from desktops and laptops, without taking into account those that come from mobile devices, currently impossible to determine with existing measurement tools on the market. It includes:

    Web traffic general data: average visit duration, pages per visit and bounce rate Web traffic origin by country Percentage of traffic generated from social media over total web traffic Distribution of web traffic generated from social networks Comparison of web traffic generated from social netwoks with direct and search procedures

  2. w

    similarweb.com - Historical whois Lookup

    • whoisdatacenter.com
    csv
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    AllHeart Web Inc, similarweb.com - Historical whois Lookup [Dataset]. https://whoisdatacenter.com/domain/similarweb.com/
    Explore at:
    csvAvailable download formats
    Dataset authored and provided by
    AllHeart Web Inc
    License

    https://whoisdatacenter.com/terms-of-use/https://whoisdatacenter.com/terms-of-use/

    Time period covered
    Mar 15, 1985 - Sep 18, 2025
    Description

    Explore the historical Whois records related to similarweb.com (Domain). Get insights into ownership history and changes over time.

  3. P

    Paid Search Intelligence Software Report

    • marketresearchforecast.com
    doc, pdf, ppt
    Updated Mar 6, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Research Forecast (2025). Paid Search Intelligence Software Report [Dataset]. https://www.marketresearchforecast.com/reports/paid-search-intelligence-software-27917
    Explore at:
    doc, pdf, pptAvailable download formats
    Dataset updated
    Mar 6, 2025
    Dataset authored and provided by
    Market Research Forecast
    License

    https://www.marketresearchforecast.com/privacy-policyhttps://www.marketresearchforecast.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The Paid Search Intelligence Software market is experiencing robust growth, driven by the increasing reliance on paid search advertising for businesses of all sizes. The market's expansion is fueled by several key factors. Firstly, the growing complexity of search engine algorithms necessitates sophisticated tools for campaign optimization and performance analysis. Businesses are increasingly seeking ways to maximize ROI on their paid search investments, leading to a heightened demand for intelligent software solutions. Secondly, the rise of mobile search and the proliferation of online advertising channels are forcing marketers to adopt data-driven approaches to manage their campaigns effectively. This requires sophisticated analytics and reporting capabilities found in paid search intelligence software. Finally, the competitive landscape of online advertising is becoming increasingly intense, pushing businesses to leverage advanced analytics to understand their competitors' strategies and gain a competitive edge. We estimate the current market size (2025) to be around $2.5 billion, considering the rapid adoption and increasing sophistication of these tools. We project a Compound Annual Growth Rate (CAGR) of 15% from 2025-2033, leading to a significant market expansion by the end of the forecast period. While the cloud-based segment currently holds a larger market share, the on-premises segment is likely to see sustained growth due to specific data security and compliance requirements in certain sectors. Large enterprises currently dominate the application segment; however, the SME segment is expected to witness significant growth fueled by increasing digital adoption and affordability of these software solutions. Geographic segmentation reveals a strong presence in North America and Europe, driven by the high adoption of digital marketing strategies and advanced technological infrastructure. The Asia-Pacific region, particularly China and India, presents a significant growth opportunity given the rapid expansion of e-commerce and increasing internet penetration. However, factors like data privacy regulations and the need for localized solutions might pose challenges to market penetration in certain regions. Competition in the market is intense, with established players like Semrush, SpyFu, and SimilarWeb vying for market share alongside emerging companies offering specialized features and functionalities. Continued innovation in artificial intelligence (AI) and machine learning (ML) will be a key driver of future growth, enabling more advanced campaign optimization and predictive analytics capabilities. The market will continue to evolve to meet the evolving demands of the digital marketing landscape.

  4. w

    similarweb.marketing - Historical whois Lookup

    • whoisdatacenter.com
    csv
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    AllHeart Web Inc, similarweb.marketing - Historical whois Lookup [Dataset]. https://whoisdatacenter.com/domain/similarweb.marketing/
    Explore at:
    csvAvailable download formats
    Dataset authored and provided by
    AllHeart Web Inc
    License

    https://whoisdatacenter.com/terms-of-use/https://whoisdatacenter.com/terms-of-use/

    Time period covered
    Mar 15, 1985 - Aug 27, 2025
    Description

    Explore the historical Whois records related to similarweb.marketing (Domain). Get insights into ownership history and changes over time.

  5. C

    Competitive Analysis of Industry Rivals Report

    • archivemarketresearch.com
    doc, pdf, ppt
    Updated Feb 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Archive Market Research (2025). Competitive Analysis of Industry Rivals Report [Dataset]. https://www.archivemarketresearch.com/reports/competitive-analysis-of-industry-rivals-38541
    Explore at:
    ppt, doc, pdfAvailable download formats
    Dataset updated
    Feb 21, 2025
    Dataset authored and provided by
    Archive Market Research
    License

    https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    Competitive Analysis of Industry Rivals The market for competitive analysis is expected to grow significantly over the forecast period, driven by increasing need for businesses to understand their competitive landscape. Key players in the market include BuiltWith, WooRank, SEMrush, Google, SpyFu, Owletter, SimilarWeb, Moz, SunTec Data, and TrendSource. These companies offer a range of services to help businesses track their competitors' online performance, including website traffic, social media engagement, and search engine rankings. Some of the key trends driving the growth of the market include the increasing adoption of digital marketing by businesses, the growing importance of social media, and the increasing availability of data and analytics tools. The market is segmented by type, application, and region. In terms of type, the market is divided into product analysis, traffic analytics, sales analytics, and others. In terms of application, the market is divided into SMEs and large enterprises. In terms of region, the market is divided into North America, South America, Europe, Middle East & Africa, and Asia Pacific. The North American region is expected to dominate the market during the forecast period, due to the presence of a large number of established players in the market. The Asia Pacific region is expected to grow at the highest CAGR during the forecast period, due to the increasing adoption of digital marketing by businesses in the region. This report provides a comprehensive analysis of the industry rivals, encompassing their concentration, product insights, regional trends, and key industry developments.

  6. w

    hostmaster@similarweb.com - Reverse Whois Lookup

    • whoisdatacenter.com
    csv
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    AllHeart Web Inc, hostmaster@similarweb.com - Reverse Whois Lookup [Dataset]. https://whoisdatacenter.com/email/hostmaster@similarweb.com/
    Explore at:
    csvAvailable download formats
    Dataset authored and provided by
    AllHeart Web Inc
    License

    https://whoisdatacenter.com/terms-of-use/https://whoisdatacenter.com/terms-of-use/

    Time period covered
    Mar 15, 1985 - Sep 19, 2025
    Description

    Explore historical ownership and registration records by performing a reverse Whois lookup for the email address hostmaster@similarweb.com..

  7. C

    Competition Marketing Software Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated Jun 3, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). Competition Marketing Software Report [Dataset]. https://www.datainsightsmarket.com/reports/competition-marketing-software-510896
    Explore at:
    ppt, pdf, docAvailable download formats
    Dataset updated
    Jun 3, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The competitive marketing software market is experiencing robust growth, driven by the increasing need for businesses to understand their competitive landscape and optimize their marketing strategies. The market, estimated at $5 billion in 2025, is projected to maintain a healthy Compound Annual Growth Rate (CAGR) of 15% through 2033, reaching approximately $15 billion by the end of the forecast period. This growth is fueled by several key factors: the rising adoption of digital marketing, the increasing complexity of online competitive analysis, and the growing demand for data-driven marketing decisions. Key players like SEMrush, Ahrefs, and Moz Pro are leading this market, offering comprehensive suites of tools for keyword research, backlink analysis, competitor monitoring, and SEO optimization. The market's segmentation is likely diversified across various functionalities (e.g., SEO tools, social media analytics, PPC analysis) and business sizes, catering to both small and large enterprises. Growth is further boosted by ongoing technological advancements in data analytics and artificial intelligence, leading to more sophisticated and actionable insights for marketers. Despite its rapid expansion, the market faces challenges. High initial investment costs and the need for specialized technical expertise can act as barriers to entry for smaller businesses. Furthermore, the constant evolution of search engine algorithms and online marketing landscapes requires continuous software updates and adaptation from vendors. The market is also prone to intense competition, with established players constantly innovating and new entrants vying for market share. Nevertheless, the overall market outlook remains positive, with ongoing growth driven by the increasing reliance on data-driven decision-making and the evolving complexity of the digital marketing landscape. Regional variations in market penetration will likely exist, with North America and Europe expected to hold significant shares, followed by the Asia-Pacific region witnessing faster growth.

  8. P

    Paid Search Intelligence Software Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated Jan 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). Paid Search Intelligence Software Report [Dataset]. https://www.datainsightsmarket.com/reports/paid-search-intelligence-software-1452354
    Explore at:
    ppt, doc, pdfAvailable download formats
    Dataset updated
    Jan 10, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The Paid Search Intelligence Software market is projected to grow significantly in the coming years, driven by factors such as the increasing adoption of digital marketing, the need for better campaign optimization, and the growing complexity of search engine algorithms. The market is expected to grow at a CAGR of XX% over the forecast period, reaching a value of XXX million by 2033. North America is the largest regional market, followed by Europe and Asia Pacific. Key trends in the Paid Search Intelligence Software market include the increasing adoption of cloud-based solutions, the growing use of artificial intelligence (AI) and machine learning (ML) to automate campaign management, and the integration of paid search data with other marketing data sources. Key players in the market include Semrush, SpyFu, Similarweb, Adthena, iSpionage, BrandVerity, The Search Monitor, and GrowByData. These companies offer a wide range of paid search intelligence solutions, from basic keyword research tools to comprehensive campaign management platforms.

  9. Information Organizations and Websites Performance

    • kaggle.com
    Updated Sep 17, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Information Management Research Lab (2020). Information Organizations and Websites Performance [Dataset]. http://doi.org/10.34740/kaggle/dsv/1494933
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Sep 17, 2020
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Information Management Research Lab
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Description

    Notice: You can check the new version 0.9.6 at the official page of Information Management Lab and at the Google Data Studio as well.

    Description of the Report and Topic Justification

    Now that the ICTs have matured, Information Organizations such as Libraries, Archives and Museums, also known as LAMs, proceed into the utilization of web technologies that are capable to expand the visibility and findability of their content. Within the current flourishing era of the semantic web, LAMs have voluminous amounts of web-based collections that are presented and digitally preserved through their websites. However, prior efforts indicate that LAMs suffer from fragmentation regarding the determination of well-informed strategies for improving the visibility and findability of their content on the Web (Vállez and Ventura, 2020; Krstić and Masliković, 2019; Voorbij, 2010). Several reasons related to this drawback. As such, administrators’ lack of data analytics competency in extracting and utilizing technical and behavioral datasets for improving visibility and awareness from analytics platforms; the difficulties in understanding web metrics that integrated into performance measurement systems; and hence the reduced capabilities in defining key performance indicators for greater usability, visibility, and awareness.

    In this enriched and updated technical report, the authors proceed into an examination of 504 unique websites of Libraries, Archives and Museums from all over the world. It is noted that the current report has been expanded by up to 14,81% of the prior one Version 0.9.5 of 439 domains examinations. The report aims to visualize the performance of the websites in terms of technical aspects such as their adequacy to metadata description of their content and collections, their loading speed, and security. This constitutes an important stepping-stone for optimization, as the higher the alignment with the technical compliencies, the greater the users’ behavior and usability within the examined websites, and thus their findability and visibility level in search engines (Drivas et al. 2020; Mavridis and Symeonidis 2015; Agarwal et al. 2012).

    One step further, within this version, we include behavioral analytics about users engagement with the content of the LAMs websites. More specifically, web analytics metrics are included such as Visit Duration, Pages per Visit, and Bounce Rates for 121 domains. We also include web analytics regarding the channels that these websites acquire their users, such as Direct traffic, Search Engines, Referral, Social Media, Email, and Display Advertising. SimilarWeb API was used to gather web data about the involved metrics.

    In the first pages of this report, general information is presented regarding the names of the examined organizations. This also includes their type, their geographical location, information about the adopted Content Management Systems (CMSs), and web server software types of integration per website. Furthermore, several other data are visualized related to the size of the examined Information Organizations in terms of the number of unique webpages within a website, the number of images, internal and external links and so on.

    Moreover, as a team, we proceed into the development of several factors that are capable to quantify the performance of websites. Reliability analysis takes place for measuring the internal consistency and discriminant validity of the proposed factors and their included variables. For testing the reliability, cohesion, and consistency of the included metrics, Cronbach’s Alpha (a), McDonald’s ω and Guttman λ-2 and λ-6 are used.
    - For Cronbach’s, a range of .550 up to .750 indicates an acceptable level of reliability and .800 or higher a very good level (Ursachi, Horodnic, and Zait, 2015). - McDonald’s ω indicator has the advantage to measure the strength of the association between the proposed variables. More specifically, the closer to .999 the higher the strength association between the variables and vice versa (Şimşek and Noyan, 2013). - Gutman’s λ-2 and λ-6 work verifiably to Cronbach’s a as they estimate the trustworthiness of variance of the gathered web analytics metrics. Low values less than .450 indicate high bias among the harvested web metrics, while values higher than .600 and above increase the trustworthiness of the sample (Callender and Osburn, 1979). -Kaiser–Meyer–Olkin (KMO) and Bartlett’s Test of Sphericity indicators are used for measuring the cohesion of the involved metrics. KMO and Bartlett’s test indicates that the closer the value is to .999 amongst the involved items, the higher the cohesion and consistency of them for potential categorization (Dziuban and S...

  10. Total global visitor traffic to Google.com 2024

    • statista.com
    Updated Aug 20, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Total global visitor traffic to Google.com 2024 [Dataset]. https://www.statista.com/statistics/268252/web-visitor-traffic-to-googlecom/
    Explore at:
    Dataset updated
    Aug 20, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Oct 2023 - Mar 2024
    Area covered
    Worldwide
    Description

    In March 2024, search platform Google.com generated approximately 85.5 billion visits, down from 87 billion platform visits in October 2023. Google is a global search platform and one of the biggest online companies worldwide.

  11. C

    Competitive Analysis Tools Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated Apr 14, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). Competitive Analysis Tools Report [Dataset]. https://www.datainsightsmarket.com/reports/competitive-analysis-tools-1449479
    Explore at:
    pdf, ppt, docAvailable download formats
    Dataset updated
    Apr 14, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The global market for competitive analysis tools is experiencing robust growth, driven by the increasing need for businesses of all sizes to understand their competitive landscape and optimize their strategies. The market, estimated at $5 billion in 2025, is projected to exhibit a healthy Compound Annual Growth Rate (CAGR) of 15% from 2025 to 2033, reaching approximately $15 billion by 2033. This growth is fueled by several key factors. The rise of digital marketing and the increasing complexity of online competition necessitates sophisticated tools for analyzing competitor websites, strategies, and performance. Furthermore, the growing adoption of cloud-based solutions offers accessibility, scalability, and cost-effectiveness, contributing to market expansion. The segmentation reveals a significant portion of the market is held by large enterprises, reflecting their higher budgets and greater need for comprehensive competitive intelligence. However, the SME segment is also experiencing strong growth, indicating the increasing affordability and accessibility of these powerful tools. Key players such as SEMrush, Ahrefs, and SimilarWeb are driving innovation and market consolidation, while smaller, niche players cater to specialized needs. Geographic distribution shows North America and Europe currently dominating the market, but significant growth potential exists in rapidly developing economies across Asia-Pacific and other regions, fueled by digital transformation and the expansion of e-commerce. Market restraints include the high cost of some advanced competitive analysis tools, particularly for smaller businesses. Additionally, the complexity of certain tools can present a barrier to entry for users without substantial technical expertise. However, the trend towards user-friendly interfaces and subscription-based pricing models is mitigating this issue. The continuous evolution of search engine algorithms and online marketing tactics necessitates ongoing improvements and updates to the tools, posing challenges for vendors to maintain competitiveness. Nevertheless, the overall market outlook remains positive, indicating sustained growth and expansion fueled by the strategic importance of competitive intelligence in today's dynamic business environment.

  12. w

    Global Keyword Research Tools Market Research Report: By Tool Type...

    • wiseguyreports.com
    Updated Jul 23, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    wWiseguy Research Consultants Pvt Ltd (2024). Global Keyword Research Tools Market Research Report: By Tool Type (Cloud-Based, On-Premise), By Deployment Model (SaaS, PaaS, IaaS), By End User (In-House SEO Teams, Marketing Agencies, Freelancers, Content Creators), By Functionality (Keyword Rank Tracking, Competitor Analysis, Backlink Analysis, Keyword Suggestion Generation), By Pricing (Basic, Standard, Premium, Enterprise) and By Regional (North America, Europe, South America, Asia Pacific, Middle East and Africa) - Forecast to 2032. [Dataset]. https://www.wiseguyreports.com/reports/keyword-research-tools-market
    Explore at:
    Dataset updated
    Jul 23, 2024
    Dataset authored and provided by
    wWiseguy Research Consultants Pvt Ltd
    License

    https://www.wiseguyreports.com/pages/privacy-policyhttps://www.wiseguyreports.com/pages/privacy-policy

    Time period covered
    Jan 7, 2024
    Area covered
    Global
    Description
    BASE YEAR2024
    HISTORICAL DATA2019 - 2024
    REPORT COVERAGERevenue Forecast, Competitive Landscape, Growth Factors, and Trends
    MARKET SIZE 20239.83(USD Billion)
    MARKET SIZE 202410.89(USD Billion)
    MARKET SIZE 203224.7(USD Billion)
    SEGMENTS COVEREDTool Type ,Deployment Model ,End User ,Functionality ,Pricing ,Regional
    COUNTRIES COVEREDNorth America, Europe, APAC, South America, MEA
    KEY MARKET DYNAMICSIncreased demand for targeted advertising Growing adoption of search engine optimization Advancements in artificial intelligence technology Rising popularity of content marketing Evolution of voice search and natural language processing
    MARKET FORECAST UNITSUSD Billion
    KEY COMPANIES PROFILEDSpyFu ,Google Keyword Planner ,Keyword Tool.io ,Ahrefs ,Majestic ,Moz ,Ubersuggest ,Soovle ,Serpstat ,Answer The Public ,BuzzSumo ,Long Tail Pro ,Semrush ,KWFinder ,Similarweb
    MARKET FORECAST PERIOD2024 - 2032
    KEY MARKET OPPORTUNITIESAIpowered keyword suggestions Integration with other marketing tools Mobile optimization Realtime data Predictive analytics
    COMPOUND ANNUAL GROWTH RATE (CAGR) 10.78% (2024 - 2032)
  13. f

    Brief query descriptions by data source.

    • plos.figshare.com
    xls
    Updated Dec 20, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stephanie R. Pitts; Sarah Trigger; Dannielle E. Kelley (2024). Brief query descriptions by data source. [Dataset]. http://doi.org/10.1371/journal.pone.0311723.t002
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Dec 20, 2024
    Dataset provided by
    PLOS ONE
    Authors
    Stephanie R. Pitts; Sarah Trigger; Dannielle E. Kelley
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Puff Bar, a disposable electronic nicotine delivery system (ENDS), was the ENDS brand most commonly used by U.S. youth in 2021. We explored whether Puff Bar’s rise in marketplace prominence was detectable through advertising, retail sales, social media, and web traffic data sources. We retrospectively documented potential signals of interest in and uptake of Puff Bar in the United States using metrics based on advertising (Numerator and Comperemedia), retail sales (NielsenIQ), social media (Twitter, via Sprinklr), and web traffic (Similarweb) data from January 2019 to June 2022. We selected metrics based on (1) data availability, (2) potential to graph metric longitudinally, and (3) variability in metric. We graphed metrics and assessed data patterns compared to data for Vuse, a comparator product, and in the context of regulatory events significant to Puff Bar. The number of Twitter posts that contained a Puff Bar term (social media), Puff Bar product sales measured in dollars (sales), and the number of visits to the Puff Bar website (web traffic) exhibited potential for surveilling Puff Bar due to ease of calculation, comprehensibility, and responsiveness to events. Advertising tracked through Numerator and Comperemedia did not appear to capture marketing from Puff Bar’s manufacturer or drive change in marketplace prominence. This study demonstrates how quantitative changes in metrics developed using advertising, retail sales, social media, and web traffic data sources detected changes in Puff Bar’s marketplace prominence. We conclude that low-effort, scalable, rapid signal detection capabilities can be an important part of a multi-component tobacco surveillance program.

  14. Leading online dating websites in the Netherlands in 2017

    • statista.com
    Updated Feb 2, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stacy Jo Dixon (2024). Leading online dating websites in the Netherlands in 2017 [Dataset]. https://www.statista.com/topics/4764/online-dating-in-the-netherlands/
    Explore at:
    Dataset updated
    Feb 2, 2024
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Stacy Jo Dixon
    Area covered
    Netherlands
    Description

    This statistic shows the leading online dating websites in the Netherlands as of January 2017, based on the number of visitors per month. The source mentions that dating websites in the Netherlands do not provide this information and the data comes from intelligence agency Similarweb. As of January 2017, Lexa.nl was the most popular online dating website in the Netherlands, with 426,000 monthly visitors.

    During the second half of 2017, roughly 17 percent of the Dutch internet users indicated they visited an online dating website, service or app. Users aged 16 to 24 years did this the most: approximately 22 percent of all users in this age group indicated they did so.

  15. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
David Parra; Santiago Martínez Arias; Sergio Mena Muñoz (2022). Analysis of the Quantitative Impact of Social Networks General Data.doc [Dataset]. http://doi.org/10.6084/m9.figshare.21329421.v1
Organization logoOrganization logo

Data from: Analysis of the Quantitative Impact of Social Networks General Data.doc

Related Article
Explore at:
docAvailable download formats
Dataset updated
Oct 14, 2022
Dataset provided by
figshare
Figsharehttp://figshare.com/
Authors
David Parra; Santiago Martínez Arias; Sergio Mena Muñoz
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

General data recollected for the studio " Analysis of the Quantitative Impact of Social Networks on Web Traffic of Cybermedia in the 27 Countries of the European Union". Four research questions are posed: what percentage of the total web traffic generated by cybermedia in the European Union comes from social networks? Is said percentage higher or lower than that provided through direct traffic and through the use of search engines via SEO positioning? Which social networks have a greater impact? And is there any degree of relationship between the specific weight of social networks in the web traffic of a cybermedia and circumstances such as the average duration of the user's visit, the number of page views or the bounce rate understood in its formal aspect of not performing any kind of interaction on the visited page beyond reading its content? To answer these questions, we have first proceeded to a selection of the cybermedia with the highest web traffic of the 27 countries that are currently part of the European Union after the United Kingdom left on December 31, 2020. In each nation we have selected five media using a combination of the global web traffic metrics provided by the tools Alexa (https://www.alexa.com/), which ceased to be operational on May 1, 2022, and SimilarWeb (https:// www.similarweb.com/). We have not used local metrics by country since the results obtained with these first two tools were sufficiently significant and our objective is not to establish a ranking of cybermedia by nation but to examine the relevance of social networks in their web traffic. In all cases, cybermedia whose property corresponds to a journalistic company have been selected, ruling out those belonging to telecommunications portals or service providers; in some cases they correspond to classic information companies (both newspapers and televisions) while in others they refer to digital natives, without this circumstance affecting the nature of the research proposed.
Below we have proceeded to examine the web traffic data of said cybermedia. The period corresponding to the months of October, November and December 2021 and January, February and March 2022 has been selected. We believe that this six-month stretch allows possible one-time variations to be overcome for a month, reinforcing the precision of the data obtained. To secure this data, we have used the SimilarWeb tool, currently the most precise tool that exists when examining the web traffic of a portal, although it is limited to that coming from desktops and laptops, without taking into account those that come from mobile devices, currently impossible to determine with existing measurement tools on the market. It includes:

Web traffic general data: average visit duration, pages per visit and bounce rate Web traffic origin by country Percentage of traffic generated from social media over total web traffic Distribution of web traffic generated from social networks Comparison of web traffic generated from social netwoks with direct and search procedures

Search
Clear search
Close search
Google apps
Main menu