6 datasets found
  1. A

    Alternative Data Market Report

    • archivemarketresearch.com
    doc, pdf, ppt
    Updated Aug 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Archive Market Research (2025). Alternative Data Market Report [Dataset]. https://www.archivemarketresearch.com/reports/alternative-data-market-5021
    Explore at:
    doc, ppt, pdfAvailable download formats
    Dataset updated
    Aug 23, 2025
    Dataset authored and provided by
    Archive Market Research
    License

    https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    global
    Variables measured
    Market Size
    Description

    The Alternative Data Market size was valued at USD 7.20 billion in 2023 and is projected to reach USD 126.50 billion by 2032, exhibiting a CAGR of 50.6 % during the forecasts period. The use and processing of information that is not in financial databases is known as the alternative data market. Such data involves posts in social networks, satellite images, credit card transactions, web traffic and many others. It is mostly used in financial field to make the investment decisions, managing risks and analyzing competitors, giving a more general view on market trends as well as consumers’ attitude. It has been found that there is increasing requirement for the obtaining of data from unconventional sources as firms strive to nose ahead in highly competitive markets. Some current trend are the finding of AI and machine learning to drive large sets of data and the broadening utilization of the so called “Alternative Data” across industries that are not only the finance industry. Recent developments include: In April 2023, Thinknum Alternative Data launched new data fields to its employee sentiment datasets for people analytics teams and investors to use this as an 'employee NPS' proxy, and support highly-rated employers set up interviews through employee referrals. , In September 2022, Thinknum Alternative Data announced its plan to combine data Similarweb, SensorTower, Thinknum, Caplight, and Pathmatics with Lagoon, a sophisticated infrastructure platform to deliver an alternative data source for investment research, due diligence, deal sourcing and origination, and post-acquisition strategies in private markets. , In May 2022, M Science LLC launched a consumer spending trends platform, providing daily, weekly, monthly, and semi-annual visibility into consumer behaviors and competitive benchmarking. The consumer spending platform provided real-time insights into consumer spending patterns for Australian brands and an unparalleled business performance analysis. .

  2. Similarweb's Surge: A Sign of Digital Dominance? (SMWB) (Forecast)

    • kappasignal.com
    Updated May 22, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). Similarweb's Surge: A Sign of Digital Dominance? (SMWB) (Forecast) [Dataset]. https://www.kappasignal.com/2024/05/similarwebs-surge-sign-of-digital.html
    Explore at:
    Dataset updated
    May 22, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Similarweb's Surge: A Sign of Digital Dominance? (SMWB)

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  3. SimilarWeb (SMWB) - Tracking Digital Trends: Will it Drive Growth?...

    • kappasignal.com
    Updated Oct 5, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). SimilarWeb (SMWB) - Tracking Digital Trends: Will it Drive Growth? (Forecast) [Dataset]. https://www.kappasignal.com/2024/10/similarweb-smwb-tracking-digital-trends.html
    Explore at:
    Dataset updated
    Oct 5, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    SimilarWeb (SMWB) - Tracking Digital Trends: Will it Drive Growth?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  4. SMWB Similarweb Ltd. Ordinary Shares (Forecast)

    • kappasignal.com
    Updated Dec 7, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2022). SMWB Similarweb Ltd. Ordinary Shares (Forecast) [Dataset]. https://www.kappasignal.com/2022/12/smwb-similarweb-ltd-ordinary-shares.html
    Explore at:
    Dataset updated
    Dec 7, 2022
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    SMWB Similarweb Ltd. Ordinary Shares

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  5. A

    Alternative Data Platform Report

    • marketreportanalytics.com
    doc, pdf, ppt
    Updated Apr 3, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Report Analytics (2025). Alternative Data Platform Report [Dataset]. https://www.marketreportanalytics.com/reports/alternative-data-platform-55013
    Explore at:
    ppt, pdf, docAvailable download formats
    Dataset updated
    Apr 3, 2025
    Dataset authored and provided by
    Market Report Analytics
    License

    https://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The Alternative Data Platform market is experiencing robust growth, driven by the increasing need for businesses across diverse sectors to leverage non-traditional data sources for improved decision-making. The market, estimated at $5 billion in 2025, is projected to expand significantly over the forecast period (2025-2033), fueled by a Compound Annual Growth Rate (CAGR) of 25%. This growth is primarily attributed to several key factors. Firstly, the rising adoption of cloud-based solutions offers scalability and cost-effectiveness, attracting businesses of all sizes. Secondly, the expanding application of alternative data in areas like fraud detection (BFSI), supply chain optimization (Retail and Logistics), and market prediction (IT and Telecommunications) is pushing market expansion. Furthermore, the increasing availability and affordability of alternative data sources, combined with advancements in data analytics and machine learning, are enabling businesses to extract greater value from these non-traditional datasets. While data security and privacy concerns present a challenge, the overall market outlook remains overwhelmingly positive. The market segmentation reveals strong growth across various applications and types. The BFSI sector is a major driver due to its need for enhanced risk management and fraud prevention. The cloud-based segment dominates the market due to its flexibility and accessibility. North America currently holds the largest market share, followed by Europe and Asia Pacific, reflecting the higher level of technological advancement and adoption in these regions. However, the Asia Pacific region is poised for significant growth due to increasing digitalization and rising investments in data analytics infrastructure. The competitive landscape is dynamic, with a mix of established players and emerging startups offering diverse solutions. The success of individual companies depends on their ability to innovate, provide reliable data, ensure data security, and offer user-friendly platforms. Competition is likely to intensify as more companies enter this rapidly evolving market.

  6. Leading online dating websites in the Netherlands in 2017

    • statista.com
    • thefarmdosupply.com
    Updated Feb 2, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stacy Jo Dixon (2024). Leading online dating websites in the Netherlands in 2017 [Dataset]. https://www.statista.com/topics/4764/online-dating-in-the-netherlands/
    Explore at:
    Dataset updated
    Feb 2, 2024
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Stacy Jo Dixon
    Area covered
    Netherlands
    Description

    This statistic shows the leading online dating websites in the Netherlands as of January 2017, based on the number of visitors per month. The source mentions that dating websites in the Netherlands do not provide this information and the data comes from intelligence agency Similarweb. As of January 2017, Lexa.nl was the most popular online dating website in the Netherlands, with 426,000 monthly visitors.

    During the second half of 2017, roughly 17 percent of the Dutch internet users indicated they visited an online dating website, service or app. Users aged 16 to 24 years did this the most: approximately 22 percent of all users in this age group indicated they did so.

  7. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Archive Market Research (2025). Alternative Data Market Report [Dataset]. https://www.archivemarketresearch.com/reports/alternative-data-market-5021

Alternative Data Market Report

Explore at:
doc, ppt, pdfAvailable download formats
Dataset updated
Aug 23, 2025
Dataset authored and provided by
Archive Market Research
License

https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy

Time period covered
2025 - 2033
Area covered
global
Variables measured
Market Size
Description

The Alternative Data Market size was valued at USD 7.20 billion in 2023 and is projected to reach USD 126.50 billion by 2032, exhibiting a CAGR of 50.6 % during the forecasts period. The use and processing of information that is not in financial databases is known as the alternative data market. Such data involves posts in social networks, satellite images, credit card transactions, web traffic and many others. It is mostly used in financial field to make the investment decisions, managing risks and analyzing competitors, giving a more general view on market trends as well as consumers’ attitude. It has been found that there is increasing requirement for the obtaining of data from unconventional sources as firms strive to nose ahead in highly competitive markets. Some current trend are the finding of AI and machine learning to drive large sets of data and the broadening utilization of the so called “Alternative Data” across industries that are not only the finance industry. Recent developments include: In April 2023, Thinknum Alternative Data launched new data fields to its employee sentiment datasets for people analytics teams and investors to use this as an 'employee NPS' proxy, and support highly-rated employers set up interviews through employee referrals. , In September 2022, Thinknum Alternative Data announced its plan to combine data Similarweb, SensorTower, Thinknum, Caplight, and Pathmatics with Lagoon, a sophisticated infrastructure platform to deliver an alternative data source for investment research, due diligence, deal sourcing and origination, and post-acquisition strategies in private markets. , In May 2022, M Science LLC launched a consumer spending trends platform, providing daily, weekly, monthly, and semi-annual visibility into consumer behaviors and competitive benchmarking. The consumer spending platform provided real-time insights into consumer spending patterns for Australian brands and an unparalleled business performance analysis. .

Search
Clear search
Close search
Google apps
Main menu