Facebook
TwitterTraffic analytics, rankings, and competitive metrics for similarweb.com as of October 2025
Facebook
Twitterhttps://semrush.ebundletools.com/company/legal/terms-of-service/https://semrush.ebundletools.com/company/legal/terms-of-service/
similarweb.com is ranked #1211 in IN with 18.53M Traffic. Categories: Information Technology, Online Services. Learn more about website traffic, market share, and more!
Facebook
Twitterhttps://semrush.ebundletools.com/company/legal/terms-of-service/https://semrush.ebundletools.com/company/legal/terms-of-service/
pro.similarweb.com is ranked #1362 in IN with 1.88M Traffic. Categories: . Learn more about website traffic, market share, and more!
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
General data recollected for the studio " Analysis of the Quantitative Impact of Social Networks on Web Traffic of Cybermedia in the 27 Countries of the European Union".
Four research questions are posed: what percentage of the total web traffic generated by cybermedia in the European Union comes from social networks? Is said percentage higher or lower than that provided through direct traffic and through the use of search engines via SEO positioning? Which social networks have a greater impact? And is there any degree of relationship between the specific weight of social networks in the web traffic of a cybermedia and circumstances such as the average duration of the user's visit, the number of page views or the bounce rate understood in its formal aspect of not performing any kind of interaction on the visited page beyond reading its content?
To answer these questions, we have first proceeded to a selection of the cybermedia with the highest web traffic of the 27 countries that are currently part of the European Union after the United Kingdom left on December 31, 2020. In each nation we have selected five media using a combination of the global web traffic metrics provided by the tools Alexa (https://www.alexa.com/), which ceased to be operational on May 1, 2022, and SimilarWeb (https:// www.similarweb.com/). We have not used local metrics by country since the results obtained with these first two tools were sufficiently significant and our objective is not to establish a ranking of cybermedia by nation but to examine the relevance of social networks in their web traffic.
In all cases, cybermedia whose property corresponds to a journalistic company have been selected, ruling out those belonging to telecommunications portals or service providers; in some cases they correspond to classic information companies (both newspapers and televisions) while in others they refer to digital natives, without this circumstance affecting the nature of the research proposed.
Below we have proceeded to examine the web traffic data of said cybermedia. The period corresponding to the months of October, November and December 2021 and January, February and March 2022 has been selected. We believe that this six-month stretch allows possible one-time variations to be overcome for a month, reinforcing the precision of the data obtained.
To secure this data, we have used the SimilarWeb tool, currently the most precise tool that exists when examining the web traffic of a portal, although it is limited to that coming from desktops and laptops, without taking into account those that come from mobile devices, currently impossible to determine with existing measurement tools on the market.
It includes:
Web traffic general data: average visit duration, pages per visit and bounce rate Web traffic origin by country Percentage of traffic generated from social media over total web traffic Distribution of web traffic generated from social networks Comparison of web traffic generated from social netwoks with direct and search procedures
Facebook
Twitterhttps://www.marketresearchforecast.com/privacy-policyhttps://www.marketresearchforecast.com/privacy-policy
Discover the booming website visitor tracking software market! Our analysis reveals a $5 billion market in 2025, projected to reach $15 billion by 2033, driven by digital marketing, data-driven decisions, and AI-powered analytics. Learn about key players, market trends, and regional insights.
Facebook
Twitterhttps://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy
Competitive Analysis of Industry Rivals The market for competitive analysis is expected to grow significantly over the forecast period, driven by increasing need for businesses to understand their competitive landscape. Key players in the market include BuiltWith, WooRank, SEMrush, Google, SpyFu, Owletter, SimilarWeb, Moz, SunTec Data, and TrendSource. These companies offer a range of services to help businesses track their competitors' online performance, including website traffic, social media engagement, and search engine rankings. Some of the key trends driving the growth of the market include the increasing adoption of digital marketing by businesses, the growing importance of social media, and the increasing availability of data and analytics tools. The market is segmented by type, application, and region. In terms of type, the market is divided into product analysis, traffic analytics, sales analytics, and others. In terms of application, the market is divided into SMEs and large enterprises. In terms of region, the market is divided into North America, South America, Europe, Middle East & Africa, and Asia Pacific. The North American region is expected to dominate the market during the forecast period, due to the presence of a large number of established players in the market. The Asia Pacific region is expected to grow at the highest CAGR during the forecast period, due to the increasing adoption of digital marketing by businesses in the region. This report provides a comprehensive analysis of the industry rivals, encompassing their concentration, product insights, regional trends, and key industry developments.
Facebook
Twitterhttps://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
Discover the booming website traffic analysis tool market! Learn about its $15B valuation (2025), 15% CAGR, key players (Google Analytics, Semrush, Ahrefs), and regional trends. Get insights into cloud-based solutions, SME adoption, and future market projections to 2033.
Facebook
Twitterhttps://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy
The global website analytics market, encompassing solutions for large enterprises and SMEs, is poised for significant growth. While the provided data lacks specific market size and CAGR figures, a reasonable estimation based on industry trends suggests a 2025 market size of approximately $15 billion, experiencing a compound annual growth rate (CAGR) of 12% from 2025 to 2033. This robust growth is fueled by several key drivers: the increasing reliance on data-driven decision-making across businesses, the escalating need for enhanced website performance optimization, and the growing adoption of sophisticated analytics tools offering deeper insights into user behavior and conversion rates. Market segmentation reveals strong demand across diverse analytics types, including product, traffic, and sales analytics. The competitive landscape is intensely dynamic, with established players like Google, SEMrush, and SimilarWeb vying for market share alongside emerging innovative companies like Owletter and TrendSource. These companies are constantly innovating to provide more comprehensive and user-friendly analytics platforms, leading to increased competition. This competitive pressure fosters innovation, but also necessitates strategic differentiation, focusing on specific niche markets or offering unique features to attract and retain customers. The market’s geographic distribution shows significant traction in North America and Europe, but emerging markets in Asia Pacific are also exhibiting substantial growth potential, driven by increasing internet penetration and digital transformation initiatives. While data security concerns and the complexity of implementing analytics tools present some restraints, the overall market outlook remains highly positive, promising considerable opportunities for market participants in the coming years.
Facebook
Twitterhttps://support.similarweb.com/hc/en-us/articles/360001631538-SimilarWeb-Data-Methodologyhttps://support.similarweb.com/hc/en-us/articles/360001631538-SimilarWeb-Data-Methodology
United States's complete top websites ranking list: Click here for free access to the top websites in United States, ranked by traffic and engagement
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Preliminary research efforts regarding Social Media Platforms and their contribution to website traffic in LAMs. Through the Similar Web API, the leading social networks (Facebook, Twitter, Youtube, Instagram, Reddit, Pinterest, LinkedIn) that drove traffic to each one of the 220 cases in our dataset were identified and analyzed in the first sheet. Aggregated results proved that Facebook platform was responsible for 46.1% of social traffic (second sheet).
Facebook
Twitterhttps://support.similarweb.com/hc/en-us/articles/360001631538-SimilarWeb-Data-Methodologyhttps://support.similarweb.com/hc/en-us/articles/360001631538-SimilarWeb-Data-Methodology
The complete Social Media Networks websites ranking list: Click here for free access to the top Social Media Networks websites in the world, ranked by traffic and engagement
Facebook
TwitterÁrukereső was the most popular price comparison portal in Hungary in 2021, based on the traffic share measured by SimilarWeb. Árgép was the second most visited price comparison site over the same time period.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Puff Bar, a disposable electronic nicotine delivery system (ENDS), was the ENDS brand most commonly used by U.S. youth in 2021. We explored whether Puff Bar’s rise in marketplace prominence was detectable through advertising, retail sales, social media, and web traffic data sources. We retrospectively documented potential signals of interest in and uptake of Puff Bar in the United States using metrics based on advertising (Numerator and Comperemedia), retail sales (NielsenIQ), social media (Twitter, via Sprinklr), and web traffic (Similarweb) data from January 2019 to June 2022. We selected metrics based on (1) data availability, (2) potential to graph metric longitudinally, and (3) variability in metric. We graphed metrics and assessed data patterns compared to data for Vuse, a comparator product, and in the context of regulatory events significant to Puff Bar. The number of Twitter posts that contained a Puff Bar term (social media), Puff Bar product sales measured in dollars (sales), and the number of visits to the Puff Bar website (web traffic) exhibited potential for surveilling Puff Bar due to ease of calculation, comprehensibility, and responsiveness to events. Advertising tracked through Numerator and Comperemedia did not appear to capture marketing from Puff Bar’s manufacturer or drive change in marketplace prominence. This study demonstrates how quantitative changes in metrics developed using advertising, retail sales, social media, and web traffic data sources detected changes in Puff Bar’s marketplace prominence. We conclude that low-effort, scalable, rapid signal detection capabilities can be an important part of a multi-component tobacco surveillance program.
Facebook
TwitterОпределение: Общий трафик на 15 сайтов с искусственным интеллектом со стационарных и мобильных компьютеров в каждой стране. [Переведено с en: английского языка] Тематическая область: Информационно-коммуникационные технологии [Переведено с en: английского языка] Область применения: Искусственный интеллект [Переведено с en: английского языка] Единица измерения: Количество посещений [Переведено с en: английского языка] Примечание: Similarweb не предоставляет точных данных о количестве посещений веб-сайтов, которые посещают менее 5000 человек. В этих случаях используется приблизительная оценка в 4999 посещений. [Переведено с es: испанского языка] Источник данных: Цифровая обсерватория Десарролло (ODD) на основе Similarweb [Переведено с es: испанского языка] Последнее обновление: Feb 9 2024 1:04PM Организация-источник: Экономическая комиссия по Латинской Америке и Карибскому бассейну [Переведено с en: английского языка] Definition: Total traffic to 15 artificial intelligence sites from fixed and mobile computers per country. Thematic Area: Information and Communication Technologies Application Area: Artificial intelligence Unit of Measurement: Number of visits Note: Similarweb does not provide an exact number of visits for websites that receive fewer than 5,000 visits. In these cases, an approximate estimate of 4,999 is used. Data Source: Observatorio de Desarrollo Digital (ODD) based on Similarweb Last Update: Feb 9 2024 1:04PM Source Organization: Economic Comission for Latin America and the Caribbean
Facebook
TwitterAttribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
Notice: You can check the new version 0.9.6 at the official page of Information Management Lab and at the Google Data Studio as well.
Now that the ICTs have matured, Information Organizations such as Libraries, Archives and Museums, also known as LAMs, proceed into the utilization of web technologies that are capable to expand the visibility and findability of their content. Within the current flourishing era of the semantic web, LAMs have voluminous amounts of web-based collections that are presented and digitally preserved through their websites. However, prior efforts indicate that LAMs suffer from fragmentation regarding the determination of well-informed strategies for improving the visibility and findability of their content on the Web (Vállez and Ventura, 2020; Krstić and Masliković, 2019; Voorbij, 2010). Several reasons related to this drawback. As such, administrators’ lack of data analytics competency in extracting and utilizing technical and behavioral datasets for improving visibility and awareness from analytics platforms; the difficulties in understanding web metrics that integrated into performance measurement systems; and hence the reduced capabilities in defining key performance indicators for greater usability, visibility, and awareness.
In this enriched and updated technical report, the authors proceed into an examination of 504 unique websites of Libraries, Archives and Museums from all over the world. It is noted that the current report has been expanded by up to 14,81% of the prior one Version 0.9.5 of 439 domains examinations. The report aims to visualize the performance of the websites in terms of technical aspects such as their adequacy to metadata description of their content and collections, their loading speed, and security. This constitutes an important stepping-stone for optimization, as the higher the alignment with the technical compliencies, the greater the users’ behavior and usability within the examined websites, and thus their findability and visibility level in search engines (Drivas et al. 2020; Mavridis and Symeonidis 2015; Agarwal et al. 2012).
One step further, within this version, we include behavioral analytics about users engagement with the content of the LAMs websites. More specifically, web analytics metrics are included such as Visit Duration, Pages per Visit, and Bounce Rates for 121 domains. We also include web analytics regarding the channels that these websites acquire their users, such as Direct traffic, Search Engines, Referral, Social Media, Email, and Display Advertising. SimilarWeb API was used to gather web data about the involved metrics.
In the first pages of this report, general information is presented regarding the names of the examined organizations. This also includes their type, their geographical location, information about the adopted Content Management Systems (CMSs), and web server software types of integration per website. Furthermore, several other data are visualized related to the size of the examined Information Organizations in terms of the number of unique webpages within a website, the number of images, internal and external links and so on.
Moreover, as a team, we proceed into the development of several factors that are capable to quantify the performance of websites. Reliability analysis takes place for measuring the internal consistency and discriminant validity of the proposed factors and their included variables. For testing the reliability, cohesion, and consistency of the included metrics, Cronbach’s Alpha (a), McDonald’s ω and Guttman λ-2 and λ-6 are used.
- For Cronbach’s, a range of .550 up to .750 indicates an acceptable level of reliability and .800 or higher a very good level (Ursachi, Horodnic, and Zait, 2015).
- McDonald’s ω indicator has the advantage to measure the strength of the association between the proposed variables. More specifically, the closer to .999 the higher the strength association between the variables and vice versa (Şimşek and Noyan, 2013).
- Gutman’s λ-2 and λ-6 work verifiably to Cronbach’s a as they estimate the trustworthiness of variance of the gathered web analytics metrics. Low values less than .450 indicate high bias among the harvested web metrics, while values higher than .600 and above increase the trustworthiness of the sample (Callender and Osburn, 1979).
-Kaiser–Meyer–Olkin (KMO) and Bartlett’s Test of Sphericity indicators are used for measuring the cohesion of the involved metrics. KMO and Bartlett’s test indicates that the closer the value is to .999 amongst the involved items, the higher the cohesion and consistency of them for potential categorization (Dziuban and S...
Facebook
TwitterAmong selected consumer electronics retailers worldwide, thegioididong.com recorded the highest bounce rate in July 2025, at approximately ***** percent. apple.com had a slightly lower bounce rate of nearly ***** percent. Among selected consumer electronics e-tailers, sony.com had the lowest bounce rate at ***** percent. Bounce rate is a marketing term used in web traffic analysis reflecting the percentage of visitors who enter the site and then leave without taking any further action, like making a purchase or viewing other pages within the website ("bounce"). A sector with growth potential With one of the lowest online shopping cart abandonment rates globally in 2022, consumer electronics is a burgeoning e-commerce segment that places itself at the crossroads between technological progress and digital transformation. Boosted by the pandemic-induced surge in online shopping, the global market size of consumer electronics e-commerce was estimated at more than *** billion U.S. dollars in 2021 and forecast to nearly double less than five years later. Amazon and Apple lead the charts in electronics e-commerce With more than ** billion U.S. dollars in e-commerce net sales in the consumer electronics segment in 2022, apple.com was the uncontested industry leader. The global powerhouse surpassed e-commerce giants amazon.com and jd.com with more than *** billion U.S. dollars difference in online sales in the consumer electronics category.
Facebook
TwitterОпределение: Измерение и классификация потока посетителей или пользователей веб-сайтов на основе различных категорий или тематик. Это включает в себя анализ и категоризацию веб-трафика с точки зрения областей или типов контента, который посетители ищут или потребляют. [Переведено с en: английского языка] Тематическая область: Информационно-коммуникационные технологии [Переведено с en: английского языка] Область применения: Веб-трафик [Переведено с en: английского языка] Примечание: Веб-трафик охватывает активность как на настольных компьютерах, так и на мобильных устройствах. Категория электронной коммерции включает трафик на сайты, относящиеся к категории электронной коммерции и торговых площадок. [Переведено с es: испанского языка] Источник данных: Цифровая обсерватория Десарролло (ODD) на основе Similarweb [Переведено с es: испанского языка] Последнее обновление: Jan 31 2024 6:02PM Организация-источник: Экономическая комиссия по Латинской Америке и Карибскому бассейну [Переведено с en: английского языка] Definition: Measurement and classification of the flow of visitors or users on websites based on different categories or topics. This involves analyzing and categorizing web traffic in terms of the areas or types of content that visitors are seeking or consuming. Thematic Area: Information and Communication Technologies Application Area: Web traffic Note: Web traffic encompasses both desktop and mobile device activity. The e-Commerce category includes traffic to sites categorized as e-Commerce and Marketplaces. Data Source: Observatorio de Desarrollo Digital (ODD) based on Similarweb Last Update: Jan 31 2024 6:02PM Source Organization: Economic Comission for Latin America and the Caribbean
Facebook
TwitterIn the six months ending March 2024, the United States accounted for over 45 percent of the web visits to Tumblr.com. Ranked second, the United Kingdom accounted for 5.74 percent of traffic to the social networking website, followed by Canada, which accounted for 5.01 percent of the web page online volume.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Facebook
TwitterTraffic analytics, rankings, and competitive metrics for similarweb.com as of October 2025