7 datasets found
  1. J

    A Bounded Model of Time Variation in Trend Inflation, Nairu and the Phillips...

    • journaldata.zbw.eu
    • jda-test.zbw.eu
    txt
    Updated Dec 7, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Joshua C. C. Chan; Gary Koop; Simon Potter; Joshua C. C. Chan; Gary Koop; Simon Potter (2022). A Bounded Model of Time Variation in Trend Inflation, Nairu and the Phillips Curve (replication data) [Dataset]. http://doi.org/10.15456/jae.2022326.0657879986
    Explore at:
    txt(4959), txt(746)Available download formats
    Dataset updated
    Dec 7, 2022
    Dataset provided by
    ZBW - Leibniz Informationszentrum Wirtschaft
    Authors
    Joshua C. C. Chan; Gary Koop; Simon Potter; Joshua C. C. Chan; Gary Koop; Simon Potter
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    In this paper, we develop a bivariate unobserved components model for inflation and unemployment. The unobserved components are trend inflation and the non-accelerating inflation rate of unemployment (NAIRU). Our model also incorporates a time-varying Phillips curve and time-varying inflation persistence. What sets this paper apart from the existing literature is that we do not use unbounded random walks for the unobserved components, but rather bounded random walks. For instance, NAIRU is assumed to evolve within bounds. Our empirical work shows the importance of bounding. We find that our bounded bivariate model forecasts better than many alternatives, including a version of our model with unbounded unobserved components. Our model also yields sensible estimates of trend inflation, NAIRU, inflation persistence and the slope of the Phillips curve.

  2. k

    Simon Property Group Acquisition Holdings Inc. Class A Common Stock is...

    • kappasignal.com
    Updated Oct 29, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2023). Simon Property Group Acquisition Holdings Inc. Class A Common Stock is assigned short-term Ba3 & long-term Ba3 estimated rating. (Forecast) [Dataset]. https://www.kappasignal.com/2023/10/simon-property-group-acquisition_29.html
    Explore at:
    Dataset updated
    Oct 29, 2023
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Simon Property Group Acquisition Holdings Inc. Class A Common Stock is assigned short-term Ba3 & long-term Ba3 estimated rating.

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  3. n

    Data from: Inflation of molecular clock rates and dates: molecular...

    • data.niaid.nih.gov
    • datadryad.org
    zip
    Updated Sep 17, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    David C. Marshall; Kathy B. R. Hill; Max S. Moulds; Dan Vanderpool; John R. Cooley; Alma Mohagan; Chris Simon (2015). Inflation of molecular clock rates and dates: molecular phylogenetics, biogeography, and diversification of a global cicada radiation from Australasia (Hemiptera: Cicadidae: Cicadettini) [Dataset]. http://doi.org/10.5061/dryad.5590q
    Explore at:
    zipAvailable download formats
    Dataset updated
    Sep 17, 2015
    Dataset provided by
    Australian Museum
    University of Mindanao
    Department of Ecology and Evolutionary Biology, 75 N. Eagleville Rd., Storrs, CT 06269, USA;
    Authors
    David C. Marshall; Kathy B. R. Hill; Max S. Moulds; Dan Vanderpool; John R. Cooley; Alma Mohagan; Chris Simon
    License

    https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html

    Area covered
    Australasia, Australia
    Description

    Dated phylogenetic trees are important for studying mechanisms of diversification, and molecular clocks are important tools for studies of organisms lacking good fossil records. However, studies have begun to identify problems in molecular clock dates caused by uncertainty of the modeled molecular substitution process. Here we explore Bayesian relaxed-clock molecular dating while studying the biogeography of ca. 200 species from the global cicada tribe Cicadettini. Because the available fossils are few and uninformative, we calibrate our trees in part with a cytochrome oxidase I (COI) clock prior encompassing a range of literature estimates for arthropods. We show that tribe-level analyses calibrated solely with the COI clock recover extremely old dates that conflict with published estimates for two well-studied New Zealand subclades within Cicadettini. Additional subclade analyses suggest that COI relaxed-clock rates and maximum-likelihood branch lengths become inflated relative to EF-1α intron and exon rates and branch lengths as clade age increases. We present corrected estimates derived from (1) an extrapolated EF-1α exon clock derived from COI-calibrated analysis within the largest New Zealand subclade, (2) post-hoc scaling of the tribe-level chronogram using results from subclade analyses, and (3) exploitation of a geological calibration point associated with New Caledonia. We caution that considerable uncertainty is generated due to dependence of substitution estimates on both the taxon sample and the choice of model, including gamma category number and the choice of empirical versus estimated base frequencies. Our results suggest that diversification of the tribe Cicadettini commenced in the early- to mid-Cenozoic and continued with the development of open, arid habitats in Australia and worldwide. We find that Cicadettini is a rare example of a global terrestrial animal group with an Australasian origin, with all non-Australasian genera belonging to two distal clades. Within Australia, we show that Cicadettini is more widely distributed than any other cicada tribe, diverse in temperate, arid and monsoonal habitats, and nearly absent from rainforests. We comment on the taxonomic implications of our findings for thirteen cicada genera.

  4. Umfrage zum Einfluss der Inflation auf Kaufentscheidungen bei...

    • de.statista.com
    Updated Aug 15, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2023). Umfrage zum Einfluss der Inflation auf Kaufentscheidungen bei Telko-Dienstleistungen [Dataset]. https://de.statista.com/statistik/daten/studie/1402941/umfrage/umfrage-zum-einfluss-der-inflation-auf-kaufentscheidungen-bei-telko-dienstleistungen-dach-region/
    Explore at:
    Dataset updated
    Aug 15, 2023
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Apr 2023
    Area covered
    Deutschland
    Description

    In einer Umfrage gaben rund 36 Prozent der befragten Kunden in der DACH-Region an, dass die derzeitige wirtschaftliche Entwicklung und Inflation einen (ziemlich) umfangreichen Einfluss auf ihre Kaufentscheidungen bei Telekommunikationsdienstleistungen habe. Die Daten stammen aus einer Studie von Simon-Kucher & Partners, hierzu wurden Telko-Kunden in Deutschland, Österreich und der Schweiz befragt.

  5. Umfrage unter Unternehmen in Europa zu Gewinn-Treibern 2023

    • de.statista.com
    Updated Jun 20, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Umfrage unter Unternehmen in Europa zu Gewinn-Treibern 2023 [Dataset]. https://de.statista.com/statistik/daten/studie/1459939/umfrage/umfrage-unter-unternehmen-in-europa-zu-gewinn-treibern/
    Explore at:
    Dataset updated
    Jun 20, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Europa, Europa
    Description

    Die Bedeutung des Preises als Gewinntreiber für Unternehmen hat in den letzten Jahren deutlich zugenommen. 41 Prozent der für eine Erhebung der Unternehmensberatung Simon-Kucher befragten Entscheider:innen in Unternehmen aus 13 europäischen Ländern nannten den Preis als wichtigsten Faktor für das künftige Wachstum des Unternehmensgewinns, 40 Prozent nannten die Verkaufsmenge. Noch zwei Jahre zuvor wurden die Verkäufe von 50 Prozent der Unternehmen als wichtigster Wachstumsfaktor genannt (27 Prozent nannten den Preis). Laut Simon-Kucher steht dies im Einklang mit der gesamtwirtschaftlichen Situation, die durch Kostenüberwälzung und steigende Inflation gekennzeichnet ist.

  6. Teilnahme an Schnäppchenaktionen weltweit 2023

    • de.statista.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista, Teilnahme an Schnäppchenaktionen weltweit 2023 [Dataset]. https://de.statista.com/statistik/daten/studie/1449915/umfrage/konsumenten-schnaeppchen-aktionen-einkaeufe-weltweit/
    Explore at:
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    Weltweit
    Description

    Weltweit tätigen 92 Prozent der Konsumenten regelmäßig Einkäufe während Winter- und Sommer-Sales (online und/oder stationär), wie die Big Promo Days Study von Simon-Kucher & Partners ergeben hat. Grundsätzlich erfreuen sich Schnäppchenaktionen in Zeiten von Inflation und Kaufzurückhaltung großer Beliebtheit, da hier notwendige Anschaffungen für einen guten Preis getätigt werden können.

  7. Umfrage unter Unternehmen in Europa zu Wachstums-Hemmnissen 2023

    • de.statista.com
    Updated Sep 15, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2023). Umfrage unter Unternehmen in Europa zu Wachstums-Hemmnissen 2023 [Dataset]. https://de.statista.com/statistik/daten/studie/1459890/umfrage/umfrage-unter-unternehmen-in-europa-zu-wachstums-hemmnissen/
    Explore at:
    Dataset updated
    Sep 15, 2023
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Europa, Europa
    Description

    Die ************** sowie die ************ mit hohen Energiepreisen waren im Jahr 2023 die größte Hemmnisse für das Wachstum von Unternehmen. Dies geht aus einer Befragung der Unternehmensberatung Simon-Kucher hervor, bei der im Sommer 2023 mehr als 1.300 Entscheider:innen in Unternehmen aus 13 europäischen Ländern befragt wurden. Als weitere Hemmnisse für das Unternehmens-Wachstum wurden u.a. politische Instabilitäten, wie etwa der Krieg in der Ukraine oder der Handelsstreit zwischen den USA und China, sowie der Fachkräftemangel genannt.

  8. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Joshua C. C. Chan; Gary Koop; Simon Potter; Joshua C. C. Chan; Gary Koop; Simon Potter (2022). A Bounded Model of Time Variation in Trend Inflation, Nairu and the Phillips Curve (replication data) [Dataset]. http://doi.org/10.15456/jae.2022326.0657879986

A Bounded Model of Time Variation in Trend Inflation, Nairu and the Phillips Curve (replication data)

Explore at:
txt(4959), txt(746)Available download formats
Dataset updated
Dec 7, 2022
Dataset provided by
ZBW - Leibniz Informationszentrum Wirtschaft
Authors
Joshua C. C. Chan; Gary Koop; Simon Potter; Joshua C. C. Chan; Gary Koop; Simon Potter
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

In this paper, we develop a bivariate unobserved components model for inflation and unemployment. The unobserved components are trend inflation and the non-accelerating inflation rate of unemployment (NAIRU). Our model also incorporates a time-varying Phillips curve and time-varying inflation persistence. What sets this paper apart from the existing literature is that we do not use unbounded random walks for the unobserved components, but rather bounded random walks. For instance, NAIRU is assumed to evolve within bounds. Our empirical work shows the importance of bounding. We find that our bounded bivariate model forecasts better than many alternatives, including a version of our model with unbounded unobserved components. Our model also yields sensible estimates of trend inflation, NAIRU, inflation persistence and the slope of the Phillips curve.

Search
Clear search
Close search
Google apps
Main menu