The Dictionary of Algorithms and Data Structures (DADS) is an online, publicly accessible dictionary of generally useful algorithms, data structures, algorithmic techniques, archetypal problems, and related definitions. In addition to brief definitions, some entries have links to related entries, links to implementations, and additional information. DADS is meant to be a resource for the practicing programmer, although students and researchers may find it a useful starting point. DADS has fundamental entries in areas such as theory, cryptography and compression, graphs, trees, and searching, for instance, Ackermann's function, quick sort, traveling salesman, big O notation, merge sort, AVL tree, hash table, and Byzantine generals. DADS also has index pages that list entries by area and by type. Currently DADS does not include algorithms particular to business data processing, communications, operating systems or distributed algorithms, programming languages, AI, graphics, or numerical analysis.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Calls in favour of Open Data in research are becoming overwhelming. They are at national [@RCKUOpen] and international levels [@Moedas2015, @RSOpen, @ams2016]. I will set out a working definition of Open Data and will discuss the key challenges preventing the publication of Open Data becoming standard practice. I will attempt to draw some general solutions to those challenges from field specific examples.
Big Data and Society Abstract & Indexing - ResearchHelpDesk - Big Data & Society (BD&S) is open access, peer-reviewed scholarly journal that publishes interdisciplinary work principally in the social sciences, humanities and computing and their intersections with the arts and natural sciences about the implications of Big Data for societies. The Journal's key purpose is to provide a space for connecting debates about the emerging field of Big Data practices and how they are reconfiguring academic, social, industry, business, and government relations, expertise, methods, concepts, and knowledge. BD&S moves beyond usual notions of Big Data and treats it as an emerging field of practice that is not defined by but generative of (sometimes) novel data qualities such as high volume and granularity and complex analytics such as data linking and mining. It thus attends to digital content generated through online and offline practices in social, commercial, scientific, and government domains. This includes, for instance, the content generated on the Internet through social media and search engines but also that which is generated in closed networks (commercial or government transactions) and open networks such as digital archives, open government, and crowdsourced data. Critically, rather than settling on a definition the Journal makes this an object of interdisciplinary inquiries and debates explored through studies of a variety of topics and themes. BD&S seeks contributions that analyze Big Data practices and/or involve empirical engagements and experiments with innovative methods while also reflecting on the consequences for how societies are represented (epistemologies), realized (ontologies) and governed (politics). Article processing charge (APC) The article processing charge (APC) for this journal is currently 1500 USD. Authors who do not have funding for open access publishing can request a waiver from the publisher, SAGE, once their Original Research Article is accepted after peer review. For all other content (Commentaries, Editorials, Demos) and Original Research Articles commissioned by the Editor, the APC will be waived. Abstract & Indexing Clarivate Analytics: Social Sciences Citation Index (SSCI) Directory of Open Access Journals (DOAJ) Google Scholar Scopus
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
With recent technological advancements, quantitative analysis has become an increasingly important area within professional sports. However, the manual process of collecting data on relevant match events like passes, goals and tacklings comes with considerable costs and limited consistency across providers, affecting both research and practice. In football, while automatic detection of events from positional data of the players and the ball could alleviate these issues, it is not entirely clear what accuracy current state-of-the-art methods realistically achieve because there is a lack of high-quality validations on realistic and diverse data sets. This paper adds context to existing research by validating a two-step rule-based pass and shot detection algorithm on four different data sets using a comprehensive validation routine that accounts for the temporal, hierarchical and imbalanced nature of the task. Our evaluation shows that pass and shot detection performance is highly dependent on the specifics of the data set. In accordance with previous studies, we achieve F-scores of up to 0.92 for passes, but only when there is an inherent dependency between event and positional data. We find a significantly lower accuracy with F-scores of 0.71 for passes and 0.65 for shots if event and positional data are independent. This result, together with a critical evaluation of existing methodologies, suggests that the accuracy of current football event detection algorithms operating on positional data is currently overestimated. Further analysis reveals that the temporal extraction of passes and shots from positional data poses the main challenge for rule-based approaches. Our results further indicate that the classification of plays into shots and passes is a relatively straightforward task, achieving F-scores between 0.83 to 0.91 ro rule-based classifiers and up to 0.95 for machine learning classifiers. We show that there exist simple classifiers that accurately differentiate shots from passes in different data sets using a low number of human-understandable rules. Operating on basic spatial features, our classifiers provide a simple, objective event definition that can be used as a foundation for more reliable event-based match analysis.
Open data is data that can be freely used, reused, and redistributed by anyone, and is subject, at most, to the requirement of attribution and to being shared in the same manner in which it appears. [1] This simple definition implies that open data can be used for any purpose and shared countless times. In the case of the data presented here, it is only requested that it be indicated that it is information from INFO CDMX. Open data, as a philosophy and practice, seeks to allow any interested person to explore and analyze it. Specifically, in the case of open data from governmental areas, the aim is to strengthen transparency, accountability, and public participation. I. Free of charge: They will be obtained without providing any consideration in return; II. Non-discriminatory: They will be accessible without access restrictions for users; III. Free to use: They will cite the source of origin as the only requirement to be used freely; IV. Machine-readable: They must be structured, totally or partially, to be processed and interpreted by electronic equipment automatically; V. Comprehensive: They should contain, to the extent possible, the topic they describe in detail and with the necessary metadata; VI. Primary: They will come from the source of origin with the maximum possible level of disaggregation; VII. Timely: They will be updated periodically, as they are generated, and, VIII. Permanent: They must be preserved over time, for which purpose, historical versions relevant for public use will be kept available through appropriate identifiers for that purpose. [2] [1] https://opendatahandbook.org/guide/es/what-is-open-data/ [2] https://www.ipn.mx/datosabiertos/que-son-los-datos-abiertos.html Translated from Spanish Original Text: Los datos abiertos son datos que pueden ser utilizados, reutilizados y redistribuidos libremente por cualquier persona, y que se encuentran sujetos, cuando más, al requerimiento de atribución y de compartirse de la misma manera en que aparecen. [1] Esta simple definición implica que los datos abiertos pueden ser utilizados para cualquier uso, y ser compartidos infinidad de veces. Para el caso de los datos aquí presentados sólo se solicita se indique que es información del INFO CDMX. Los datos abiertos como filosofía y práctica buscan que cualquier persona interesada pueda explorar y analizarlos. Específicamente en el caso de datos abiertos de ámbitos gubernamentales, se busca fortalecer la transparencia, rendición de cuentas y participación de las personas. I. Gratuitos: Se obtendrán sin entregar a cambio contraprestación alguna; II. No discriminatorios: Serán accesibles sin restricciones de acceso para los usuarios; III. De libre uso: Citarán la fuente de origen como único requerimiento para ser utilizados libremente; IV. Legibles por máquinas: Deberán estar estructurados, total o parcialmente, para ser procesados e interpretados por equipos electrónicos de manera automática; V. Integrales: Deberán contener, en la medida de lo posible, el tema que describen a detalle y con los metadatos necesarios; VI. Primarios: Provendrán de la fuente de origen con el máximo nivel de desagregación posible; VII. Oportunos: Serán actualizados periódicamente, conforme se generen, y, VIII. Permanentes: Se deberán conservar en el tiempo, para lo cual, las versiones históricas relevantes para uso público, se mantendrán disponibles a través de identificadores adecuados para tal efecto. [2] [1] https://opendatahandbook.org/guide/es/what-is-open-data/ [2] https://www.ipn.mx/datosabiertos/que-son-los-datos-abiertos.html
https://hdl.handle.net/20.500.14106/licence-otahttps://hdl.handle.net/20.500.14106/licence-ota
(:unav)...........................................
https://hdl.handle.net/20.500.14106/licence-otahttps://hdl.handle.net/20.500.14106/licence-ota
(:unav)...........................................
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Complete dataset of “Film Circulation on the International Film Festival Network and the Impact on Global Film Culture”
A peer-reviewed data paper for this dataset is in review to be published in NECSUS_European Journal of Media Studies - an open access journal aiming at enhancing data transparency and reusability, and will be available from https://necsus-ejms.org/ and https://mediarep.org
Please cite this when using the dataset.
Detailed description of the dataset:
1 Film Dataset: Festival Programs
The Film Dataset consists a data scheme image file, a codebook and two dataset tables in csv format.
The codebook (csv file “1_codebook_film-dataset_festival-program”) offers a detailed description of all variables within the Film Dataset. Along with the definition of variables it lists explanations for the units of measurement, data sources, coding and information on missing data.
The csv file “1_film-dataset_festival-program_long” comprises a dataset of all films and the festivals, festival sections, and the year of the festival edition that they were sampled from. The dataset is structured in the long format, i.e. the same film can appear in several rows when it appeared in more than one sample festival. However, films are identifiable via their unique ID.
The csv file “1_film-dataset_festival-program_wide” consists of the dataset listing only unique films (n=9,348). The dataset is in the wide format, i.e. each row corresponds to a unique film, identifiable via its unique ID. For easy analysis, and since the overlap is only six percent, in this dataset the variable sample festival (fest) corresponds to the first sample festival where the film appeared. For instance, if a film was first shown at Berlinale (in February) and then at Frameline (in June of the same year), the sample festival will list “Berlinale”. This file includes information on unique and IMDb IDs, the film title, production year, length, categorization in length, production countries, regional attribution, director names, genre attribution, the festival, festival section and festival edition the film was sampled from, and information whether there is festival run information available through the IMDb data.
2 Survey Dataset
The Survey Dataset consists of a data scheme image file, a codebook and two dataset tables in csv format.
The codebook “2_codebook_survey-dataset” includes coding information for both survey datasets. It lists the definition of the variables or survey questions (corresponding to Samoilova/Loist 2019), units of measurement, data source, variable type, range and coding, and information on missing data.
The csv file “2_survey-dataset_long-festivals_shared-consent” consists of a subset (n=161) of the original survey dataset (n=454), where respondents provided festival run data for films (n=206) and gave consent to share their data for research purposes. This dataset consists of the festival data in a long format, so that each row corresponds to the festival appearance of a film.
The csv file “2_survey-dataset_wide-no-festivals_shared-consent” consists of a subset (n=372) of the original dataset (n=454) of survey responses corresponding to sample films. It includes data only for those films for which respondents provided consent to share their data for research purposes. This dataset is shown in wide format of the survey data, i.e. information for each response corresponding to a film is listed in one row. This includes data on film IDs, film title, survey questions regarding completeness and availability of provided information, information on number of festival screenings, screening fees, budgets, marketing costs, market screenings, and distribution. As the file name suggests, no data on festival screenings is included in the wide format dataset.
3 IMDb & Scripts
The IMDb dataset consists of a data scheme image file, one codebook and eight datasets, all in csv format. It also includes the R scripts that we used for scraping and matching.
The codebook “3_codebook_imdb-dataset” includes information for all IMDb datasets. This includes ID information and their data source, coding and value ranges, and information on missing data.
The csv file “3_imdb-dataset_aka-titles_long” contains film title data in different languages scraped from IMDb in a long format, i.e. each row corresponds to a title in a given language.
The csv file “3_imdb-dataset_awards_long” contains film award data in a long format, i.e. each row corresponds to an award of a given film.
The csv file “3_imdb-dataset_companies_long” contains data on production and distribution companies of films. The dataset is in a long format, so that each row corresponds to a particular company of a particular film.
The csv file “3_imdb-dataset_crew_long” contains data on names and roles of crew members in a long format, i.e. each row corresponds to each crew member. The file also contains binary gender assigned to directors based on their first names using the GenderizeR application.
The csv file “3_imdb-dataset_festival-runs_long” contains festival run data scraped from IMDb in a long format, i.e. each row corresponds to the festival appearance of a given film. The dataset does not include each film screening, but the first screening of a film at a festival within a given year. The data includes festival runs up to 2019.
The csv file “3_imdb-dataset_general-info_wide” contains general information about films such as genre as defined by IMDb, languages in which a film was shown, ratings, and budget. The dataset is in wide format, so that each row corresponds to a unique film.
The csv file “3_imdb-dataset_release-info_long” contains data about non-festival release (e.g., theatrical, digital, tv, dvd/blueray). The dataset is in a long format, so that each row corresponds to a particular release of a particular film.
The csv file “3_imdb-dataset_websites_long” contains data on available websites (official websites, miscellaneous, photos, video clips). The dataset is in a long format, so that each row corresponds to a website of a particular film.
The dataset includes 8 text files containing the script for webscraping. They were written using the R-3.6.3 version for Windows.
The R script “r_1_unite_data” demonstrates the structure of the dataset, that we use in the following steps to identify, scrape, and match the film data.
The R script “r_2_scrape_matches” reads in the dataset with the film characteristics described in the “r_1_unite_data” and uses various R packages to create a search URL for each film from the core dataset on the IMDb website. The script attempts to match each film from the core dataset to IMDb records by first conducting an advanced search based on the movie title and year, and then potentially using an alternative title and a basic search if no matches are found in the advanced search. The script scrapes the title, release year, directors, running time, genre, and IMDb film URL from the first page of the suggested records from the IMDb website. The script then defines a loop that matches (including matching scores) each film in the core dataset with suggested films on the IMDb search page. Matching was done using data on directors, production year (+/- one year), and title, a fuzzy matching approach with two methods: “cosine” and “osa.” where the cosine similarity is used to match titles with a high degree of similarity, and the OSA algorithm is used to match titles that may have typos or minor variations.
The script “r_3_matching” creates a dataset with the matches for a manual check. Each pair of films (original film from the core dataset and the suggested match from the IMDb website was categorized in the following five categories: a) 100% match: perfect match on title, year, and director; b) likely good match; c) maybe match; d) unlikely match; and e) no match). The script also checks for possible doubles in the dataset and identifies them for a manual check.
The script “r_4_scraping_functions” creates a function for scraping the data from the identified matches (based on the scripts described above and manually checked). These functions are used for scraping the data in the next script.
The script “r_5a_extracting_info_sample” uses the function defined in the “r_4_scraping_functions”, in order to scrape the IMDb data for the identified matches. This script does that for the first 100 films, to check, if everything works. Scraping for the entire dataset took a few hours. Therefore, a test with a subsample of 100 films is advisable.
The script “r_5b_extracting_info_all” extracts the data for the entire dataset of the identified matches.
The script “r_5c_extracting_info_skipped” checks the films with missing data (where data was not scraped) and tried to extract data one more time to make sure that the errors were not caused by disruptions in the internet connection or other technical issues.
The script “r_check_logs” is used for troubleshooting and tracking the progress of all of the R scripts used. It gives information on the amount of missing values and errors.
4 Festival Library Dataset
The Festival Library Dataset consists of a data scheme image file, one codebook and one dataset, all in csv format.
The codebook (csv file “4_codebook_festival-library_dataset”) offers a detailed description of all variables within the Library Dataset. It lists the definition of variables, such as location and festival name, and festival categories,
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
With recent technological advancements, quantitative analysis has become an increasingly important area within professional sports. However, the manual process of collecting data on relevant match events like passes, goals and tacklings comes with considerable costs and limited consistency across providers, affecting both research and practice. In football, while automatic detection of events from positional data of the players and the ball could alleviate these issues, it is not entirely clear what accuracy current state-of-the-art methods realistically achieve because there is a lack of high-quality validations on realistic and diverse data sets. This paper adds context to existing research by validating a two-step rule-based pass and shot detection algorithm on four different data sets using a comprehensive validation routine that accounts for the temporal, hierarchical and imbalanced nature of the task. Our evaluation shows that pass and shot detection performance is highly dependent on the specifics of the data set. In accordance with previous studies, we achieve F-scores of up to 0.92 for passes, but only when there is an inherent dependency between event and positional data. We find a significantly lower accuracy with F-scores of 0.71 for passes and 0.65 for shots if event and positional data are independent. This result, together with a critical evaluation of existing methodologies, suggests that the accuracy of current football event detection algorithms operating on positional data is currently overestimated. Further analysis reveals that the temporal extraction of passes and shots from positional data poses the main challenge for rule-based approaches. Our results further indicate that the classification of plays into shots and passes is a relatively straightforward task, achieving F-scores between 0.83 to 0.91 ro rule-based classifiers and up to 0.95 for machine learning classifiers. We show that there exist simple classifiers that accurately differentiate shots from passes in different data sets using a low number of human-understandable rules. Operating on basic spatial features, our classifiers provide a simple, objective event definition that can be used as a foundation for more reliable event-based match analysis.
This COVADIS data standard concerns local planning documents (LDPs) and land use plans (POSs that are PLU). This data standard provides a technical framework describing in detail how to dematerialise these planning documents into a spatial database that can be used by a GIS tool and interoperable. This standard of data concerns both the graphic zoning plans, the superimposed requirements and the regulations applying to each type of area.This standard of COVADIS data was developed on the basis of the specifications for the dematerialisation of urban planning documents updated in 2012 by the CNIG, itself based on the consolidated version of the urban planning code dated 16 March 2012. The recommendations of these two documents are consistent even if their purpose is not the same. The COVADIS data standard provides definitions and a structure for organising and storing existing PLU/POS spatial data in an infrastructure in digital form, while the CNIG specification serves to frame the digitisation of such data. The ‘Data Structure’ section presented in this COVADIS standard provides additional recommendations for the storage of data files (see Part C). These are choices specific to the MAA and MEDDE data infrastructure that do not apply outside their context. Communal maps are the subject of another COVADIS data standard. This COVADIS data standard concerns local planning documents (LDPs) and land use plans (POSs that are PLU). This data standard provides a technical framework describing in detail how to dematerialise these planning documents into a spatial database that can be used by a GIS tool and interoperable. This standard of data concerns both the graphic zoning plans, the superimposed requirements and the regulations applying to each type of area.This standard of COVADIS data was developed on the basis of the specifications for the dematerialisation of urban planning documents updated in 2012 by the CNIG, itself based on the consolidated version of the urban planning code dated 16 March 2012. The recommendations of these two documents are consistent even if their purpose is not the same. The COVADIS data standard provides definitions and a structure for organising and storing existing PLU/POS spatial data in an infrastructure in digital form, while the CNIG specification serves to frame the digitisation of such data. The ‘Data Structure’ section presented in this COVADIS standard provides additional recommendations for the storage of data files (see Part C). These are choices specific to the MAA and MEDDE data infrastructure that do not apply outside their context. Communal maps are the subject of another COVADIS data standard.
On October 15, 2013, Louisville Mayor Greg Fischer announced the signing of an open data policy executive order in conjunction with his compelling talk at the 2013 Code for America Summit. In nonchalant cadence, the mayor announced his support for complete information disclosure by declaring, "It's data, man."Sunlight Foundation - New Louisville Open Data Policy Insists Open By Default is the Future Open Data Annual ReportsSection 5.A. Within one year of the effective Data of this Executive Order, and thereafter no later than September 1 of each year, the Open Data Management Team shall submit to the Mayor an annual Open Data Report.The Open Data Management team (also known as the Data Governance Team is currently led by the city's Data Officer Andrew McKinney in the Office of Civic Innovation and Technology. Previously (2014-16) it was led by the Director of IT.Full Executive OrderEXECUTIVE ORDER NO. 1, SERIES 2013AN EXECUTIVE ORDERCREATING AN OPEN DATA PLAN. WHEREAS, Metro Government is the catalyst for creating a world-class city that provides its citizens with safe and vibrant neighborhoods, great jobs, a strong system of education and innovation, and a high quality of life; andWHEREAS, it should be easy to do business with Metro Government. Online government interactions mean more convenient services for citizens and businesses and online government interactions improve the cost effectiveness and accuracy of government operations; andWHEREAS, an open government also makes certain that every aspect of the built environment also has reliable digital descriptions available to citizens and entrepreneurs for deep engagement mediated by smart devices; andWHEREAS, every citizen has the right to prompt, efficient service from Metro Government; andWHEREAS, the adoption of open standards improves transparency, access to public information and improved coordination and efficiencies among Departments and partner organizations across the public, nonprofit and private sectors; andWHEREAS, by publishing structured standardized data in machine readable formats the Louisville Metro Government seeks to encourage the local software community to develop software applications and tools to collect, organize, and share public record data in new and innovative ways; andWHEREAS, in commitment to the spirit of Open Government, Louisville Metro Government will consider public information to be open by default and will proactively publish data and data containing information, consistent with the Kentucky Open Meetings and Open Records Act; andNOW, THEREFORE, BE IT PROMULGATED BY EXECUTIVE ORDER OF THE HONORABLE GREG FISCHER, MAYOR OF LOUISVILLE/JEFFERSON COUNTY METRO GOVERNMENT AS FOLLOWS:Section 1. Definitions. As used in this Executive Order, the terms below shall have the following definitions:(A) “Open Data” means any public record as defined by the Kentucky Open Records Act, which could be made available online using Open Format data, as well as best practice Open Data structures and formats when possible. Open Data is not information that is treated exempt under KRS 61.878 by Metro Government.(B) “Open Data Report” is the annual report of the Open Data Management Team, which shall (i) summarize and comment on the state of Open Data availability in Metro Government Departments from the previous year; (ii) provide a plan for the next year to improve online public access to Open Data and maintain data quality. The Open Data Management Team shall present an initial Open Data Report to the Mayor within 180 days of this Executive Order.(C) “Open Format” is any widely accepted, nonproprietary, platform-independent, machine-readable method for formatting data, which permits automated processing of such data and is accessible to external search capabilities.(D) “Open Data Portal” means the Internet site established and maintained by or on behalf of Metro Government, located at portal.louisvilleky.gov/service/data or its successor website.(E) “Open Data Management Team” means a group consisting of representatives from each Department within Metro Government and chaired by the Chief Information Officer (CIO) that is responsible for coordinating implementation of an Open Data Policy and creating the Open Data Report.(F) “Department” means any Metro Government department, office, administrative unit, commission, board, advisory committee, or other division of Metro Government within the official jurisdiction of the executive branch.Section 2. Open Data Portal.(A) The Open Data Portal shall serve as the authoritative source for Open Data provided by Metro Government(B) Any Open Data made accessible on Metro Government’s Open Data Portal shall use an Open Format.Section 3. Open Data Management Team.(A) The Chief Information Officer (CIO) of Louisville Metro Government will work with the head of each Department to identify a Data Coordinator in each Department. Data Coordinators will serve as members of an Open Data Management Team facilitated by the CIO and Metro Technology Services. The Open Data Management Team will work to establish a robust, nationally recognized, platform that addresses digital infrastructure and Open Data.(B) The Open Data Management Team will develop an Open Data management policy that will adopt prevailing Open Format standards for Open Data, and develop agreements with regional partners to publish and maintain Open Data that is open and freely available while respecting exemptions allowed by the Kentucky Open Records Act or other federal or state law.Section 4. Department Open Data Catalogue.(A) Each Department shall be responsible for creating an Open Data catalogue, which will include comprehensive inventories of information possessed and/or managed by the Department.(B) Each Department’s Open Data catalogue will classify information holdings as currently “public” or “not yet public”; Departments will work with Metro Technology Services to develop strategies and timelines for publishing open data containing information in a way that is complete, reliable, and has a high level of detail.Section 5. Open Data Report and Policy Review.(A) Within one year of the effective date of this Executive Order, and thereafter no later than September 1 of each year, the Open Data Management Team shall submit to the Mayor an annual Open Data Report.(B) In acknowledgment that technology changes rapidly, in the future, the Open Data Policy should be reviewed and considered for revisions or additions that will continue to position Metro Government as a leader on issues of openness, efficiency, and technical best practices.Section 6. This Executive Order shall take effect as of October 11, 2013.Signed this 11th day of October, 2013, by Greg Fischer, Mayor of Louisville/Jefferson County Metro Government.GREG FISCHER, MAYOR
On October 15, 2013, Louisville Mayor Greg Fischer announced the signing of an open data policy executive order in conjunction with his compelling talk at the 2013 Code for America Summit. In nonchalant cadence, the mayor announced his support for complete information disclosure by declaring, "It's data, man."Sunlight Foundation - New Louisville Open Data Policy Insists Open By Default is the Future Open Data Annual ReportsSection 5.A. Within one year of the effective Data of this Executive Order, and thereafter no later than September 1 of each year, the Open Data Management Team shall submit to the Mayor an annual Open Data Report.The Open Data Management team (also known as the Data Governance Team is currently led by the city's Data Officer Andrew McKinney in the Office of Civic Innovation and Technology. Previously (2014-16) it was led by the Director of IT.Full Executive OrderEXECUTIVE ORDER NO. 1, SERIES 2013AN EXECUTIVE ORDERCREATING AN OPEN DATA PLAN. WHEREAS, Metro Government is the catalyst for creating a world-class city that provides its citizens with safe and vibrant neighborhoods, great jobs, a strong system of education and innovation, and a high quality of life; andWHEREAS, it should be easy to do business with Metro Government. Online government interactions mean more convenient services for citizens and businesses and online government interactions improve the cost effectiveness and accuracy of government operations; andWHEREAS, an open government also makes certain that every aspect of the built environment also has reliable digital descriptions available to citizens and entrepreneurs for deep engagement mediated by smart devices; andWHEREAS, every citizen has the right to prompt, efficient service from Metro Government; andWHEREAS, the adoption of open standards improves transparency, access to public information and improved coordination and efficiencies among Departments and partner organizations across the public, nonprofit and private sectors; andWHEREAS, by publishing structured standardized data in machine readable formats the Louisville Metro Government seeks to encourage the local software community to develop software applications and tools to collect, organize, and share public record data in new and innovative ways; andWHEREAS, in commitment to the spirit of Open Government, Louisville Metro Government will consider public information to be open by default and will proactively publish data and data containing information, consistent with the Kentucky Open Meetings and Open Records Act; andNOW, THEREFORE, BE IT PROMULGATED BY EXECUTIVE ORDER OF THE HONORABLE GREG FISCHER, MAYOR OF LOUISVILLE/JEFFERSON COUNTY METRO GOVERNMENT AS FOLLOWS:Section 1. Definitions. As used in this Executive Order, the terms below shall have the following definitions:(A) “Open Data” means any public record as defined by the Kentucky Open Records Act, which could be made available online using Open Format data, as well as best practice Open Data structures and formats when possible. Open Data is not information that is treated exempt under KRS 61.878 by Metro Government.(B) “Open Data Report” is the annual report of the Open Data Management Team, which shall (i) summarize and comment on the state of Open Data availability in Metro Government Departments from the previous year; (ii) provide a plan for the next year to improve online public access to Open Data and maintain data quality. The Open Data Management Team shall present an initial Open Data Report to the Mayor within 180 days of this Executive Order.(C) “Open Format” is any widely accepted, nonproprietary, platform-independent, machine-readable method for formatting data, which permits automated processing of such data and is accessible to external search capabilities.(D) “Open Data Portal” means the Internet site established and maintained by or on behalf of Metro Government, located at portal.louisvilleky.gov/service/data or its successor website.(E) “Open Data Management Team” means a group consisting of representatives from each Department within Metro Government and chaired by the Chief Information Officer (CIO) that is responsible for coordinating implementation of an Open Data Policy and creating the Open Data Report.(F) “Department” means any Metro Government department, office, administrative unit, commission, board, advisory committee, or other division of Metro Government within the official jurisdiction of the executive branch.Section 2. Open Data Portal.(A) The Open Data Portal shall serve as the authoritative source for Open Data provided by Metro Government(B) Any Open Data made accessible on Metro Government’s Open Data Portal shall use an Open Format.Section 3. Open Data Management Team.(A) The Chief Information Officer (CIO) of Louisville Metro Government will work with the head of each Department to identify a Data Coordinator in each Department. Data Coordinators will serve as members of an Open Data Management Team facilitated by the CIO and Metro Technology Services. The Open Data Management Team will work to establish a robust, nationally recognized, platform that addresses digital infrastructure and Open Data.(B) The Open Data Management Team will develop an Open Data management policy that will adopt prevailing Open Format standards for Open Data, and develop agreements with regional partners to publish and maintain Open Data that is open and freely available while respecting exemptions allowed by the Kentucky Open Records Act or other federal or state law.Section 4. Department Open Data Catalogue.(A) Each Department shall be responsible for creating an Open Data catalogue, which will include comprehensive inventories of information possessed and/or managed by the Department.(B) Each Department’s Open Data catalogue will classify information holdings as currently “public” or “not yet public”; Departments will work with Metro Technology Services to develop strategies and timelines for publishing open data containing information in a way that is complete, reliable, and has a high level of detail.Section 5. Open Data Report and Policy Review.(A) Within one year of the effective date of this Executive Order, and thereafter no later than September 1 of each year, the Open Data Management Team shall submit to the Mayor an annual Open Data Report.(B) In acknowledgment that technology changes rapidly, in the future, the Open Data Policy should be reviewed and considered for revisions or additions that will continue to position Metro Government as a leader on issues of openness, efficiency, and technical best practices.Section 6. This Executive Order shall take effect as of October 11, 2013.Signed this 11th day of October, 2013, by Greg Fischer, Mayor of Louisville/Jefferson County Metro Government.GREG FISCHER, MAYOR
On October 15, 2013, Louisville Mayor Greg Fischer announced the signing of an open data policy executive order in conjunction with his compelling talk at the 2013 Code for America Summit. In nonchalant cadence, the mayor announced his support for complete information disclosure by declaring, "It's data, man."Sunlight Foundation - New Louisville Open Data Policy Insists Open By Default is the Future Open Data Annual ReportsSection 5.A. Within one year of the effective Data of this Executive Order, and thereafter no later than September 1 of each year, the Open Data Management Team shall submit to the Mayor an annual Open Data Report.The Open Data Management team (also known as the Data Governance Team is currently led by the city's Data Officer Andrew McKinney in the Office of Civic Innovation and Technology. Previously (2014-16) it was led by the Director of IT.Full Executive OrderEXECUTIVE ORDER NO. 1, SERIES 2013AN EXECUTIVE ORDERCREATING AN OPEN DATA PLAN. WHEREAS, Metro Government is the catalyst for creating a world-class city that provides its citizens with safe and vibrant neighborhoods, great jobs, a strong system of education and innovation, and a high quality of life; andWHEREAS, it should be easy to do business with Metro Government. Online government interactions mean more convenient services for citizens and businesses and online government interactions improve the cost effectiveness and accuracy of government operations; andWHEREAS, an open government also makes certain that every aspect of the built environment also has reliable digital descriptions available to citizens and entrepreneurs for deep engagement mediated by smart devices; andWHEREAS, every citizen has the right to prompt, efficient service from Metro Government; andWHEREAS, the adoption of open standards improves transparency, access to public information and improved coordination and efficiencies among Departments and partner organizations across the public, nonprofit and private sectors; andWHEREAS, by publishing structured standardized data in machine readable formats the Louisville Metro Government seeks to encourage the local software community to develop software applications and tools to collect, organize, and share public record data in new and innovative ways; andWHEREAS, in commitment to the spirit of Open Government, Louisville Metro Government will consider public information to be open by default and will proactively publish data and data containing information, consistent with the Kentucky Open Meetings and Open Records Act; andNOW, THEREFORE, BE IT PROMULGATED BY EXECUTIVE ORDER OF THE HONORABLE GREG FISCHER, MAYOR OF LOUISVILLE/JEFFERSON COUNTY METRO GOVERNMENT AS FOLLOWS:Section 1. Definitions. As used in this Executive Order, the terms below shall have the following definitions:(A) “Open Data” means any public record as defined by the Kentucky Open Records Act, which could be made available online using Open Format data, as well as best practice Open Data structures and formats when possible. Open Data is not information that is treated exempt under KRS 61.878 by Metro Government.(B) “Open Data Report” is the annual report of the Open Data Management Team, which shall (i) summarize and comment on the state of Open Data availability in Metro Government Departments from the previous year; (ii) provide a plan for the next year to improve online public access to Open Data and maintain data quality. The Open Data Management Team shall present an initial Open Data Report to the Mayor within 180 days of this Executive Order.(C) “Open Format” is any widely accepted, nonproprietary, platform-independent, machine-readable method for formatting data, which permits automated processing of such data and is accessible to external search capabilities.(D) “Open Data Portal” means the Internet site established and maintained by or on behalf of Metro Government, located at portal.louisvilleky.gov/service/data or its successor website.(E) “Open Data Management Team” means a group consisting of representatives from each Department within Metro Government and chaired by the Chief Information Officer (CIO) that is responsible for coordinating implementation of an Open Data Policy and creating the Open Data Report.(F) “Department” means any Metro Government department, office, administrative unit, commission, board, advisory committee, or other division of Metro Government within the official jurisdiction of the executive branch.Section 2. Open Data Portal.(A) The Open Data Portal shall serve as the authoritative source for Open Data provided by Metro Government(B) Any Open Data made accessible on Metro Government’s Open Data Portal shall use an Open Format.Section 3. Open Data Management Team.(A) The Chief Information Officer (CIO) of Louisville Metro Government will work with the head of each Department to identify a Data Coordinator in each Department. Data Coordinators will serve as members of an Open Data Management Team facilitated by the CIO and Metro Technology Services. The Open Data Management Team will work to establish a robust, nationally recognized, platform that addresses digital infrastructure and Open Data.(B) The Open Data Management Team will develop an Open Data management policy that will adopt prevailing Open Format standards for Open Data, and develop agreements with regional partners to publish and maintain Open Data that is open and freely available while respecting exemptions allowed by the Kentucky Open Records Act or other federal or state law.Section 4. Department Open Data Catalogue.(A) Each Department shall be responsible for creating an Open Data catalogue, which will include comprehensive inventories of information possessed and/or managed by the Department.(B) Each Department’s Open Data catalogue will classify information holdings as currently “public” or “not yet public”; Departments will work with Metro Technology Services to develop strategies and timelines for publishing open data containing information in a way that is complete, reliable, and has a high level of detail.Section 5. Open Data Report and Policy Review.(A) Within one year of the effective date of this Executive Order, and thereafter no later than September 1 of each year, the Open Data Management Team shall submit to the Mayor an annual Open Data Report.(B) In acknowledgment that technology changes rapidly, in the future, the Open Data Policy should be reviewed and considered for revisions or additions that will continue to position Metro Government as a leader on issues of openness, efficiency, and technical best practices.Section 6. This Executive Order shall take effect as of October 11, 2013.Signed this 11th day of October, 2013, by Greg Fischer, Mayor of Louisville/Jefferson County Metro Government.GREG FISCHER, MAYOR
https://hdl.handle.net/20.500.14106/licence-otahttps://hdl.handle.net/20.500.14106/licence-ota
(:unav)...........................................
The XSD defines a data structure for an unambiguous, easy-to-use, safe and uniform exchange of fundamental physical constants and mathematical constants in a machine-readable data format. The data elements for constants are defined in the Digital System of Units (D-SI) metadata model from the EMPIR project 17IND02 SmartCom. The development of the data structure was based on an own analysis of minimum requirement for transfering the data of fundamental physical constants "as are" provided by CODATA into a machine-readable form. Furthermore, the considerations for the transformation comprise traceability to the original CODATA values.
The availability of machine-readable data of fundamental physical constants that can easy be accessed by software and that are traceable to a international accepted definition is essential for various areas of metrology where the International System of Units (SI) is of key-importance.
The document dataset covers the Enterprise Survey (ES) panel data collected in North Macedonia in 2009, 2013 and 2019.
Macedonia ES 2009 was conducted in 2008 and 2009, while Macedonia ES 2013 was conducted between November 2012 and May 2013, and North Macedonia ES 2019 was conducted between December 2018 and October 2019. The objective of the Enterprise Survey is to gain an understanding of what firms experience in the private sector.
As part of its strategic goal of building a climate for investment, job creation, and sustainable growth, the World Bank has promoted improving the business environment as a key strategy for development, which has led to a systematic effort in collecting enterprise data across countries. The Enterprise Surveys (ES) are an ongoing World Bank project in collecting both objective data based on firms’ experiences and enterprises’ perception of the environment in which they operate.
National
Regions covered are selected based on the number of establishments, contribution to employment, and value added. In most cases these regions are metropolitan areas and reflect the largest centers of economic activity in a country.
The primary sampling unit of the study is the establishment. An establishment is a physical location where business is carried out and where industrial operations take place or services are provided. A firm may be composed of one or more establishments. For example, a brewery may have several bottling plants and several establishments for distribution. For the purposes of this survey an establishment must make its own financial decisions and have its own financial statements separate from those of the firm. An establishment must also have its own management and control over its payroll.
The whole population, or universe of the study, is the non-agricultural economy. It comprises: all manufacturing sectors according to the group classification of ISIC Revision 3.1: (group D), construction sector (group F), services sector (groups G and H), and transport, storage, and communications sector (group I). Note that this definition excludes the following sectors: financial intermediation (group J), real estate and renting activities (group K, except sub-sector 72, IT, which was added to the population under study), and all public or utilities-sectors.
Sample survey data [ssd]
The sample for Macedonia 2009 ES, Macedonia 2013 ES and of 2019 North Macedonia ES were selected using stratified random sampling, following the methodology explained in the Sampling Manual for Macedonia 2009 ES and for Macedonia 2013 ES, and in the Sampling Note for 2019 North Macedonia ES. Stratified random sampling was preferred over simple random sampling for several reasons:
a. To obtain unbiased estimates for different subdivisions of the population with some known level of precision. b. To obtain unbiased estimates for the whole population. The whole population, or universe of the study, is the non-agricultural economy. It comprises: all manufacturing sectors according to the group classification of ISIC Revision 3.1: (group D), construction sector (group F), services sector (groups G and H), and transport, storage, and communications sector (group I). Note that this definition excludes the following sectors: financial intermediation (group J), real estate and renting activities (group K, except sub-sector 72, IT, which was added to the population under study), and all public or utilities-sectors. c. To make sure that the final total sample includes establishments from all different sectors and that it is not concentrated in one or two of industries/sizes/regions. d. To exploit the benefits of stratified sampling where population estimates, in most cases, will be more precise than using a simple random sampling method (i.e., lower standard errors, other things being equal.) e. Stratification may produce a smaller bound on the error of estimation than would be produced by a simple random sample of the same size. This result is particularly true if measurements within strata are homogeneous. f. The cost per observation in the survey may be reduced by stratification of the population elements into convenient groupings.
Three levels of stratification were used in this country: industry, establishment size, and region. The original sample design with specific information of the industries and regions chosen is described in Appendix C of the North Macedonia 2019 ES Implementation Report and in Appendix E of the Macedonia 2013 Implementation Report.
Industry stratification was done as follows: Manufacturing – combining all the relevant activities (ISIC Rev. 3.1 codes 15-37), Retail (ISIC 52), and Other Services (ISIC 45, 50, 51, 55, 60-64, 72).
As it is standard for the ES, the North Macedonia ES was based on the following size stratification: small (5 to 19 employees), medium (20 to 99 employees), and large (100 or more employees).
Regional stratification for North Macedonia ES 2019 was done across three regions: Skopje; Eastern Macedonia comprising Northeastern, Eastern, Southeastern, and Vardar regions; and Western Macedonia comprising Polog, Southwestern and Pelagonia regions. For Macedonia 2013 ES, regional stratification was defined in 4 regions (city and the surrounding business area) throughout Macedonia. And for Macedonia ES 2009, regional stratification was defined in 4 regions which are Eastern, North- West & West, Skopje, and South.
Computer Assisted Personal Interview [capi]
Questionnaires have common questions (core module) and respectfully additional manufacturing- and services-specific questions. The eligible manufacturing industries have been surveyed using the Manufacturing questionnaire (includes the core module, plus manufacturing specific questions). Retail firms have been interviewed using the Services questionnaire (includes the core module plus retail specific questions) and the residual eligible services have been covered using the Services questionnaire (includes the core module). Each variation of the questionnaire is identified by the index variable, a0.
Survey non-response must be differentiated from item non-response. The former refers to refusals to participate in the survey altogether whereas the latter refers to the refusals to answer some specific questions. Enterprise Surveys suffer from both problems and different strategies were used to address these issues.
Item non-response was addressed by two strategies:
a- For sensitive questions that may generate negative reactions from the respondent, such as corruption or tax evasion, enumerators were instructed to collect the refusal to respond (-8) as a different option from don’t know (-9).
b- Establishments with incomplete information were re-contacted in order to complete this information, whenever necessary. However, there were clear cases of low response. The following graph shows non-response rates for the sales variable, d2, by sector. Please, note that for this specific question, refusals were not separately identified from “Don’t know” responses.
On October 15, 2013, Louisville Mayor Greg Fischer announced the signing of an open data policy executive order in conjunction with his compelling talk at the 2013 Code for America Summit. In nonchalant cadence, the mayor announced his support for complete information disclosure by declaring, "It's data, man."Sunlight Foundation - New Louisville Open Data Policy Insists Open By Default is the Future Open Data Annual ReportsSection 5.A. Within one year of the effective Data of this Executive Order, and thereafter no later than September 1 of each year, the Open Data Management Team shall submit to the Mayor an annual Open Data Report.The Open Data Management team (also known as the Data Governance Team is currently led by the city's Data Officer Andrew McKinney in the Office of Civic Innovation and Technology. Previously (2014-16) it was led by the Director of IT.Full Executive OrderEXECUTIVE ORDER NO. 1, SERIES 2013AN EXECUTIVE ORDERCREATING AN OPEN DATA PLAN. WHEREAS, Metro Government is the catalyst for creating a world-class city that provides its citizens with safe and vibrant neighborhoods, great jobs, a strong system of education and innovation, and a high quality of life; andWHEREAS, it should be easy to do business with Metro Government. Online government interactions mean more convenient services for citizens and businesses and online government interactions improve the cost effectiveness and accuracy of government operations; andWHEREAS, an open government also makes certain that every aspect of the built environment also has reliable digital descriptions available to citizens and entrepreneurs for deep engagement mediated by smart devices; andWHEREAS, every citizen has the right to prompt, efficient service from Metro Government; andWHEREAS, the adoption of open standards improves transparency, access to public information and improved coordination and efficiencies among Departments and partner organizations across the public, nonprofit and private sectors; andWHEREAS, by publishing structured standardized data in machine readable formats the Louisville Metro Government seeks to encourage the local software community to develop software applications and tools to collect, organize, and share public record data in new and innovative ways; andWHEREAS, in commitment to the spirit of Open Government, Louisville Metro Government will consider public information to be open by default and will proactively publish data and data containing information, consistent with the Kentucky Open Meetings and Open Records Act; andNOW, THEREFORE, BE IT PROMULGATED BY EXECUTIVE ORDER OF THE HONORABLE GREG FISCHER, MAYOR OF LOUISVILLE/JEFFERSON COUNTY METRO GOVERNMENT AS FOLLOWS:Section 1. Definitions. As used in this Executive Order, the terms below shall have the following definitions:(A) “Open Data” means any public record as defined by the Kentucky Open Records Act, which could be made available online using Open Format data, as well as best practice Open Data structures and formats when possible. Open Data is not information that is treated exempt under KRS 61.878 by Metro Government.(B) “Open Data Report” is the annual report of the Open Data Management Team, which shall (i) summarize and comment on the state of Open Data availability in Metro Government Departments from the previous year; (ii) provide a plan for the next year to improve online public access to Open Data and maintain data quality. The Open Data Management Team shall present an initial Open Data Report to the Mayor within 180 days of this Executive Order.(C) “Open Format” is any widely accepted, nonproprietary, platform-independent, machine-readable method for formatting data, which permits automated processing of such data and is accessible to external search capabilities.(D) “Open Data Portal” means the Internet site established and maintained by or on behalf of Metro Government, located at portal.louisvilleky.gov/service/data or its successor website.(E) “Open Data Management Team” means a group consisting of representatives from each Department within Metro Government and chaired by the Chief Information Officer (CIO) that is responsible for coordinating implementation of an Open Data Policy and creating the Open Data Report.(F) “Department” means any Metro Government department, office, administrative unit, commission, board, advisory committee, or other division of Metro Government within the official jurisdiction of the executive branch.Section 2. Open Data Portal.(A) The Open Data Portal shall serve as the authoritative source for Open Data provided by Metro Government(B) Any Open Data made accessible on Metro Government’s Open Data Portal shall use an Open Format.Section 3. Open Data Management Team.(A) The Chief Information Officer (CIO) of Louisville Metro Government will work with the head of each Department to identify a Data Coordinator in each Department. Data Coordinators will serve as members of an Open Data Management Team facilitated by the CIO and Metro Technology Services. The Open Data Management Team will work to establish a robust, nationally recognized, platform that addresses digital infrastructure and Open Data.(B) The Open Data Management Team will develop an Open Data management policy that will adopt prevailing Open Format standards for Open Data, and develop agreements with regional partners to publish and maintain Open Data that is open and freely available while respecting exemptions allowed by the Kentucky Open Records Act or other federal or state law.Section 4. Department Open Data Catalogue.(A) Each Department shall be responsible for creating an Open Data catalogue, which will include comprehensive inventories of information possessed and/or managed by the Department.(B) Each Department’s Open Data catalogue will classify information holdings as currently “public” or “not yet public”; Departments will work with Metro Technology Services to develop strategies and timelines for publishing open data containing information in a way that is complete, reliable, and has a high level of detail.Section 5. Open Data Report and Policy Review.(A) Within one year of the effective date of this Executive Order, and thereafter no later than September 1 of each year, the Open Data Management Team shall submit to the Mayor an annual Open Data Report.(B) In acknowledgment that technology changes rapidly, in the future, the Open Data Policy should be reviewed and considered for revisions or additions that will continue to position Metro Government as a leader on issues of openness, efficiency, and technical best practices.Section 6. This Executive Order shall take effect as of October 11, 2013.Signed this 11th day of October, 2013, by Greg Fischer, Mayor of Louisville/Jefferson County Metro Government.GREG FISCHER, MAYOR
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
With recent technological advancements, quantitative analysis has become an increasingly important area within professional sports. However, the manual process of collecting data on relevant match events like passes, goals and tacklings comes with considerable costs and limited consistency across providers, affecting both research and practice. In football, while automatic detection of events from positional data of the players and the ball could alleviate these issues, it is not entirely clear what accuracy current state-of-the-art methods realistically achieve because there is a lack of high-quality validations on realistic and diverse data sets. This paper adds context to existing research by validating a two-step rule-based pass and shot detection algorithm on four different data sets using a comprehensive validation routine that accounts for the temporal, hierarchical and imbalanced nature of the task. Our evaluation shows that pass and shot detection performance is highly dependent on the specifics of the data set. In accordance with previous studies, we achieve F-scores of up to 0.92 for passes, but only when there is an inherent dependency between event and positional data. We find a significantly lower accuracy with F-scores of 0.71 for passes and 0.65 for shots if event and positional data are independent. This result, together with a critical evaluation of existing methodologies, suggests that the accuracy of current football event detection algorithms operating on positional data is currently overestimated. Further analysis reveals that the temporal extraction of passes and shots from positional data poses the main challenge for rule-based approaches. Our results further indicate that the classification of plays into shots and passes is a relatively straightforward task, achieving F-scores between 0.83 to 0.91 ro rule-based classifiers and up to 0.95 for machine learning classifiers. We show that there exist simple classifiers that accurately differentiate shots from passes in different data sets using a low number of human-understandable rules. Operating on basic spatial features, our classifiers provide a simple, objective event definition that can be used as a foundation for more reliable event-based match analysis.
Hill, Aaron J., Russ S. Schumacher, and Mitchell L. Green, Jr. "Observation Definitions and their Implications in Machine Learning-based Predictions of Excessive Rainfall", Weather and Forecasting (published online ahead of print 2024), https://doi.org/10.1175/WAF-D-24-0033.1
Day 1, 2, and 3 forecasts from the machine learning-based prediction system detailed in the associated manuscript (citated above) as well as those from the Weather Prediction Center (WPC) and observations (Unified Flood Verification System; UFVS) of excessive rainfall hazards. Forecasts, outlooks, and observations for each forecast day are contained in a single netCDF file and labeled accordingly (e.g., day1_csu_mlp_20201005_20231003.nc). An additional forecast file (i.e., day1_exps_20201005_20231003.nc) contains a number of experimental machine learnin...
The Bureau of the Census has released Census 2000 Summary File 1 (SF1) 100-Percent data. The file includes the following population items: sex, age, race, Hispanic or Latino origin, household relationship, and household and family characteristics. Housing items include occupancy status and tenure (whether the unit is owner or renter occupied). SF1 does not include information on incomes, poverty status, overcrowded housing or age of housing. These topics will be covered in Summary File 3. Data are available for states, counties, county subdivisions, places, census tracts, block groups, and, where applicable, American Indian and Alaskan Native Areas and Hawaiian Home Lands. The SF1 data are available on the Bureau's web site and may be retrieved from American FactFinder as tables, lists, or maps. Users may also download a set of compressed ASCII files for each state via the Bureau's FTP server. There are over 8000 data items available for each geographic area. The full listing of these data items is available here as a downloadable compressed data base file named TABLES.ZIP. The uncompressed is in FoxPro data base file (dbf) format and may be imported to ACCESS, EXCEL, and other software formats. While all of this information is useful, the Office of Community Planning and Development has downloaded selected information for all states and areas and is making this information available on the CPD web pages. The tables and data items selected are those items used in the CDBG and HOME allocation formulas plus topics most pertinent to the Comprehensive Housing Affordability Strategy (CHAS), the Consolidated Plan, and similar overall economic and community development plans. The information is contained in five compressed (zipped) dbf tables for each state. When uncompressed the tables are ready for use with FoxPro and they can be imported into ACCESS, EXCEL, and other spreadsheet, GIS and database software. The data are at the block group summary level. The first two characters of the file name are the state abbreviation. The next two letters are BG for block group. Each record is labeled with the code and name of the city and county in which it is located so that the data can be summarized to higher-level geography. The last part of the file name describes the contents . The GEO file contains standard Census Bureau geographic identifiers for each block group, such as the metropolitan area code and congressional district code. The only data included in this table is total population and total housing units. POP1 and POP2 contain selected population variables and selected housing items are in the HU file. The MA05 table data is only for use by State CDBG grantees for the reporting of the racial composition of beneficiaries of Area Benefit activities. The complete package for a state consists of the dictionary file named TABLES, and the five data files for the state. The logical record number (LOGRECNO) links the records across tables.
The Dictionary of Algorithms and Data Structures (DADS) is an online, publicly accessible dictionary of generally useful algorithms, data structures, algorithmic techniques, archetypal problems, and related definitions. In addition to brief definitions, some entries have links to related entries, links to implementations, and additional information. DADS is meant to be a resource for the practicing programmer, although students and researchers may find it a useful starting point. DADS has fundamental entries in areas such as theory, cryptography and compression, graphs, trees, and searching, for instance, Ackermann's function, quick sort, traveling salesman, big O notation, merge sort, AVL tree, hash table, and Byzantine generals. DADS also has index pages that list entries by area and by type. Currently DADS does not include algorithms particular to business data processing, communications, operating systems or distributed algorithms, programming languages, AI, graphics, or numerical analysis.