100+ datasets found
  1. f

    Collection of example datasets used for the book - R Programming -...

    • figshare.com
    txt
    Updated Dec 4, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kingsley Okoye; Samira Hosseini (2023). Collection of example datasets used for the book - R Programming - Statistical Data Analysis in Research [Dataset]. http://doi.org/10.6084/m9.figshare.24728073.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    Dec 4, 2023
    Dataset provided by
    figshare
    Authors
    Kingsley Okoye; Samira Hosseini
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This book is written for statisticians, data analysts, programmers, researchers, teachers, students, professionals, and general consumers on how to perform different types of statistical data analysis for research purposes using the R programming language. R is an open-source software and object-oriented programming language with a development environment (IDE) called RStudio for computing statistics and graphical displays through data manipulation, modelling, and calculation. R packages and supported libraries provides a wide range of functions for programming and analyzing of data. Unlike many of the existing statistical softwares, R has the added benefit of allowing the users to write more efficient codes by using command-line scripting and vectors. It has several built-in functions and libraries that are extensible and allows the users to define their own (customized) functions on how they expect the program to behave while handling the data, which can also be stored in the simple object system.For all intents and purposes, this book serves as both textbook and manual for R statistics particularly in academic research, data analytics, and computer programming targeted to help inform and guide the work of the R users or statisticians. It provides information about different types of statistical data analysis and methods, and the best scenarios for use of each case in R. It gives a hands-on step-by-step practical guide on how to identify and conduct the different parametric and non-parametric procedures. This includes a description of the different conditions or assumptions that are necessary for performing the various statistical methods or tests, and how to understand the results of the methods. The book also covers the different data formats and sources, and how to test for reliability and validity of the available datasets. Different research experiments, case scenarios and examples are explained in this book. It is the first book to provide a comprehensive description and step-by-step practical hands-on guide to carrying out the different types of statistical analysis in R particularly for research purposes with examples. Ranging from how to import and store datasets in R as Objects, how to code and call the methods or functions for manipulating the datasets or objects, factorization, and vectorization, to better reasoning, interpretation, and storage of the results for future use, and graphical visualizations and representations. Thus, congruence of Statistics and Computer programming for Research.

  2. i

    Demographic and Health Survey 1998 - Ghana

    • datacatalog.ihsn.org
    • catalog.ihsn.org
    • +2more
    Updated Jul 6, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ghana Statistical Service (GSS) (2017). Demographic and Health Survey 1998 - Ghana [Dataset]. https://datacatalog.ihsn.org/catalog/50
    Explore at:
    Dataset updated
    Jul 6, 2017
    Dataset authored and provided by
    Ghana Statistical Service (GSS)
    Time period covered
    1998 - 1999
    Area covered
    Ghana
    Description

    Abstract

    The 1998 Ghana Demographic and Health Survey (GDHS) is the latest in a series of national-level population and health surveys conducted in Ghana and it is part of the worldwide MEASURE DHS+ Project, designed to collect data on fertility, family planning, and maternal and child health.

    The primary objective of the 1998 GDHS is to provide current and reliable data on fertility and family planning behaviour, child mortality, children’s nutritional status, and the utilisation of maternal and child health services in Ghana. Additional data on knowledge of HIV/AIDS are also provided. This information is essential for informed policy decisions, planning and monitoring and evaluation of programmes at both the national and local government levels.

    The long-term objectives of the survey include strengthening the technical capacity of the Ghana Statistical Service (GSS) to plan, conduct, process, and analyse the results of complex national sample surveys. Moreover, the 1998 GDHS provides comparable data for long-term trend analyses within Ghana, since it is the third in a series of demographic and health surveys implemented by the same organisation, using similar data collection procedures. The GDHS also contributes to the ever-growing international database on demographic and health-related variables.

    Geographic coverage

    National

    Analysis unit

    • Household
    • Children under five years
    • Women age 15-49
    • Men age 15-59

    Kind of data

    Sample survey data

    Sampling procedure

    The major focus of the 1998 GDHS was to provide updated estimates of important population and health indicators including fertility and mortality rates for the country as a whole and for urban and rural areas separately. In addition, the sample was designed to provide estimates of key variables for the ten regions in the country.

    The list of Enumeration Areas (EAs) with population and household information from the 1984 Population Census was used as the sampling frame for the survey. The 1998 GDHS is based on a two-stage stratified nationally representative sample of households. At the first stage of sampling, 400 EAs were selected using systematic sampling with probability proportional to size (PPS-Method). The selected EAs comprised 138 in the urban areas and 262 in the rural areas. A complete household listing operation was then carried out in all the selected EAs to provide a sampling frame for the second stage selection of households. At the second stage of sampling, a systematic sample of 15 households per EA was selected in all regions, except in the Northern, Upper West and Upper East Regions. In order to obtain adequate numbers of households to provide reliable estimates of key demographic and health variables in these three regions, the number of households in each selected EA in the Northern, Upper West and Upper East regions was increased to 20. The sample was weighted to adjust for over sampling in the three northern regions (Northern, Upper East and Upper West), in relation to the other regions. Sample weights were used to compensate for the unequal probability of selection between geographically defined strata.

    The survey was designed to obtain completed interviews of 4,500 women age 15-49. In addition, all males age 15-59 in every third selected household were interviewed, to obtain a target of 1,500 men. In order to take cognisance of non-response, a total of 6,375 households nation-wide were selected.

    Note: See detailed description of sample design in APPENDIX A of the survey report.

    Mode of data collection

    Face-to-face

    Research instrument

    Three types of questionnaires were used in the GDHS: the Household Questionnaire, the Women’s Questionnaire, and the Men’s Questionnaire. These questionnaires were based on model survey instruments developed for the international MEASURE DHS+ programme and were designed to provide information needed by health and family planning programme managers and policy makers. The questionnaires were adapted to the situation in Ghana and a number of questions pertaining to on-going health and family planning programmes were added. These questionnaires were developed in English and translated into five major local languages (Akan, Ga, Ewe, Hausa, and Dagbani).

    The Household Questionnaire was used to enumerate all usual members and visitors in a selected household and to collect information on the socio-economic status of the household. The first part of the Household Questionnaire collected information on the relationship to the household head, residence, sex, age, marital status, and education of each usual resident or visitor. This information was used to identify women and men who were eligible for the individual interview. For this purpose, all women age 15-49, and all men age 15-59 in every third household, whether usual residents of a selected household or visitors who slept in a selected household the night before the interview, were deemed eligible and interviewed. The Household Questionnaire also provides basic demographic data for Ghanaian households. The second part of the Household Questionnaire contained questions on the dwelling unit, such as the number of rooms, the flooring material, the source of water and the type of toilet facilities, and on the ownership of a variety of consumer goods.

    The Women’s Questionnaire was used to collect information on the following topics: respondent’s background characteristics, reproductive history, contraceptive knowledge and use, antenatal, delivery and postnatal care, infant feeding practices, child immunisation and health, marriage, fertility preferences and attitudes about family planning, husband’s background characteristics, women’s work, knowledge of HIV/AIDS and STDs, as well as anthropometric measurements of children and mothers.

    The Men’s Questionnaire collected information on respondent’s background characteristics, reproduction, contraceptive knowledge and use, marriage, fertility preferences and attitudes about family planning, as well as knowledge of HIV/AIDS and STDs.

    Response rate

    A total of 6,375 households were selected for the GDHS sample. Of these, 6,055 were occupied. Interviews were completed for 6,003 households, which represent 99 percent of the occupied households. A total of 4,970 eligible women from these households and 1,596 eligible men from every third household were identified for the individual interviews. Interviews were successfully completed for 4,843 women or 97 percent and 1,546 men or 97 percent. The principal reason for nonresponse among individual women and men was the failure of interviewers to find them at home despite repeated callbacks.

    Note: See summarized response rates by place of residence in Table 1.1 of the survey report.

    Sampling error estimates

    The estimates from a sample survey are affected by two types of errors: (1) nonsampling errors, and (2) sampling errors. Nonsampling errors are the results of shortfalls made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 1998 GDHS to minimize this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.

    Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 1998 GDHS is only one of many samples that could have been selected from the same population, using the same design and expected size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability between all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.

    A sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95 percent of all possible samples of identical size and design.

    If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the 1998 GDHS sample is the result of a two-stage stratified design, and, consequently, it was necessary to use more complex formulae. The computer software used to calculate sampling errors for the 1998 GDHS is the ISSA Sampling Error Module. This module uses the Taylor linearization method of variance estimation for survey estimates that are means or proportions. The Jackknife repeated replication method is used for variance estimation of more complex statistics such as fertility and mortality rates.

    Data appraisal

    Data Quality Tables - Household age distribution - Age distribution of eligible and interviewed women - Age distribution of eligible and interviewed men - Completeness of reporting - Births by calendar years - Reporting of age at death in days - Reporting of age at death in months

    Note: See detailed tables in APPENDIX C of the survey report.

  3. i

    Agricultural Sample Survey 2000-2001 (1993 E.C) - Ethiopia

    • datacatalog.ihsn.org
    • catalog.ihsn.org
    Updated Mar 29, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Central Statistical Authority (2019). Agricultural Sample Survey 2000-2001 (1993 E.C) - Ethiopia [Dataset]. https://datacatalog.ihsn.org/catalog/1359
    Explore at:
    Dataset updated
    Mar 29, 2019
    Dataset authored and provided by
    Central Statistical Authority
    Time period covered
    2000 - 2001
    Area covered
    Ethiopia
    Description

    Abstract

    The health and wealth of a nation and its potential to develop and grow depend on its ability to feed its people. To help ensure that food will remain available to those who need it, there is nothing more important to give priority to than agriculture. Accurate and timely statistics about the basic produce and supplies of agriculture are essential to assess the agricultural situation. To help policy maker's deal with the fundamental challenge they are faced within the agricultural sector of the economy and develop measures and policies to maintain food security, there should be a continuous provision of statistics. The collection of reliable, comprehensive and timely data on agriculture is thus required for the above purposes. In this perspective, the Central Statistical Agency (CSA) has endeavored to generate agricultural data for policy makers and other users. The general objective of CSA's annual Agricultural Sample Survey (AgSS) is to collect basic quantitative information on the country's agriculture that is considered essential for development planning, socio-economic policy formulation, food security, etc. The AgSS is composed of four components: Crop production forecast survey, Main (“Meher”) season survey, Livestock survey, and survey of the “Belg” season crop area and production.

    The specific objectives of the Main (“Meher”) season area and production survey are: - To estimate the total cultivated land area, production and yield per hectare of major crops (temporary). - To estimate the total farm inputs applied area and quantity of inputs applied by type for major temporary and permanent crops.

    Geographic coverage

    The survey covered all sedentary rural agricultural population in all regions of the country except urban and nomadic areas which were not included in the survey.

    Analysis unit

    Agricultural household/ Holder/ Crop

    Universe

    Agricultural households

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The 2000/2001 (1993 E.C) Meher season agricultural sample survey covered the rural part of the country except three zones in Afar regional state and six zones in Somalie regional state that are predominantly nomadic. A two-stage stratified sample design was used to select the sample. Each zones/special wereda was adopted as stratum for which major findings of the survey are reported except the four regions; namely, Gambella, Harari, Addis Ababa and Dire Dawa which were considered as strata/reporting levels. The primary sampling units (PSUs) were enumeration areas (EAs) and agricultural households were the secondary sampling units. The survey questionnaires were administered to all agricultural holders within the sample households. A fixed number of sample EAs were determined for each stratum/reporting level based on precision of major estimates and cost considerations. Within each stratum EAs were selected using probability proportional to size systematic sampling; size being total number of agricultural households in the EAs as obtained from the 1994 population and housing census. From each sample EA, 40 agricultural households were systematically selected for the annual agricultural sample survey from a fresh list of households prepared at the beginning of the field work of the annual agricultural survey. Of the forty agricultural households, the first twenty-five were used for obtaining information on area under crops, Meher and Beleg season production of crops, land use, agricultural practices, crop damage, and quantity of agricultural households sampled in each of the selected EAs, data on crop cutting were collected for only the fifteen households (11th - 25th households selected). A total of 1,430 EAs were selected for the survey. However, 8 EAs were closed for various reasons beyond the control of the Authority and the survey succeeded in covering 1422 (99.44%) EAs. Within respect to ultimate sampling units, for the Meher season agricultural sample survey, it was planned to cover 35,750 agricultural households.

    Note: Distribution of the number of sampling units sampled and covered by strata is given in Appendix I of the 2000-2001 annual Agricultural Sample Survey report which is provided as external resource.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    The 2000-2001 annual Agricultural Sample Survey used structured questionnaires to collect agricultural information from selected sample households. Lists of forms in the questionnaires: - AgSS Form 93/0: Used to list all households and agricultural holders in the sample enumeration areas. - AgSS Form 93/1: Used to list selected households and agricultural holders in the sample enumeration areas. - AgSS Form 93/3A: Used to list fields and agricultural practices only pure stand temporary and permanent crops, list of fields and agricultural practices for mixed crops, other land use, quantity of improved and local seeds by type of crop and type and quantity of crop protection chemicals. - AgSS Form 93/4A: Used to collect results of area measurement. - AgSS Form 93/5: Used to list fields for selecting fields for crop cuttings and collect information about details of crop cutting.

    Note: The questionnaires are presented in the Appendix IV of the 2000-2001 Agricultural Sample Survey Volume I report which is provided as external resource.

    Cleaning operations

    Editing, Coding and Verification: In order to insure the quality of the collected survey data an editing, coding and verification instruction manual was prepared and printed. Then 23 editors-coders and 22 verifiers were trained for two days in the editing, coding and verification operation using the aforementioned manual as a reference and teaching aid. The completed questionnaires were edited, coded and later verified on a 100% basis before the questionnaires were passed over to the data entry unit. The editing, coding and verification exercise of all questionnaires was completed in about 30 days.

    Data Entry, Cleaning and Tabulation: Before starting data entry, professional staff of Agricultural Statistics Department prepared edit specifications to use on personal computers utilizing the Integrated Microcomputer Processing System (IMPS) software for data consistency checking purposes. The data on the coded questionnaires were then entered into personal computers using IMPS software. The data were then checked and cleaned using the edit specification prepared earlier for this purpose. The data entry operation involved about 31 data encoders and it took 28 days to complete the job. Finally, tabulation was done on personal computers to produce results as indicated in the tabulation plan.

    Response rate

    A total of 1,430 EAs were selected for the survey. However, 8 EAs were closed for various reasons beyond the control of the Authority and the survey succeeded in covering 1422 (99.44%) EAs. Within respect to ultimate sampling units, for the Meher season agricultural sample survey, it was planned to cover 35,750 agricultural households. The response rate was found to be 99.14%.

    Sampling error estimates

    Estimation procedures of parameters of interest (total and ratio) and their sampling error is presented in Appendix II of the 2000-2001 annual Agricultural Sample Survey report which is provided as external resource.

  4. Statistics Software Market Report | Global Forecast From 2025 To 2033

    • dataintelo.com
    csv, pdf, pptx
    Updated Sep 22, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2024). Statistics Software Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/global-statistics-software-market
    Explore at:
    csv, pdf, pptxAvailable download formats
    Dataset updated
    Sep 22, 2024
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Statistics Software Market Outlook



    The global statistics software market size is projected to grow from USD 10.5 billion in 2023 to USD 18.7 billion by 2032, exhibiting a CAGR of 6.5% over the forecast period. The growth of this market is driven by the increasing adoption of data-driven decision-making processes across various industries, the rising need for statistical modeling and analysis tools, and the growing emphasis on advanced analytics to gain competitive advantages. Additionally, the expanding use of artificial intelligence (AI) and machine learning (ML) technologies to enhance the capabilities of statistics software is contributing significantly to market growth.



    One of the primary growth factors of the statistics software market is the increasing reliance on data analytics and business intelligence tools across different sectors. Organizations are leveraging statistical software to analyze large volumes of data generated through various digital channels, enabling them to make informed decisions and identify new business opportunities. This trend is particularly evident in the healthcare, finance, and retail sectors, where data-driven insights are crucial for improving operational efficiency, customer satisfaction, and overall performance.



    Another key driver for the market is the proliferation of big data and the need for advanced data management solutions. With the exponential growth of data generated by various sources such as social media, IoT devices, and enterprise systems, there is a heightened demand for robust statistical software that can handle complex data sets and perform sophisticated analyses. This has led to increased investments in the development of innovative statistics software solutions that offer enhanced features and capabilities, such as real-time data processing, predictive analytics, and automated reporting.



    The integration of AI and ML technologies into statistics software is also significantly boosting market growth. These technologies enable more accurate and efficient data analysis, allowing organizations to uncover hidden patterns and trends that were previously impossible to detect. AI-powered statistical tools can automate repetitive tasks, reduce human error, and provide deeper insights into data, thereby enhancing the overall decision-making process. As a result, there is a growing adoption of AI-driven statistics software across various industries, further propelling market expansion.



    Regionally, North America is expected to maintain its dominance in the statistics software market, owing to the presence of numerous leading software providers, high adoption of advanced analytics solutions, and substantial investments in research and development. However, the Asia Pacific region is anticipated to witness the highest growth rate over the forecast period, driven by the rapid digital transformation of businesses, increasing awareness of data analytics benefits, and supportive government initiatives promoting technological advancements.



    Component Analysis



    The statistics software market is segmented by component into software and services. The software segment includes various types of statistical analysis tools, ranging from basic data visualization software to advanced predictive analytics platforms. This segment holds the largest market share due to the widespread adoption of software solutions that enable organizations to analyze and interpret data efficiently. The continuous development of innovative features, such as real-time analytics, data mining, and machine learning capabilities, is further driving the demand for statistics software.



    In contrast, the services segment encompasses consulting, implementation, training, and support services provided by software vendors and third-party providers. These services are crucial for organizations to effectively utilize statistical software and maximize its benefits. The growing complexity of data and the need for specialized expertise in data analysis are driving the demand for professional services in the statistics software market. Moreover, as more businesses adopt advanced analytics solutions, the need for ongoing support and training services is expected to increase, contributing to the growth of the services segment.



    The integration of cloud computing with statistics software is also influencing the component-wise growth of this market. Cloud-based solutions offer several advantages, such as scalability, flexibility, and cost-effectiveness, making them an attractive option for organizations of all sizes. As a result, there is a

  5. i

    Population and Family Health Survey 1997 - Jordan

    • catalog.ihsn.org
    • dev.ihsn.org
    • +2more
    Updated Mar 29, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Statistics (DOS) (2019). Population and Family Health Survey 1997 - Jordan [Dataset]. http://catalog.ihsn.org/catalog/182
    Explore at:
    Dataset updated
    Mar 29, 2019
    Dataset authored and provided by
    Department of Statistics (DOS)
    Time period covered
    1997
    Area covered
    Jordan
    Description

    Abstract

    The 1997 Jordan Population and Family Health Survey (JPFHS) is a national sample survey carried out by the Department of Statistics (DOS) as part of its National Household Surveys Program (NHSP). The JPFHS was specifically aimed at providing information on fertility, family planning, and infant and child mortality. Information was also gathered on breastfeeding, on maternal and child health care and nutritional status, and on the characteristics of households and household members. The survey will provide policymakers and planners with important information for use in formulating informed programs and policies on reproductive behavior and health.

    Geographic coverage

    National

    Analysis unit

    • Household
    • Children under five years
    • Women age 15-49
    • Men

    Kind of data

    Sample survey data

    Sampling procedure

    SAMPLE DESIGN AND IMPLEMENTATION

    The 1997 JPFHS sample was designed to produce reliable estimates of major survey variables for the country as a whole, for urban and rural areas, for the three regions (each composed of a group of governorates), and for the three major governorates, Amman, Irbid, and Zarqa.

    The 1997 JPFHS sample is a subsample of the master sample that was designed using the frame obtained from the 1994 Population and Housing Census. A two-stage sampling procedure was employed. First, primary sampling units (PSUs) were selected with probability proportional to the number of housing units in the PSU. A total of 300 PSUs were selected at this stage. In the second stage, in each selected PSU, occupied housing units were selected with probability inversely proportional to the number of housing units in the PSU. This design maintains a self-weighted sampling fraction within each governorate.

    UPDATING OF SAMPLING FRAME

    Prior to the main fieldwork, mapping operations were carried out and the sample units/blocks were selected and then identified and located in the field. The selected blocks were delineated and the outer boundaries were demarcated with special signs. During this process, the numbers on buildings and housing units were updated, listed and documented, along with the name of the owner/tenant of the unit or household and the name of the household head. These activities took place between January 7 and February 28, 1997.

    Note: See detailed description of sample design in APPENDIX A of the survey report.

    Mode of data collection

    Face-to-face

    Research instrument

    The 1997 JPFHS used two questionnaires, one for the household interview and the other for eligible women. Both questionnaires were developed in English and then translated into Arabic. The household questionnaire was used to list all members of the sampled households, including usual residents as well as visitors. For each member of the household, basic demographic and social characteristics were recorded and women eligible for the individual interview were identified. The individual questionnaire was developed utilizing the experience gained from previous surveys, in particular the 1983 and 1990 Jordan Fertility and Family Health Surveys (JFFHS).

    The 1997 JPFHS individual questionnaire consists of 10 sections: - Respondent’s background - Marriage - Reproduction (birth history) - Contraception - Pregnancy, breastfeeding, health and immunization - Fertility preferences - Husband’s background, woman’s work and residence - Knowledge of AIDS - Maternal mortality - Height and weight of children and mothers.

    Cleaning operations

    Fieldwork and data processing activities overlapped. After a week of data collection, and after field editing of questionnaires for completeness and consistency, the questionnaires for each cluster were packaged together and sent to the central office in Amman where they were registered and stored. Special teams were formed to carry out office editing and coding.

    Data entry started after a week of office data processing. The process of data entry, editing, and cleaning was done by means of the ISSA (Integrated System for Survey Analysis) program DHS has developed especially for such surveys. The ISSA program allows data to be edited while being entered. Data entry was completed on November 14, 1997. A data processing specialist from Macro made a trip to Jordan in November and December 1997 to identify problems in data entry, editing, and cleaning, and to work on tabulations for both the preliminary and final report.

    Response rate

    A total of 7,924 occupied housing units were selected for the survey; from among those, 7,592 households were found. Of the occupied households, 7,335 (97 percent) were successfully interviewed. In those households, 5,765 eligible women were identified, and complete interviews were obtained with 5,548 of them (96 percent of all eligible women). Thus, the overall response rate of the 1997 JPFHS was 93 percent. The principal reason for nonresponse among the women was the failure of interviewers to find them at home despite repeated callbacks.

    Note: See summarized response rates by place of residence in Table 1.1 of the survey report.

    Sampling error estimates

    The estimates from a sample survey are subject to two types of errors: nonsampling errors and sampling errors. Nonsampling errors are the result of mistakes made in implementing data collection and data processing (such as failure to locate and interview the correct household, misunderstanding questions either by the interviewer or the respondent, and data entry errors). Although during the implementation of the 1997 JPFHS numerous efforts were made to minimize this type of error, nonsampling errors are not only impossible to avoid but also difficult to evaluate statistically.

    Sampling errors, on the other hand, can be evaluated statistically. The respondents selected in the 1997 JPFHS constitute only one of many samples that could have been selected from the same population, given the same design and expected size. Each of those samples would have yielded results differing somewhat from the results of the sample actually selected. Sampling errors are a measure of the variability among all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.

    A sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95 percent of all possible samples of identical size and design.

    If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, since the 1997 JDHS-II sample resulted from a multistage stratified design, formulae of higher complexity had to be used. The computer software used to calculate sampling errors for the 1997 JDHS-II was the ISSA Sampling Error Module, which uses the Taylor linearization method of variance estimation for survey estimates that are means or proportions. The Jackknife repeated replication method is used for variance estimation of more complex statistics, such as fertility and mortality rates.

    Note: See detailed estimate of sampling error calculation in APPENDIX B of the survey report.

    Data appraisal

    Data Quality Tables - Household age distribution - Age distribution of eligible and interviewed women - Completeness of reporting - Births by calendar years - Reporting of age at death in days - Reporting of age at death in months

    Note: See detailed tables in APPENDIX C of the survey report.

  6. d

    State Financial Reports

    • catalog.data.gov
    • data.iowa.gov
    • +1more
    Updated Sep 1, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.iowa.gov (2023). State Financial Reports [Dataset]. https://catalog.data.gov/dataset/state-financial-reports
    Explore at:
    Dataset updated
    Sep 1, 2023
    Dataset provided by
    data.iowa.gov
    Description

    The Comprehensive Annual Financial Reports are presented in three main sections; the Introductory Section, the Financial Section, and the Statistical Section. The Introductory Section includes a financial overview, discussion of Iowa's economy and an organizational chart for State government. The Financial Section includes the state auditor's report, management's discussion and analysis, audited basic financial statements and notes thereto, and the underlying combining and individual fund financial statements and supporting schedules. The Statistical Section sets forth selected unaudited economic, financial trend and demographic information for the state on a multi-year basis. Reports for multiple fiscal years are available.

  7. Statistical Analysis Software Market Report | Global Forecast From 2025 To...

    • dataintelo.com
    csv, pdf, pptx
    Updated Sep 22, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2024). Statistical Analysis Software Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/statistical-analysis-software-market
    Explore at:
    pptx, csv, pdfAvailable download formats
    Dataset updated
    Sep 22, 2024
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Statistical Analysis Software Market Outlook



    The global market size for statistical analysis software was estimated at USD 11.3 billion in 2023 and is projected to reach USD 21.6 billion by 2032, growing at a compound annual growth rate (CAGR) of 7.5% during the forecast period. This substantial growth can be attributed to the increasing complexity of data in various industries and the rising need for advanced analytical tools to derive actionable insights.



    One of the primary growth factors for this market is the increasing demand for data-driven decision-making across various sectors. Organizations are increasingly recognizing the value of data analytics in enhancing operational efficiency, reducing costs, and identifying new business opportunities. The proliferation of big data and the advent of technologies such as artificial intelligence and machine learning are further fueling the demand for sophisticated statistical analysis software. Additionally, the growing adoption of cloud computing has significantly reduced the cost and complexity of deploying advanced analytics solutions, making them more accessible to organizations of all sizes.



    Another critical driver for the market is the increasing emphasis on regulatory compliance and risk management. Industries such as finance, healthcare, and manufacturing are subject to stringent regulatory requirements, necessitating the use of advanced analytics tools to ensure compliance and mitigate risks. For instance, in the healthcare sector, statistical analysis software is used for clinical trials, patient data management, and predictive analytics to enhance patient outcomes and ensure regulatory compliance. Similarly, in the financial sector, these tools are used for fraud detection, credit scoring, and risk assessment, thereby driving the demand for statistical analysis software.



    The rising trend of digital transformation across industries is also contributing to market growth. As organizations increasingly adopt digital technologies, the volume of data generated is growing exponentially. This data, when analyzed effectively, can provide valuable insights into customer behavior, market trends, and operational efficiencies. Consequently, there is a growing need for advanced statistical analysis software to analyze this data and derive actionable insights. Furthermore, the increasing integration of statistical analysis tools with other business intelligence and data visualization tools is enhancing their capabilities and driving their adoption across various sectors.



    From a regional perspective, North America currently holds the largest market share, driven by the presence of major technology companies and a high level of adoption of advanced analytics solutions. However, the Asia Pacific region is expected to witness the highest growth rate during the forecast period, owing to the increasing adoption of digital technologies and the growing emphasis on data-driven decision-making in countries such as China and India. The region's rapidly expanding IT infrastructure and increasing investments in advanced analytics solutions are further contributing to this growth.



    Component Analysis



    The statistical analysis software market can be segmented by component into software and services. The software segment encompasses the core statistical analysis tools and platforms used by organizations to analyze data and derive insights. This segment is expected to hold the largest market share, driven by the increasing adoption of data analytics solutions across various industries. The availability of a wide range of software solutions, from basic statistical tools to advanced analytics platforms, is catering to the diverse needs of organizations, further driving the growth of this segment.



    The services segment includes consulting, implementation, training, and support services provided by vendors to help organizations effectively deploy and utilize statistical analysis software. This segment is expected to witness significant growth during the forecast period, driven by the increasing complexity of data analytics projects and the need for specialized expertise. As organizations seek to maximize the value of their data analytics investments, the demand for professional services to support the implementation and optimization of statistical analysis solutions is growing. Furthermore, the increasing trend of outsourcing data analytics functions to third-party service providers is contributing to the growth of the services segment.



    Within the software segment, the market can be further categori

  8. d

    Current Population Survey (CPS)

    • search.dataone.org
    • dataverse.harvard.edu
    Updated Nov 21, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Damico, Anthony (2023). Current Population Survey (CPS) [Dataset]. http://doi.org/10.7910/DVN/AK4FDD
    Explore at:
    Dataset updated
    Nov 21, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Damico, Anthony
    Description

    analyze the current population survey (cps) annual social and economic supplement (asec) with r the annual march cps-asec has been supplying the statistics for the census bureau's report on income, poverty, and health insurance coverage since 1948. wow. the us census bureau and the bureau of labor statistics ( bls) tag-team on this one. until the american community survey (acs) hit the scene in the early aughts (2000s), the current population survey had the largest sample size of all the annual general demographic data sets outside of the decennial census - about two hundred thousand respondents. this provides enough sample to conduct state- and a few large metro area-level analyses. your sample size will vanish if you start investigating subgroups b y state - consider pooling multiple years. county-level is a no-no. despite the american community survey's larger size, the cps-asec contains many more variables related to employment, sources of income, and insurance - and can be trended back to harry truman's presidency. aside from questions specifically asked about an annual experience (like income), many of the questions in this march data set should be t reated as point-in-time statistics. cps-asec generalizes to the united states non-institutional, non-active duty military population. the national bureau of economic research (nber) provides sas, spss, and stata importation scripts to create a rectangular file (rectangular data means only person-level records; household- and family-level information gets attached to each person). to import these files into r, the parse.SAScii function uses nber's sas code to determine how to import the fixed-width file, then RSQLite to put everything into a schnazzy database. you can try reading through the nber march 2012 sas importation code yourself, but it's a bit of a proc freak show. this new github repository contains three scripts: 2005-2012 asec - download all microdata.R down load the fixed-width file containing household, family, and person records import by separating this file into three tables, then merge 'em together at the person-level download the fixed-width file containing the person-level replicate weights merge the rectangular person-level file with the replicate weights, then store it in a sql database create a new variable - one - in the data table 2012 asec - analysis examples.R connect to the sql database created by the 'download all microdata' progr am create the complex sample survey object, using the replicate weights perform a boatload of analysis examples replicate census estimates - 2011.R connect to the sql database created by the 'download all microdata' program create the complex sample survey object, using the replicate weights match the sas output shown in the png file below 2011 asec replicate weight sas output.png statistic and standard error generated from the replicate-weighted example sas script contained in this census-provided person replicate weights usage instructions document. click here to view these three scripts for more detail about the current population survey - annual social and economic supplement (cps-asec), visit: the census bureau's current population survey page the bureau of labor statistics' current population survey page the current population survey's wikipedia article notes: interviews are conducted in march about experiences during the previous year. the file labeled 2012 includes information (income, work experience, health insurance) pertaining to 2011. when you use the current populat ion survey to talk about america, subract a year from the data file name. as of the 2010 file (the interview focusing on america during 2009), the cps-asec contains exciting new medical out-of-pocket spending variables most useful for supplemental (medical spending-adjusted) poverty research. confidential to sas, spss, stata, sudaan users: why are you still rubbing two sticks together after we've invented the butane lighter? time to transition to r. :D

  9. Global Simple Filtration Device Market Risk Analysis 2025-2032

    • statsndata.org
    excel, pdf
    Updated Jun 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stats N Data (2025). Global Simple Filtration Device Market Risk Analysis 2025-2032 [Dataset]. https://www.statsndata.org/report/simple-filtration-device-market-311617
    Explore at:
    excel, pdfAvailable download formats
    Dataset updated
    Jun 2025
    Dataset authored and provided by
    Stats N Data
    License

    https://www.statsndata.org/how-to-orderhttps://www.statsndata.org/how-to-order

    Area covered
    Global
    Description

    The Simple Filtration Device market has garnered significant attention in recent years, driven by increasing awareness of health and safety standards across various industries. These devices, designed to efficiently remove contaminants from liquids and gases, are essential in sectors ranging from food and beverage t

  10. Global Simple Mobile Toilet Market Demand and Supply Dynamics 2025-2032

    • statsndata.org
    excel, pdf
    Updated Jun 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stats N Data (2025). Global Simple Mobile Toilet Market Demand and Supply Dynamics 2025-2032 [Dataset]. https://www.statsndata.org/report/simple-mobile-toilet-market-197793
    Explore at:
    excel, pdfAvailable download formats
    Dataset updated
    Jun 2025
    Dataset authored and provided by
    Stats N Data
    License

    https://www.statsndata.org/how-to-orderhttps://www.statsndata.org/how-to-order

    Area covered
    Global
    Description

    The Simple Mobile Toilet market is experiencing significant growth as the demand for portable sanitation solutions increases across various industries. These versatile toilets serve as essential amenities for outdoor events, construction sites, and disaster relief efforts, providing a convenient and hygienic option

  11. Demographic and Health Survey 1988 - Ghana

    • datacatalog.ihsn.org
    • catalog.ihsn.org
    • +3more
    Updated Jul 6, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ghana Statistical Service (GSS) (2017). Demographic and Health Survey 1988 - Ghana [Dataset]. https://datacatalog.ihsn.org/catalog/44
    Explore at:
    Dataset updated
    Jul 6, 2017
    Dataset provided by
    Ghana Statistical Services
    Authors
    Ghana Statistical Service (GSS)
    Time period covered
    1988
    Area covered
    Ghana
    Description

    Abstract

    The Ghana Demographic and Health Survey (GDHS) is a national sample survey designed to provide information on fertility, family planning and health in Ghana. The survey, which was conducted by the Statistical Service of Ghana, is part of a worldwide programme coordinated by the Institute for Resource Development/Macro Systems, Inc., in more than 40 countries in Africa, Asia and Latin America.

    The short-term objectives of the Ghana Demographic and Health Survey (GDHS) are to provide policymakers and those implementing policy with current data on fertility levels, knowledge and use of contraception, reproductive intentions of women 15-49, and health indicators. The information will also serve as the basis for monitoring and evaluating programmes initiated by the government such as the extended programme on immunization, child nutrition, and the family planning programme. The long-term objectives are to enhance the country's ability to undertake surveys of excellent technical quality that seek to measure changes in fertility levels, health status (particularly of children), and the extent of contraceptive knowledge and use. Finally, the results of the survey will form part of an international data base for researchers investigating topics related to the above issues.

    Geographic coverage

    National

    Analysis unit

    • Household
    • Children under five years
    • Women age 15-49
    • Men

    Kind of data

    Sample survey data

    Sampling procedure

    The 150 clusters from which a representative sample of women aged 15-49 was selected from a subsample of the 200 clusters used for the Ghana Living Standards Survey (GLSS). All census Enumeration Areas (EAs) were first stratified by ecological zones into 3 strata, namely Coastal Savanna, Forest, and Northern Savanna. These were further stratified into urban, semi-urban, and rural EAs. The EAs (in some cases, segments of EAs) were then selected with probability proportional to the number of households. All households in the selected EAs were subsequently listed.

    Note: See detailed description of sample design in APPENDIX B of the survey report.

    Mode of data collection

    Face-to-face

    Research instrument

    Three different types of questionnaires were used for the GDHS. These were the household, individual and the husband questionnaires. The household and the individual questionnaires were adapted from the Model "B" Questionnaire for the DHS program. The GDHS is one of the few surveys in which special effort was made to collect information from husbands of interviewed women on such topics as fertility preferences, knowledge and use of contraception, and environmental and health related issues.

    All usual members and visitors in the selected households were listed on the household questionnaire. Recorded in the household questionnaire were data on the age and sex of all listed persons in addition to information on fostering for children aged 0-14. Eligible women and eligible husbands were also identified in the household questionnaire.

    The individual questionnaire was used to collect data on eligible women. Eligible women were definedas those aged 15-49 years who spent the night prior to the household interview in the selected household, irrespective of whether they were usual members of the household or not. Items of information collected in this questionnaire are as follows: 1) Respondent's Background 2) Reproductive Behavior 3) Knowledge and Use of Contraception 4) Health and Breastfeeding 5) Marriage 6) Fertility Preferences 7) Husband's Background and Women's Work 8) Weight and Height of Children Aged 3-36 Months.

    In half of the selected clusters a husband's questionnaire was used to collect data on eligible husbands. Eligible husbands were defined as those who were co-resident with their wives and whose wives had been successfully interviewed. Data on the husband's background, contraceptive knowledge and use, as well as fertility preferences were collected.

    All three questionnaires were translated into seven local languages, namely, Twi, Fante, Nzema, Ga, Ewe, Hausa and Dagbani. All the GDHS interviewers were able to conduct interviews in English and at least one local language. The questionnaires were pretested from mid-October to early November 1987. Five teams were used for the pretest fieldwork. These included 19 persons who were trained for 11 days.

    Cleaning operations

    Completed questionnaires were collected weekly from the regions by the field coordinators. Coding, data entry and machine editing went on concurrently at the Ghana Statistical Service in Accra as the fieldwork progressed. Coding and data entry were started in March 1988 and were completed by the end of June 1988. Preliminary tabulations were produced by mid-July 1988, and by August 1988 preliminary results of the survey were published.

    Response rate

    Of the 4966 households selected, 4406 were successfully interviewed. Excluding 9 percent of households that were vacant, absent, etc., the household response rate is 98 percent.

    Out of 4574 eligible women in the household schedule, 4488 were interviewed successfully. The response rate at the individual level is 98 percent. Of the 997 eligible husbands, 943 were successfully interviewed, representing a response rate of 95 percent.

    Sampling error estimates

    The results from sample surveys are affected by two types of errors: non-sampling error and sampling error. The former is due to mistakes in implementing the field activities, such as failing to locate and interview the correct household, errors in asking questions, data entry errors, etc. While numerous steps were taken to minimize this sort of error in the GDHS, non-sampling errors are impossible to avoid entirely, and are difficult to evaluate statistically.

    Sampling errors, on the other hand, can be evaluated statistically. The sample of women selected in the GDHS is only one of many samples of the same size that could have been drawn from the population using the same design. Each sample would have yielded slightly different results from the sample actually selected. The variability observed among all possible samples constitutes sampling error, which can be estimated from survey results (though not measured exactly).

    Sampling error is usually measured in terms of the "standard error" (SE) of a particular statistic (mean, percentage, etc.), which is the square root of the variance of the statistic across all possible samples of equal size and design. The standard error can be used to calculate confidence intervals within which one can be reasonably sure the true value of the variable for the whole population falls. For example, for any given statistic calculated from a sample survey, the value of that same statistic as measured in 95 percent of all possible samples of identical size and design will fall within a range of plus or minus two times the standard error of that statistic.

    If simple random sampling had been used to select women for the GDHS, it would have been possible to use straightforward formulas for calculating sampling errors. However, the GDHS sample design used three stages and clusters of households, and it was necessary to use more complex formulas. Therefore, the computer package CLUSTERS, developed for the World Fertility Survey, and was used to compute sampling errors.

    Note: See detailed estimate of sampling error calculation in APPENDIX C of the survey report.

  12. i

    Demographic and Health Survey 1991 - Indonesia

    • catalog.ihsn.org
    • datacatalog.ihsn.org
    • +1more
    Updated Mar 29, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Central Bureau of Statistics (BPS) (2019). Demographic and Health Survey 1991 - Indonesia [Dataset]. https://catalog.ihsn.org/catalog/2484
    Explore at:
    Dataset updated
    Mar 29, 2019
    Dataset provided by
    Ministry of Health
    Central Bureau of Statistics (BPS)
    National Family Planning Coordinating Board (NFPCB)
    Time period covered
    1991
    Area covered
    Indonesia
    Description

    Abstract

    The 1991 Indonesia Demographic and Health Survey (IDHS) is a nationally representative survey of ever-married women age 15-49. It was conducted between May and July 1991. The survey was designed to provide information on levels and trends of fertility, infant and child mortality, family planning and maternal and child health. The IDHS was carried out as collaboration between the Central Bureau of Statistics, the National Family Planning Coordinating Board, and the Ministry of Health. The IDHS is follow-on to the National Indonesia Contraceptive Prevalence Survey conducted in 1987.

    The DHS program has four general objectives: - To provide participating countries with data and analysis useful for informed policy choices; - To expand the international population and health database; - To advance survey methodology; and - To help develop in participating countries the technical skills and resources necessary to conduct demographic and health surveys.

    In 1987 the National Indonesia Contraceptive Prevalence Survey (NICPS) was conducted in 20 of the 27 provinces in Indonesia, as part of Phase I of the DHS program. This survey did not include questions related to health since the Central Bureau of Statistics (CBS) had collected that information in the 1987 National Socioeconomic Household Survey (SUSENAS). The 1991 Indonesia Demographic and Health Survey (IDHS) was conducted in all 27 provinces of Indonesia as part of Phase II of the DHS program. The IDHS received financial assistance from several sources.

    The 1991 IDHS was specifically designed to meet the following objectives: - To provide data concerning fertility, family planning, and maternal and child health that can be used by program managers, policymakers, and researchers to evaluate and improve existing programs; - To measure changes in fertility and contraceptive prevalence rates and at the same time study factors which affect the change, such as marriage patterns, urban/rural residence, education, breastfeeding habits, and the availability of contraception; - To measure the development and achievements of programs related to health policy, particularly those concerning the maternal and child health development program implemented through public health clinics in Indonesia.

    Geographic coverage

    National

    Analysis unit

    • Household
    • Children under five years
    • Women age 15-49
    • Men

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    Indonesia is divided into 27 provinces. For the implementation of its family planning program, the National Family Planning Coordinating Board (BKKBN) has divided these provinces into three regions as follows:

    • Java-Bali: Jakarta, West Java, Central Java, Yogyakarta, East Java, and Bali
    • Outer Java-Bali I: Aceh, North Sumatra, West Sumatra, South Sumatra, Lampung, West Kalimantan, South Kalimantan, North Sulawesi, South Sulawesi, and West Nusa Tenggara
    • Outer Java-Bali II: Riau, Jambi, Bengkulu, East Nusa Tenggara, East Timor, Central Kalimantan, East Kalimantan, Central Sulawesi, Southeast Sulawesi, Maluku, and Irian Jaya.

    The 1990 Population Census of Indonesia shows that Java-Bali contains about 62 percent of the national population, while Outer Java-Bali I contains 27 percent and Outer Java-Bali II contains 11 percent. The sample for the Indonesia DHS survey was designed to produce reliable estimates of contraceptive prevalence and several other major survey variables for each of the 27 provinces and for urban and rural areas of the three regions.

    In order to accomplish this goal, approximately 1500 to 2000 households were selected in each of the provinces in Java-Bali, 1000 households in each of the ten provinces in Outer Java-Bali I, and 500 households in each of the 11 provinces in Outer Java-Bali II for a total of 28,000 households. With an average of 0.8 eligible women (ever-married women age 15-49) per selected household, the 28,000 households were expected to yield approximately 23,000 individual interviews.

    Note: See detailed description of sample design in APPENDIX A of the survey report.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    The DHS model "A" questionnaire and manuals were modified to meet the requirements of measuring family planning and health program attainment, and were translated into Bahasa Indonesia.

    Cleaning operations

    The first stage of data editing was done by the field editors who checked the completed questionnaires for completeness and accuracy. Field supervisors also checked the questionnaires. They were then sent to the central office in Jakarta where they were edited again and open-ended questions were coded. The data were processed using 11 microcomputers and ISSA (Integrated System for Survey Analysis).

    Data entry and editing were initiated almost immediately after the beginning of fieldwork. Simple range and skip errors were corrected at the data entry stage. Secondary machine editing of the data was initiated as soon as sufficient questionnaires had been entered. The objective of the secondary editing was to detect and correct, if possible, inconsistencies in the data. All of the data were entered and edited by September 1991. A brief report containing preliminary survey results was published in November 1991.

    Response rate

    Of 28,141 households sampled, 27,109 were eligible to be interviewed (excluding those that were absent, vacant, or destroyed), and of these, 26,858 or 99 percent of eligible households were successfully interviewed. In the interviewed households, 23,470 eligible women were found and complete interviews were obtained with 98 percent of these women.

    Note: See summarized response rates by place of residence in Table 1.2 of the survey report.

    Sampling error estimates

    The results from sample surveys are affected by two types of errors, non-sampling error and sampling error. Non-sampling error is due to mistakes made in carrying out field activities, such as failure to locate and interview the correct household, errors in the way the questions are asked, misunderstanding on the part of either the interviewer or the respondent, data entry errors, etc. Although efforts were made during the design and implementation of the IDHS to minimize this type of error, non-sampling errors are impossible to avoid and difficult to evaluate analytically.

    Sampling errors, on the other hand, can be measured statistically. The sample of women selected in the IDHS is only one of many samples that could have been selected from the same population, using the same design and expected size. Each one would have yielded results that differed somewhat from the actual sample selected. The sampling error is a measure of the variability between all possible samples; although it is not known exactly, it can be estimated from the survey results. Sampling error is usually measured in terms of standard error of a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which one can reasonably be assured that, apart from non-sampling errors, the true value of the variable for the whole population falls. For example, for any given statistic calculated from a sample survey, the value of that same statistic as measured in 95 percent of all possible samples with the same design (and expected size) will fall within a range of plus or minus two times the standard error of that statistic.

    If the sample of women had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the IDHS sample design depended on stratification, stages and clusters. Consequently, it was necessary to utilize more complex formulas. The computer package CLUSTERS, developed by the International Statistical Institute for the World Fertility Survey, was used to assist in computing the sampling errors with the proper statistical methodology.

    Note: See detailed estimate of sampling error calculation in APPENDIX B of the survey report.

    Data appraisal

    Data Quality Tables - Household age distribution - Age distribution of eligible and interviewed women - Completeness of reporting - Births by calendar year since birth - Reporting of age at death in days - Reporting of age at death in months

    Note: See detailed tables in APPENDIX C of the survey report.

  13. f

    Factors related to environmental barriers experienced by persons with and...

    • plos.figshare.com
    pdf
    Updated Jun 5, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Surona Visagie; Arne H. Eide; Karin Dyrstad; Hasheem Mannan; Leslie Swartz; Marguerite Schneider; Gubela Mji; Alister Munthali; Mustafa Khogali; Gert van Rooy; Karl-Gerhard Hem; Malcolm MacLachlan (2023). Factors related to environmental barriers experienced by persons with and without disabilities in diverse African settings [Dataset]. http://doi.org/10.1371/journal.pone.0186342
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jun 5, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Surona Visagie; Arne H. Eide; Karin Dyrstad; Hasheem Mannan; Leslie Swartz; Marguerite Schneider; Gubela Mji; Alister Munthali; Mustafa Khogali; Gert van Rooy; Karl-Gerhard Hem; Malcolm MacLachlan
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This paper explores differences in experienced environmental barriers between individuals with and without disabilities and the impact of additional factors on experienced environmental barriers. Data was collected in 2011–2012 by means of a two-stage cluster sampling and comprised 400–500 households in different sites in South Africa, Sudan Malawi and Namibia. Data were collected through self-report survey questionnaires. In addition to descriptive statistics and simple statistical tests a structural equation model was developed and tested. The combined file comprised 9,307 participants. The Craig Hospital Inventory of Environmental Factors was used to assess the level of environmental barriers. Transportation, the natural environment and access to health care services created the biggest barriers. An exploratory factor analysis yielded support for a one component solution for environmental barriers. A scale was constructed by adding the items together and dividing by number of items, yielding a range from one to five with five representing the highest level of environmental barriers and one the lowest. An overall mean value of 1.51 was found. Persons with disabilities scored 1.66 and persons without disabilities 1.36 (F = 466.89, p < .001). Bivariate regression analyses revealed environmental barriers to be higher among rural respondents, increasing with age and severity of disability, and lower for those with a higher level of education and with better physical and mental health. Gender had an impact only among persons without disabilities, where women report more barriers than men. Structural equation model analysis showed that socioeconomic status was significantly and negatively associated with environmental barriers. Activity limitation is significantly associated with environmental barriers when controlling for a number of other individual characteristics. Reducing barriers for the general population would go some way to reduce the impact of these for persons with activity limitations, but additional and specific adaptations will be required to ensure an inclusive society.

  14. I

    Global Really Simple Syndication (RSS) Reader Market Business Opportunities...

    • statsndata.org
    excel, pdf
    Updated Jun 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stats N Data (2025). Global Really Simple Syndication (RSS) Reader Market Business Opportunities 2025-2032 [Dataset]. https://www.statsndata.org/report/really-simple-syndication-rss-reader-market-93340
    Explore at:
    pdf, excelAvailable download formats
    Dataset updated
    Jun 2025
    Dataset authored and provided by
    Stats N Data
    License

    https://www.statsndata.org/how-to-orderhttps://www.statsndata.org/how-to-order

    Area covered
    Global
    Description

    The Really Simple Syndication (RSS) Reader market is experiencing a renaissance in the digital age, driven by the increasing need for efficient information consumption. RSS readers serve as essential tools that aggregate content from various online sources, allowing users to streamline their reading experience and s

  15. Multiple Indicator Cluster Survey 2005-2006 - Thailand

    • microdata.worldbank.org
    • datacatalog.ihsn.org
    • +2more
    Updated Sep 26, 2013
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Statistical Office of Thailand (2013). Multiple Indicator Cluster Survey 2005-2006 - Thailand [Dataset]. https://microdata.worldbank.org/index.php/catalog/27
    Explore at:
    Dataset updated
    Sep 26, 2013
    Dataset provided by
    National Statistical Office of Thailandhttp://nso.go.th/
    Time period covered
    2005 - 2006
    Area covered
    Thailand
    Description

    Abstract

    The Multiple Indicator Cluster Survey (MICS) is a household survey programme developed by UNICEF to assist countries in filling data gaps for monitoring human development in general and the situation of children and women in particular. MICS is capable of producing statistically sound, internationally comparable estimates of social indicators. The current round of MICS is focused on providing a monitoring tool for the Millennium Development Goals (MDGs), the World Fit for Children (WFFC), as well as for other major international commitments, such as the United Nations General Assembly Special Session (UNGASS) on HIV/AIDS and the Abuja targets for malaria.

    Survey Objectives The 2006 Thailand Multiple Indicator Cluster Survey has as its primary objectives: - To provide up-to-date information for assessing the situation of children and women in Thailand; - To furnish data needed for monitoring progress toward goals established by the Millennium Development Goals (MDG), the goals of A World Fit for Children (WFFC) and other internationally agreed upon goals, as a basis for future action at national and provincial level; and - To contribute to the improvement of data and monitoring systems on the situation of children and women in Thailand and strengthening technical expertise for the design, implementation, and analysis of such systems.

    Survey Content MICS questionnaires are designed in a modular fashion that can be easily customized to the needs of a country. They consist of a household questionnaire, a questionnaire for women aged 15-49 and a questionnaire for children under the age of five (to be administered to the mother or caretaker). Other than a set of core modules, countries can select which modules they want to include in each questionnaire.

    Survey Implementation The survey was implemented by the National Statistical Office of Thailand, with the support and assistance of UNICEF and other partners. Technical assistance and training for the surveys is provided through a series of regional workshops, covering questionnaire content, sampling and survey implementation; data processing; data quality and data analysis; report writing and dissemination.

    Geographic coverage

    The survey was designed to produce estimates for indicators at the national level, by urban and rural disaggregation, for each of the 4 regions of Thailand (North, Northeast, Central, and South) and by individual province for 26 (out of 76 total) targeted provinces (note: additional data collections were performed for the targeted provinces during March-May 2006; separate results publications for each province are pending).

    Analysis unit

    • Households
    • Women aged 15-49
    • Children under 5 years of age

    Universe

    The survey covered all de jure household members (usual residents), all women aged 15-49 years resident in the household, and all children aged 0-4 years (under age 5) resident in the household.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The Thailand Multiple Indicator Cluster Survey (MICS) was carried out by a sample survey method that used a stratified two stage sampling plan. The primary sample units (PSUs) consisted of blocks (in municipal areas) or villages (in non-municipal areas). The secondary sample units consisted of collective households systematically drawn from a household listing. The plan is designed to provide estimates of situation indicators for children and women at the national level, for municipal and non-municipal areas, and for four regions: Central (including Bangkok), North, Northeast and South. The household listing is obtained from The Basic Household Information Survey conducted every two years by the National Statistical Office (NSO). In the survey, members of each household located in the block/village samples are counted.

    Data on basic household information from the survey are to be used as the sample frame in various survey projects of the NSO. Data from the 2006 Basic Household Information Survey were used as the frame for household samples in the Thailand MICS. Thirty collective household samples per block/village sample were selected in both municipal and non-municipal areas. Field staff then created a Listing of Household Samples by adding together all the names of household heads and the addresses. After a household listing was carried out within the selected 30 households in each block/village, a systematic sample of households was drawn. For national-level results, sample data were weighted in accordance with sampling plan.

    A block is an operational boundary in a municipal area that is made up of approximately 100 to 200 households. Blocks are established on a map so that field staff know the exact area they are to cover in the survey.

    A village is an administrative unit, a community, in a non-municipal area governed by a village head (Phuyaiban) or a district head (Kamnan).

    The MICS national-level report included 1,449 block/village samples. Thirty collective household samples per block/village samples were selected and a total of 43,470 household samples were obtained.

    For MICS provincial-level reports, 1,032 block/village samples were selected and 30,960 household samples were included.

    More detailed information on the sample design is available in Appendix A of the Survey Final Report.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    The questionnaires for the Thailand MICS were structured questionnaires based on the MICS3 Model Questionnaire with some modifications and additions. A household questionnaire was administered in each household, which collected various information on household members including sex, age, relationship, and orphanhood status.

    In addition to a household questionnaire, questionnaires were administered in each household for women age 15-49 and children under age five. For children, the questionnaire was administered to the mother or caretaker of the child.

    The questionnaires were translated into Thai by the NSO MICS coordinators in September 2005.

    In addition to the administration of questionnaires, fieldwork teams tested salt used for cooking in the households surveyed for presence of iodine, and measured the weight and height of children under 5 years of age.

    Cleaning operations

    After the fieldwork, the team supervisor checked the data collected during the interview for completeness. Then the Provincial Statistical Officer in each province and the Director of the Data Management Division of the Bangkok Metropolitan Administration randomly rechecked the data before sending all the questionnaires to the National Statistical Office (NSO) for processing.

    Upon receiving the questionnaires from the 76 provinces, the collected data were entered on 30 microcomputers by data entry operators and data entry supervisors at the Thai NSO, using CSPro software. In order to ensure quality control, editing and structural checks, all questionnaires were double entered for verification and internal consistency checks were performed, followed by secondary editing. The data entry and verification used CSPro programme applications that were developed under the global Multiple Indicator Cluster Survey (MICS) project by UNICEF to be used as standard processing procedures worldwide. In Thailand, the standard CSPro programme was modified appropriately to the Thai version questionnaires. The modification was done by NSO staff that had been trained on data processing by MICS experts from UNICEF.

    Data entry and data verification for the national level report began in February 2006 and was completed in April 2006. For the provincial reports, the process was completed in June 2006. Data were analysed using the Statistical Package for Social Sciences (SPSS) software programme, Version 14, and the model syntax and tabulation plans developed by UNICEF for this purpose.

    Data editing took place at a number of stages throughout the processing, including: a) Office editing and coding b) During data entry c) Structure checking and completeness d) Secondary editing e) Structural checking of SPSS data files

    Response rate

    Of the 43,440 households selected for the sample, 42,302 were found to be occupied. Of these, 40,511 were successfully interviewed, yielding a response rate of 95.8 percent. In the interviewed households, 37,187 eligible women (aged 15-49) were identified. Of these eligible women, 36,960 were successfully interviewed, yielding a response rate of 99.4 percent. In addition, 9,444 children under the age of 5 were listed as being eligible in the households. The mothers and/or caretakers of 9,409 of these children (99.6 per cent) were successfully interviewed.

    Differentials in response rates by areas showed 94.9 percent of the households in municipal areas and 96.9 percent in non-municipal areas. Participant differentials in response rates were observed, with the highest in the North Region (98.8 percent), followed by the Northeast Region (98.1 percent), and the South and the Central regions' same low response rate of 93 percent.

    Sampling error estimates

    The sample of respondents selected in the Thailand Multiple Indicator Cluster Survey (MICS) is only one of the samples that could have been selected from the same population, using the same design and size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability between all possible samples. The extent of variability is not known exactly, but can be estimated statistically from the survey results.

    The

  16. European Union Statistics on Income and Living Conditions 2012 -...

    • datacatalog.ihsn.org
    • catalog.ihsn.org
    Updated Mar 29, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Eurostat (2019). European Union Statistics on Income and Living Conditions 2012 - Cross-Sectional User Database - Romania [Dataset]. https://datacatalog.ihsn.org/catalog/5770
    Explore at:
    Dataset updated
    Mar 29, 2019
    Dataset authored and provided by
    Eurostathttps://ec.europa.eu/eurostat
    Time period covered
    2012
    Area covered
    Romania
    Description

    Abstract

    In 2012, the EU-SILC instrument covered all EU Member States plus Iceland, Turkey, Norway, Switzerland and Croatia. EU-SILC has become the EU reference source for comparative statistics on income distribution and social exclusion at European level, particularly in the context of the "Program of Community action to encourage cooperation between Member States to combat social exclusion" and for producing structural indicators on social cohesion for the annual spring report to the European Council. The first priority is to be given to the delivery of comparable, timely and high quality cross-sectional data.

    There are two types of datasets: 1) Cross-sectional data pertaining to fixed time periods, with variables on income, poverty, social exclusion and living conditions. 2) Longitudinal data pertaining to individual-level changes over time, observed periodically - usually over four years.

    Social exclusion and housing-condition information is collected at household level. Income at a detailed component level is collected at personal level, with some components included in the "Household" section. Labor, education and health observations only apply to persons aged 16 and over. EU-SILC was established to provide data on structural indicators of social cohesion (at-risk-of-poverty rate, S80/S20 and gender pay gap) and to provide relevant data for the two 'open methods of coordination' in the field of social inclusion and pensions in Europe.

    This is the 3rd version of the 2012 Cross-Sectional User Database as released in July 2015.

    Geographic coverage

    The survey covers following countries: Austria; Belgium; Bulgaria; Croatia; Cyprus; Czech Republic; Denmark; Estonia; Finland; France; Germany; Greece; Spain; Ireland; Italy; Latvia; Lithuania; Luxembourg; Hungary; Malta; Netherlands; Poland; Portugal; Romania; Slovenia; Slovakia; Sweden; United Kingdom; Iceland; Norway; Turkey; Switzerland

    Small parts of the national territory amounting to no more than 2% of the national population and the national territories listed below may be excluded from EU-SILC: France - French Overseas Departments and territories; Netherlands - The West Frisian Islands with the exception of Texel; Ireland - All offshore islands with the exception of Achill, Bull, Cruit, Gorumna, Inishnee, Lettermore, Lettermullan and Valentia; United Kingdom - Scotland north of the Caledonian Canal, the Scilly Islands.

    Analysis unit

    • Households;
    • Individuals 16 years and older.

    Universe

    The survey covered all household members over 16 years old. Persons living in collective households and in institutions are generally excluded from the target population.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    On the basis of various statistical and practical considerations and the precision requirements for the most critical variables, the minimum effective sample sizes to be achieved were defined. Sample size for the longitudinal component refers, for any pair of consecutive years, to the number of households successfully interviewed in the first year in which all or at least a majority of the household members aged 16 or over are successfully interviewed in both the years.

    For the cross-sectional component, the plans are to achieve the minimum effective sample size of around 131.000 households in the EU as a whole (137.000 including Iceland and Norway). The allocation of the EU sample among countries represents a compromise between two objectives: the production of results at the level of individual countries, and production for the EU as a whole. Requirements for the longitudinal data will be less important. For this component, an effective sample size of around 98.000 households (103.000 including Iceland and Norway) is planned.

    Member States using registers for income and other data may use a sample of persons (selected respondents) rather than a sample of complete households in the interview survey. The minimum effective sample size in terms of the number of persons aged 16 or over to be interviewed in detail is in this case taken as 75 % of the figures shown in columns 3 and 4 of the table I, for the cross-sectional and longitudinal components respectively.

    The reference is to the effective sample size, which is the size required if the survey were based on simple random sampling (design effect in relation to the 'risk of poverty rate' variable = 1.0). The actual sample sizes will have to be larger to the extent that the design effects exceed 1.0 and to compensate for all kinds of non-response. Furthermore, the sample size refers to the number of valid households which are households for which, and for all members of which, all or nearly all the required information has been obtained. For countries with a sample of persons design, information on income and other data shall be collected for the household of each selected respondent and for all its members.

    At the beginning, a cross-sectional representative sample of households is selected. It is divided into say 4 sub-samples, each by itself representative of the whole population and similar in structure to the whole sample. One sub-sample is purely cross-sectional and is not followed up after the first round. Respondents in the second sub-sample are requested to participate in the panel for 2 years, in the third sub-sample for 3 years, and in the fourth for 4 years. From year 2 onwards, one new panel is introduced each year, with request for participation for 4 years. In any one year, the sample consists of 4 sub-samples, which together constitute the cross-sectional sample. In year 1 they are all new samples; in all subsequent years, only one is new sample. In year 2, three are panels in the second year; in year 3, one is a panel in the second year and two in the third year; in subsequent years, one is a panel for the second year, one for the third year, and one for the fourth (final) year.

    According to the Commission Regulation on sampling and tracing rules, the selection of the sample will be drawn according to the following requirements:

    1. For all components of EU-SILC (whether survey or register based), the crosssectional and longitudinal (initial sample) data shall be based on a nationally representative probability sample of the population residing in private households within the country, irrespective of language, nationality or legal residence status. All private households and all persons aged 16 and over within the household are eligible for the operation.
    2. Representative probability samples shall be achieved both for households, which form the basic units of sampling, data collection and data analysis, and for individual persons in the target population.
    3. The sampling frame and methods of sample selection shall ensure that every individual and household in the target population is assigned a known and non-zero probability of selection.
    4. By way of exception, paragraphs 1 to 3 shall apply in Germany exclusively to the part of the sample based on probability sampling according to Article 8 of the Regulation of the European Parliament and of the Council (EC) No 1177/2003 concerning

    Community Statistics on Income and Living Conditions. Article 8 of the EU-SILC Regulation of the European Parliament and of the Council mentions: 1. The cross-sectional and longitudinal data shall be based on nationally representative probability samples. 2. By way of exception to paragraph 1, Germany shall supply cross-sectional data based on a nationally representative probability sample for the first time for the year 2008. For the year 2005, Germany shall supply data for one fourth based on probability sampling and for three fourths based on quota samples, the latter to be progressively replaced by random selection so as to achieve fully representative probability sampling by 2008. For the longitudinal component, Germany shall supply for the year 2006 one third of longitudinal data (data for year 2005 and 2006) based on probability sampling and two thirds based on quota samples. For the year 2007, half of the longitudinal data relating to years 2005, 2006 and 2007 shall be based on probability sampling and half on quota sample. After 2007 all of the longitudinal data shall be based on probability sampling.

    Detailed information about sampling is available in Quality Reports in Related Materials.

    Mode of data collection

    Mixed

  17. Global Simple Programmable Logic Devices (SPLD) Market Global Trade Dynamics...

    • statsndata.org
    excel, pdf
    Updated Jun 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stats N Data (2025). Global Simple Programmable Logic Devices (SPLD) Market Global Trade Dynamics 2025-2032 [Dataset]. https://www.statsndata.org/report/simple-programmable-logic-devices-spld-market-1663
    Explore at:
    pdf, excelAvailable download formats
    Dataset updated
    Jun 2025
    Dataset authored and provided by
    Stats N Data
    License

    https://www.statsndata.org/how-to-orderhttps://www.statsndata.org/how-to-order

    Area covered
    Global
    Description

    In recent years, the Simple Programmable Logic Devices (SPLD) market has gained significant traction, driven by the need for flexible and efficient solutions in the electronics and telecommunications sectors. SPLDs, which encompass devices like programmable logic arrays (PLAs) and programmable array logic (PAL), pla

  18. Global Simple LED Circuit Market Future Projections 2025-2032

    • statsndata.org
    excel, pdf
    Updated Jun 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stats N Data (2025). Global Simple LED Circuit Market Future Projections 2025-2032 [Dataset]. https://www.statsndata.org/report/simple-led-circuit-market-218
    Explore at:
    pdf, excelAvailable download formats
    Dataset updated
    Jun 2025
    Dataset authored and provided by
    Stats N Data
    License

    https://www.statsndata.org/how-to-orderhttps://www.statsndata.org/how-to-order

    Area covered
    Global
    Description

    The Simple LED Circuit market has witnessed significant growth in recent years, driven by the increasing adoption of LED technology across various industries. Simple LED circuits, which typically involve a straightforward arrangement of diodes, resistors, and power sources, are essential in providing efficient light

  19. M

    Global Simple And Clean Designs Market Competitive Environment 2025-2032

    • statsndata.org
    excel, pdf
    Updated Jun 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stats N Data (2025). Global Simple And Clean Designs Market Competitive Environment 2025-2032 [Dataset]. https://www.statsndata.org/report/global-279938
    Explore at:
    pdf, excelAvailable download formats
    Dataset updated
    Jun 2025
    Dataset authored and provided by
    Stats N Data
    License

    https://www.statsndata.org/how-to-orderhttps://www.statsndata.org/how-to-order

    Area covered
    Global
    Description

    The Simple and Clean Designs market has emerged as a significant segment within the broader design and creative industries, driven by a growing demand for minimalism and functionality across various sectors. This design philosophy emphasizes uncluttered, aesthetically pleasing visuals that enhance user experience an

  20. Global Simple Smart Contracts Market Competitive Landscape 2025-2032

    • statsndata.org
    excel, pdf
    Updated Jun 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stats N Data (2025). Global Simple Smart Contracts Market Competitive Landscape 2025-2032 [Dataset]. https://www.statsndata.org/report/simple-smart-contracts-market-358195
    Explore at:
    excel, pdfAvailable download formats
    Dataset updated
    Jun 2025
    Dataset authored and provided by
    Stats N Data
    License

    https://www.statsndata.org/how-to-orderhttps://www.statsndata.org/how-to-order

    Area covered
    Global
    Description

    The Simple Smart Contracts market is rapidly evolving, driven by the growing demand for transparency, efficiency, and automation across various industries. Defined as self-executing contracts with the terms of the agreement directly written into code, these smart contracts eliminate the need for intermediaries, ther

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Kingsley Okoye; Samira Hosseini (2023). Collection of example datasets used for the book - R Programming - Statistical Data Analysis in Research [Dataset]. http://doi.org/10.6084/m9.figshare.24728073.v1

Collection of example datasets used for the book - R Programming - Statistical Data Analysis in Research

Explore at:
txtAvailable download formats
Dataset updated
Dec 4, 2023
Dataset provided by
figshare
Authors
Kingsley Okoye; Samira Hosseini
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

This book is written for statisticians, data analysts, programmers, researchers, teachers, students, professionals, and general consumers on how to perform different types of statistical data analysis for research purposes using the R programming language. R is an open-source software and object-oriented programming language with a development environment (IDE) called RStudio for computing statistics and graphical displays through data manipulation, modelling, and calculation. R packages and supported libraries provides a wide range of functions for programming and analyzing of data. Unlike many of the existing statistical softwares, R has the added benefit of allowing the users to write more efficient codes by using command-line scripting and vectors. It has several built-in functions and libraries that are extensible and allows the users to define their own (customized) functions on how they expect the program to behave while handling the data, which can also be stored in the simple object system.For all intents and purposes, this book serves as both textbook and manual for R statistics particularly in academic research, data analytics, and computer programming targeted to help inform and guide the work of the R users or statisticians. It provides information about different types of statistical data analysis and methods, and the best scenarios for use of each case in R. It gives a hands-on step-by-step practical guide on how to identify and conduct the different parametric and non-parametric procedures. This includes a description of the different conditions or assumptions that are necessary for performing the various statistical methods or tests, and how to understand the results of the methods. The book also covers the different data formats and sources, and how to test for reliability and validity of the available datasets. Different research experiments, case scenarios and examples are explained in this book. It is the first book to provide a comprehensive description and step-by-step practical hands-on guide to carrying out the different types of statistical analysis in R particularly for research purposes with examples. Ranging from how to import and store datasets in R as Objects, how to code and call the methods or functions for manipulating the datasets or objects, factorization, and vectorization, to better reasoning, interpretation, and storage of the results for future use, and graphical visualizations and representations. Thus, congruence of Statistics and Computer programming for Research.

Search
Clear search
Close search
Google apps
Main menu