22 datasets found
  1. h

    SimpleQA

    • huggingface.co
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    basicv8vc, SimpleQA [Dataset]. https://huggingface.co/datasets/basicv8vc/SimpleQA
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Authors
    basicv8vc
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    SimpleQA

    A factuality benchmark called SimpleQA that measures the ability for language models to answer short, fact-seeking questions.

      Sources
    

    openai/simple-evals Introducing SimpleQA Measuring short-form factuality in large language models

  2. h

    simple_questions_v2

    • huggingface.co
    Updated Aug 28, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Fethi BOUGARES (2023). simple_questions_v2 [Dataset]. https://huggingface.co/datasets/fbougares/simple_questions_v2
    Explore at:
    Dataset updated
    Aug 28, 2023
    Authors
    Fethi BOUGARES
    License

    Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
    License information was derived automatically

    Description

    SimpleQuestions is a dataset for simple QA, which consists of a total of 108,442 questions written in natural language by human English-speaking annotators each paired with a corresponding fact, formatted as (subject, relationship, object), that provides the answer but also a complete explanation. Fast have been extracted from the Knowledge Base Freebase (freebase.com). We randomly shuffle these questions and use 70% of them (75910) as training set, 10% as validation set (10845), and the remaining 20% as test set.

  3. h

    simpleQA

    • huggingface.co
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Oid Labs, simpleQA [Dataset]. https://huggingface.co/datasets/oidlabs/simpleQA
    Explore at:
    Dataset authored and provided by
    Oid Labs
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    oidlabs/simpleQA dataset hosted on Hugging Face and contributed by the HF Datasets community

  4. h

    simpleqa

    • huggingface.co
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    China Merchants Research Institute Of Advanced Technology, simpleqa [Dataset]. https://huggingface.co/datasets/cmriat/simpleqa
    Explore at:
    Dataset authored and provided by
    China Merchants Research Institute Of Advanced Technology
    Description

    cmriat/simpleqa dataset hosted on Hugging Face and contributed by the HF Datasets community

  5. h

    SimpleQA-1000

    • huggingface.co
    Updated Mar 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Andrey Galichin (2025). SimpleQA-1000 [Dataset]. https://huggingface.co/datasets/andreuka18/SimpleQA-1000
    Explore at:
    Dataset updated
    Mar 23, 2025
    Authors
    Andrey Galichin
    Description

    andreuka18/SimpleQA-1000 dataset hosted on Hugging Face and contributed by the HF Datasets community

  6. h

    SimpleQA-RLVR-noprompt

    • huggingface.co
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hamish Ivison, SimpleQA-RLVR-noprompt [Dataset]. https://huggingface.co/datasets/hamishivi/SimpleQA-RLVR-noprompt
    Explore at:
    Authors
    Hamish Ivison
    Description

    hamishivi/SimpleQA-RLVR-noprompt dataset hosted on Hugging Face and contributed by the HF Datasets community

  7. h

    output_Llama-3.1-8B-simpleqa-0_1000-m_generation-n_128-t_1.0-k_50-p_0.95-l_128...

    • huggingface.co
    Updated Dec 25, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sen Yang (2024). output_Llama-3.1-8B-simpleqa-0_1000-m_generation-n_128-t_1.0-k_50-p_0.95-l_128 [Dataset]. https://huggingface.co/datasets/ringos/output_Llama-3.1-8B-simpleqa-0_1000-m_generation-n_128-t_1.0-k_50-p_0.95-l_128
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Dec 25, 2024
    Authors
    Sen Yang
    Description

    ringos/output_Llama-3.1-8B-simpleqa-0_1000-m_generation-n_128-t_1.0-k_50-p_0.95-l_128 dataset hosted on Hugging Face and contributed by the HF Datasets community

  8. P

    SimpleQuestions Dataset

    • paperswithcode.com
    Updated Aug 14, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Antoine Bordes; Nicolas Usunier; Sumit Chopra; Jason Weston (2021). SimpleQuestions Dataset [Dataset]. https://paperswithcode.com/dataset/simplequestions
    Explore at:
    Dataset updated
    Aug 14, 2021
    Authors
    Antoine Bordes; Nicolas Usunier; Sumit Chopra; Jason Weston
    Description

    SimpleQuestions is a large-scale factoid question answering dataset. It consists of 108,442 natural language questions, each paired with a corresponding fact from Freebase knowledge base. Each fact is a triple (subject, relation, object) and the answer to the question is always the object. The dataset is divided into training, validation, and test sets with 75,910, 10,845 and 21,687 questions respectively.

  9. h

    synthetic-rag-simple-qa-4th-to-6th

    • huggingface.co
    Updated May 30, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lambent (2024). synthetic-rag-simple-qa-4th-to-6th [Dataset]. https://huggingface.co/datasets/Lambent/synthetic-rag-simple-qa-4th-to-6th
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    May 30, 2024
    Authors
    Lambent
    Description

    Lambent/synthetic-rag-simple-qa-4th-to-6th dataset hosted on Hugging Face and contributed by the HF Datasets community

  10. h

    output_Mistral-Nemo-Base-2407-simpleqa-0_1000-m_generation-n_32-t_1.0-k_40-p_0.9-l_128...

    • huggingface.co
    Updated Feb 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sen Yang (2025). output_Mistral-Nemo-Base-2407-simpleqa-0_1000-m_generation-n_32-t_1.0-k_40-p_0.9-l_128 [Dataset]. https://huggingface.co/datasets/ringos/output_Mistral-Nemo-Base-2407-simpleqa-0_1000-m_generation-n_32-t_1.0-k_40-p_0.9-l_128
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Feb 19, 2025
    Authors
    Sen Yang
    Description

    ringos/output_Mistral-Nemo-Base-2407-simpleqa-0_1000-m_generation-n_32-t_1.0-k_40-p_0.9-l_128 dataset hosted on Hugging Face and contributed by the HF Datasets community

  11. h

    SimpleQA-synthetic-datastore-Llama3.3-70B-Instruct

    • huggingface.co
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rulin Shao, SimpleQA-synthetic-datastore-Llama3.3-70B-Instruct [Dataset]. https://huggingface.co/datasets/rulins/SimpleQA-synthetic-datastore-Llama3.3-70B-Instruct
    Explore at:
    Authors
    Rulin Shao
    Description

    Synthetic oracle datastore for SimpleQA. The oracle document is generated based on the problem and answer. This data is generated by Llama3.3-70B-Instruct. template = f""" You are a helpful assistant that can synthesize a Wikipedia document from a question and an answer. The document should be an actual Wikipedia article that can be helpful for answering the question. Do not directly include the question in the document. The document should contain around 150 words.

    Question: {{question}} โ€ฆ See the full description on the dataset page: https://huggingface.co/datasets/rulins/SimpleQA-synthetic-datastore-Llama3.3-70B-Instruct.

  12. h

    synthetic-rag-hermes-simple-qa-1st-ic

    • huggingface.co
    Updated Jun 16, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lambent (2024). synthetic-rag-hermes-simple-qa-1st-ic [Dataset]. https://huggingface.co/datasets/Lambent/synthetic-rag-hermes-simple-qa-1st-ic
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jun 16, 2024
    Authors
    Lambent
    Description

    Lambent/synthetic-rag-hermes-simple-qa-1st-ic dataset hosted on Hugging Face and contributed by the HF Datasets community

  13. h

    simple-qa

    • huggingface.co
    Updated Apr 20, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Piotr Rybak (2023). simple-qa [Dataset]. https://huggingface.co/datasets/piotr-rybak/simple-qa
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Apr 20, 2023
    Authors
    Piotr Rybak
    Description

    piotr-rybak/simple-qa dataset hosted on Hugging Face and contributed by the HF Datasets community

  14. h

    openai_simple_qa_test_set

    • huggingface.co
    Updated Oct 30, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MAISA AI (2024). openai_simple_qa_test_set [Dataset]. https://huggingface.co/datasets/MAISAAI/openai_simple_qa_test_set
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Oct 30, 2024
    Dataset provided by
    Maisa Inc.
    Authors
    MAISA AI
    Description

    Model Card: SimpleQA Benchmark

    Information from OpenAI blogpost Model Card for SimpleQAVersion: v1.0Date: October 30, 2024Authors: Jason Wei, Karina Nguyen, Hyung Won Chung, Joy Jiao, Spencer Papay, Mia Glaese, John Schulman, Liam FedusAcknowledgements: Adam Tauman Kalai

      Model Overview
    

    SimpleQA is a factuality benchmark designed to evaluate the accuracy and reliability of language models in responding to short, fact-seeking questions. Aimed at assessing models'โ€ฆ See the full description on the dataset page: https://huggingface.co/datasets/MAISAAI/openai_simple_qa_test_set.

  15. h

    ACG-SimpleQA

    • huggingface.co
    Updated Apr 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Papersnake (2025). ACG-SimpleQA [Dataset]. https://huggingface.co/datasets/Papersnake/ACG-SimpleQA
    Explore at:
    Dataset updated
    Apr 24, 2025
    Authors
    Papersnake
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    ACG-SimpleQA

    ๐ŸŒ Website โ€ข ๐Ÿค— Hugging Face

    ไธญๆ–‡ | English

    ACG-SimpleQA is an objective knowledge question-answering dataset focused on the Chinese ACG (Animation, Comic, Game) domain, containing 4242 auto-generated carefully designed QA samples. This benchmark aims to evaluate large language models' factual capabilities in the ACG culture domain, featuring Chinese language, diversity, high quality, static answers, and easy evaluation.

      ๐Ÿ“ข Latest Updatesโ€ฆ See the full description on the dataset page: https://huggingface.co/datasets/Papersnake/ACG-SimpleQA.
    
  16. h

    arxiv_qa

    • huggingface.co
    Updated Sep 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    taesiri (2023). arxiv_qa [Dataset]. https://huggingface.co/datasets/taesiri/arxiv_qa
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Sep 30, 2023
    Authors
    taesiri
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    ArXiv QA

    (TBD) Automated ArXiv question answering via large language models Github | Homepage | Simple QA - Hugging Face Space

      Automated Question Answering with ArXiv Papers
    
    
    
    
    
      Latest 25 Papers
    

    LIME: Localized Image Editing via Attention Regularization in Diffusion Models - [Arxiv] [QA]

    Revisiting Depth Completion from a Stereo Matching Perspective for Cross-domain Generalization - [Arxiv] [QA]

    VL-GPT: A Generative Pre-trained Transformer for Vision andโ€ฆ See the full description on the dataset page: https://huggingface.co/datasets/taesiri/arxiv_qa.

  17. h

    Wikipedia-Turkish-SimpleQA

    • huggingface.co
    Updated May 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Murat Tut (2025). Wikipedia-Turkish-SimpleQA [Dataset]. https://huggingface.co/datasets/kesitt/Wikipedia-Turkish-SimpleQA
    Explore at:
    Dataset updated
    May 28, 2025
    Authors
    Murat Tut
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Area covered
    Tรผrkiye
    Description

    kesitt/Wikipedia-Turkish-SimpleQA dataset hosted on Hugging Face and contributed by the HF Datasets community

  18. h

    together-search-bench

    • huggingface.co
    Updated Apr 16, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Together (2025). together-search-bench [Dataset]. https://huggingface.co/datasets/togethercomputer/together-search-bench
    Explore at:
    Dataset updated
    Apr 16, 2025
    Dataset authored and provided by
    Together
    Description

    Together-Search-Bench Dataset

    This dataset is used for delopment and evaluations for Together Open Deep Research. The data is composed of 50 samples from each of the following datasets: simpleqa: basicv8vc/SimpleQA frames: google/frames-benchmark hotpotqa: hotpotqa/hotpot_qa

      License Information
    

    Part of the data derived from hotpotqa by Yang et al., licensed under CC BY-SA 4.0. Modifications include the full dataset subsampling. Part of the data derived from frames byโ€ฆ See the full description on the dataset page: https://huggingface.co/datasets/togethercomputer/together-search-bench.

  19. h

    results

    • huggingface.co
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    smolagents, results [Dataset]. https://huggingface.co/datasets/smolagents/results
    Explore at:
    Dataset authored and provided by
    smolagents
    Description

    smolagents/results dataset hosted on Hugging Face and contributed by the HF Datasets community

  20. h

    smolbench

    • huggingface.co
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Aksel Joonas Reedi, smolbench [Dataset]. https://huggingface.co/datasets/akseljoonas/smolbench
    Explore at:
    Authors
    Aksel Joonas Reedi
    Description

    akseljoonas/smolbench dataset hosted on Hugging Face and contributed by the HF Datasets community

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
basicv8vc, SimpleQA [Dataset]. https://huggingface.co/datasets/basicv8vc/SimpleQA

SimpleQA

d

basicv8vc/SimpleQA

Explore at:
138 scholarly articles cite this dataset (View in Google Scholar)
CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
Authors
basicv8vc
License

MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically

Description

SimpleQA

A factuality benchmark called SimpleQA that measures the ability for language models to answer short, fact-seeking questions.

  Sources

openai/simple-evals Introducing SimpleQA Measuring short-form factuality in large language models

Search
Clear search
Close search
Google apps
Main menu