CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
"*.csv" files contain the single cell gene expression values (log2(tpm+1)) for all genes in each cell from melanoma and squamous cell carcinoma of head and neck (HNSCC) tumors. The cell type and origin of tumor for each cell is also included in "*.csv" files.The "MalignantCellSubtypes.xlsx" defines the tumor subtype."CCLE_RNAseq_rsem_genes_tpm_20180929.zip" is downloaded from CCLE database.
This dataset contains files reconstructing single-cell data presented in 'Reference transcriptomics of porcine peripheral immune cells created through bulk and single-cell RNA sequencing' by Herrera-Uribe & Wiarda et al. 2021. Samples of peripheral blood mononuclear cells (PBMCs) were collected from seven pigs and processed for single-cell RNA sequencing (scRNA-seq) in order to provide a reference annotation of porcine immune cell transcriptomics at enhanced, single-cell resolution. Analysis of single-cell data allowed identification of 36 cell clusters that were further classified into 13 cell types, including monocytes, dendritic cells, B cells, antibody-secreting cells, numerous populations of T cells, NK cells, and erythrocytes. Files may be used to reconstruct the data as presented in the manuscript, allowing for individual query by other users. Scripts for original data analysis are available at https://github.com/USDA-FSEPRU/PorcinePBMCs_bulkRNAseq_scRNAseq. Raw data are available at https://www.ebi.ac.uk/ena/browser/view/PRJEB43826. Funding for this dataset was also provided by NRSP8: National Animal Genome Research Program (https://www.nimss.org/projects/view/mrp/outline/18464). Resources in this dataset:Resource Title: Herrera-Uribe & Wiarda et al. PBMCs - All Cells 10X Format. File Name: PBMC7_AllCells.zipResource Description: Zipped folder containing PBMC counts matrix, gene names, and cell IDs. Files are as follows: matrix of gene counts* (matrix.mtx.gx) gene names (features.tsv.gz) cell IDs (barcodes.tsv.gz) *The ‘raw’ count matrix is actually gene counts obtained following ambient RNA removal. During ambient RNA removal, we specified to calculate non-integer count estimations, so most gene counts are actually non-integer values in this matrix but should still be treated as raw/unnormalized data that requires further normalization/transformation. Data can be read into R using the function Read10X().Resource Title: Herrera-Uribe & Wiarda et al. PBMCs - All Cells Metadata. File Name: PBMC7_AllCells_meta.csvResource Description: .csv file containing metadata for cells included in the final dataset. Metadata columns include: nCount_RNA = the number of transcripts detected in a cell nFeature_RNA = the number of genes detected in a cell Loupe = cell barcodes; correspond to the cell IDs found in the .h5Seurat and 10X formatted objects for all cells prcntMito = percent mitochondrial reads in a cell Scrublet = doublet probability score assigned to a cell seurat_clusters = cluster ID assigned to a cell PaperIDs = sample ID for a cell celltypes = cell type ID assigned to a cellResource Title: Herrera-Uribe & Wiarda et al. PBMCs - All Cells PCA Coordinates. File Name: PBMC7_AllCells_PCAcoord.csvResource Description: .csv file containing first 100 PCA coordinates for cells. Resource Title: Herrera-Uribe & Wiarda et al. PBMCs - All Cells t-SNE Coordinates. File Name: PBMC7_AllCells_tSNEcoord.csvResource Description: .csv file containing t-SNE coordinates for all cells.Resource Title: Herrera-Uribe & Wiarda et al. PBMCs - All Cells UMAP Coordinates. File Name: PBMC7_AllCells_UMAPcoord.csvResource Description: .csv file containing UMAP coordinates for all cells.Resource Title: Herrera-Uribe & Wiarda et al. PBMCs - CD4 T Cells t-SNE Coordinates. File Name: PBMC7_CD4only_tSNEcoord.csvResource Description: .csv file containing t-SNE coordinates for only CD4 T cells (clusters 0, 3, 4, 28). A dataset of only CD4 T cells can be re-created from the PBMC7_AllCells.h5Seurat, and t-SNE coordinates used in publication can be re-assigned using this .csv file.Resource Title: Herrera-Uribe & Wiarda et al. PBMCs - CD4 T Cells UMAP Coordinates. File Name: PBMC7_CD4only_UMAPcoord.csvResource Description: .csv file containing UMAP coordinates for only CD4 T cells (clusters 0, 3, 4, 28). A dataset of only CD4 T cells can be re-created from the PBMC7_AllCells.h5Seurat, and UMAP coordinates used in publication can be re-assigned using this .csv file.Resource Title: Herrera-Uribe & Wiarda et al. PBMCs - Gamma Delta T Cells UMAP Coordinates. File Name: PBMC7_GDonly_UMAPcoord.csvResource Description: .csv file containing UMAP coordinates for only gamma delta T cells (clusters 6, 21, 24, 31). A dataset of only gamma delta T cells can be re-created from the PBMC7_AllCells.h5Seurat, and UMAP coordinates used in publication can be re-assigned using this .csv file.Resource Title: Herrera-Uribe & Wiarda et al. PBMCs - Gamma Delta T Cells t-SNE Coordinates. File Name: PBMC7_GDonly_tSNEcoord.csvResource Description: .csv file containing t-SNE coordinates for only gamma delta T cells (clusters 6, 21, 24, 31). A dataset of only gamma delta T cells can be re-created from the PBMC7_AllCells.h5Seurat, and t-SNE coordinates used in publication can be re-assigned using this .csv file.Resource Title: Herrera-Uribe & Wiarda et al. PBMCs - Gene Annotation Information. File Name: UnfilteredGeneInfo.txtResource Description: .txt file containing gene nomenclature information used to assign gene names in the dataset. 'Name' column corresponds to the name assigned to a feature in the dataset.Resource Title: Herrera-Uribe & Wiarda et al. PBMCs - All Cells H5Seurat. File Name: PBMC7.tarResource Description: .h5Seurat object of all cells in PBMC dataset. File needs to be untarred, then read into R using function LoadH5Seurat().
Table of Contents
Main Description File Descriptions Linked Files Installation and Instructions
This is the Zenodo repository for the manuscript titled "A TCR β chain-directed antibody-fusion molecule that activates and expands subsets of T cells and promotes antitumor activity.". The code included in the file titled marengo_code_for_paper_jan_2023.R
was used to generate the figures from the single-cell RNA sequencing data.
The following libraries are required for script execution:
Seurat scReportoire ggplot2 stringr dplyr ggridges ggrepel ComplexHeatmap
The code can be downloaded and opened in RStudios. The "marengo_code_for_paper_jan_2023.R" contains all the code needed to reproduce the figues in the paper The "Marengo_newID_March242023.rds" file is available at the following address: https://zenodo.org/badge/DOI/10.5281/zenodo.7566113.svg (Zenodo DOI: 10.5281/zenodo.7566113). The "all_res_deg_for_heat_updated_march2023.txt" file contains the unfiltered results from DGE anlaysis, also used to create the heatmap with DGE and volcano plots. The "genes_for_heatmap_fig5F.xlsx" contains the genes included in the heatmap in figure 5F.
This repository contains code for the analysis of single cell RNA-seq dataset. The dataset contains raw FASTQ files, as well as, the aligned files that were deposited in GEO. The "Rdata" or "Rds" file was deposited in Zenodo. Provided below are descriptions of the linked datasets:
Gene Expression Omnibus (GEO) ID: GSE223311(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE223311)
Title: Gene expression profile at single cell level of CD4+ and CD8+ tumor infiltrating lymphocytes (TIL) originating from the EMT6 tumor model from mSTAR1302 treatment. Description: This submission contains the "matrix.mtx", "barcodes.tsv", and "genes.tsv" files for each replicate and condition, corresponding to the aligned files for single cell sequencing data. Submission type: Private. In order to gain access to the repository, you must use a reviewer token (https://www.ncbi.nlm.nih.gov/geo/info/reviewer.html).
Sequence read archive (SRA) repository ID: SRX19088718 and SRX19088719
Title: Gene expression profile at single cell level of CD4+ and CD8+ tumor infiltrating lymphocytes (TIL) originating from the EMT6 tumor model from mSTAR1302 treatment.
Description: This submission contains the raw sequencing or .fastq.gz
files, which are tab delimited text files.
Submission type: Private. In order to gain access to the repository, you must use a reviewer token (https://www.ncbi.nlm.nih.gov/geo/info/reviewer.html).
Zenodo DOI: 10.5281/zenodo.7566113(https://zenodo.org/record/7566113#.ZCcmvC2cbrJ)
Title: A TCR β chain-directed antibody-fusion molecule that activates and expands subsets of T cells and promotes antitumor activity. Description: This submission contains the "Rdata" or ".Rds" file, which is an R object file. This is a necessary file to use the code. Submission type: Restricted Acess. In order to gain access to the repository, you must contact the author.
The code included in this submission requires several essential packages, as listed above. Please follow these instructions for installation:
Ensure you have R version 4.1.2 or higher for compatibility.
Although it is not essential, you can use R-Studios (Version 2022.12.0+353 (2022.12.0+353)) for accessing and executing the code.
marengo_code_for_paper_jan_2023.R Install_Packages.R Marengo_newID_March242023.rds genes_for_heatmap_fig5F.xlsx all_res_deg_for_heat_updated_march2023.txt
You can use the following code to set the working directory in R:
setwd(directory)
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Single cell RNA-seq data generated and reported as part of the manuscript entitled "Dissecting the mechanisms underlying the Cytokine Release Syndrome (CRS) mediated by T Cell Bispecific Antibodies" by Leclercq-Cohen et al 2023. Raw and processed (filtered and annotated) data are provided as AnnData objects which can be directly ingested to reproduce the findings of the paper or for ab initio data reuse: 1- raw.zip provides concatenated raw/unfiltered counts for the 20 samples in the standard Market Exchange Format (MEX) format. 2- 230330_sw_besca2_LowFil_raw.h5ad contains filtered cells and raw counts in the HDF5 format. 3- 221124_sw_besca2_LowFil.annotated.h5ad contains filtered cells and log normalized counts, along with cell type annotation in the HDF5 format.
scRNAseq data generation: Whole blood from 4 donors was treated with 0.2 μg/mL CD20-TCB, or incubated in the absence of CD20- TCB. At baseline (before addition of TCB) and assay endpoints (2, 4, 6, and 20 hrs), blood was collected for total leukocyte isolation using EasySepTM red blood cell depletion reagent (Stemcell). Briefly, cells were counted and processed for single cell RNA sequencing using the BD Rhapsody platform. To load several samples on a single BD Rhapsody cartridge, sample cells were labelled with sample tags (BD Human Single-Cell Multiplexing Kit) following the manufacturer’s protocol prior to pooling. Briefly, 1x106 cells from each sample were re-suspended in 180 μL FBS Stain Buffer (BD, PharMingen) and sample tags were added to the respective samples and incubated for 20 min at RT. After incubation, 2 successive washes were performed by addition of 2 mL stain buffer and centrifugation for 5 min at 300 g. Cells were then re- suspended in 620 μL cold BD Sample Buffer, stained with 3.1 μL of both 2 mM Calcein AM (Thermo Fisher Scientific) and 0.3 mM Draq7 (BD Biosciences) and finally counted on the BD Rhapsody scanner. Samples were then diluted and/or pooled equally in 650 μL cold BD Sample Buffer. The BD Rhapsody cartridges were then loaded with up to 40 000 – 50 000 cells. Single cells were isolated using Single-Cell Capture and cDNA Synthesis with the BD Rhapsody Express Single-Cell Analysis System according to the manufacturer’s recommendations (BD Biosciences). cDNA libraries were prepared using the Whole Transcriptome Analysis Amplification Kit following the BD Rhapsody System mRNA Whole Transcriptome Analysis (WTA) and Sample Tag Library Preparation Protocol (BD Biosciences). Indexed WTA and sample tags libraries were quantified and quality controlled on the Qubit Fluorometer using the Qubit dsDNA HS Assay, and on the Agilent 2100 Bioanalyzer system using the Agilent High Sensitivity DNA Kit. Sequencing was performed on a Novaseq 6000 (Illumina) in paired-end mode (64-8- 58) with Novaseq6000 S2 v1 or Novaseq6000 SP v1.5 reagents kits (100 cycles). scRNAseq data analysis: Sequencing data was processed using the BD Rhapsody Analysis pipeline (v 1.0 https://www.bd.com/documents/guides/user-guides/GMX_BD-Rhapsody-genomics- informatics_UG_EN.pdf) on the Seven Bridges Genomics platform. Briefly, read pairs with low sequencing quality were first removed and the cell label and UMI identified for further quality check and filtering. Valid reads were then mapped to the human reference genome (GRCh38-PhiX-gencodev29) using the aligner Bowtie2 v2.2.9, and reads with the same cell label, same UMI sequence and same gene were collapsed into a single raw molecule while undergoing further error correction and quality checks. Cell labels were filtered with a multi-step algorithm to distinguish those associated with putative cells from those associated with noise. After determining the putative cells, each cell was assigned to the sample of origin through the sample tag (only for cartridges with multiplex loading). Finally, the single-cell gene expression matrices were generated and a metrics summary was provided. After pre-processing with BD’s pipeline, the count matrices and metadata of each sample were aggregated into a single adata object and loaded into the besca v2.3 pipeline for the single cell RNA sequencing analysis (43). First, we filtered low quality cells with less than 200 genes, less than 500 counts or more than 30% of mitochondrial reads. This permissive filtering was used in order to preserve the neutrophils. We further excluded potential multiplets (cells with more than 5,000 genes or 20,000 counts), and genes expressed in less than 30 cells. Normalization, log-transformed UMI counts per 10,000 reads [log(CP10K+1)], was applied before downstream analysis. After normalization, technical variance was removed by regressing out the effects of total UMI counts and percentage of mitochondrial reads, and gene expression was scaled. The 2,507 most variable genes (having a minimum mean expression of 0.0125, a maximum mean expression of 3 and a minimum dispersion of 0.5) were used for principal component analysis. Finally, the first 50 PCs were used as input for calculating the 10 nearest neighbours and the neighbourhood graph was then embedded into the two-dimensional space using the UMAP algorithm at a resolution of 2. Cell type annotation was performed using the Sig-annot semi-automated besca module, which is a signature- based hierarchical cell annotation method. The used signatures, configuration and nomenclature files can be found at https://github.com/bedapub/besca/tree/master/besca/datasets. For more details, please refer to the publication.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Additional file 2: Supplementary Table 2–3. This file contains the list of cell markers in each of scTyper.db (Table S2) and CellMarker DB (Table S3) and detailed information such as identifier, study name, species, cell type, gene symbol, and PMID.
This is the GitHub repository for the single cell RNA sequencing data analysis for the human manuscript. The following essential libraries are required for script execution: Seurat scReportoire ggplot2 dplyr ggridges ggrepel ComplexHeatmap Linked File: -------------------------------------- This repository contains code for the analysis of single cell RNA-seq dataset. The dataset contains raw FASTQ files, as well as, the aligned files that were deposited in GEO. Provided below are descriptions of the linked datasets: 1. Gene Expression Omnibus (GEO) ID: GSE229626 - Title: Gene expression profile at single cell level of human T cells stimulated via antibodies against the T Cell Receptor (TCR) - Description: This submission contains the matrix.mtx
, barcodes.tsv
, and genes.tsv
files for each replicate and condition, corresponding to the aligned files for single cell sequencing data. - Submission type: Private. In order to gain access to the repository, you must use a "reviewer token"(https://www.ncbi.nlm.nih.gov/geo/info/reviewer.html). 2. Sequence read archive (SRA) repository - Title: Gene expression profile at single cell level of human T cells stimulated via antibodies against the T Cell Receptor (TCR) - Description: This submission contains the "raw sequencing" or .fastq.gz
files, which are tab delimited text files. - Submission type: Private. In order to gain access to the repository, you must use a "reviewer token" (https://www.ncbi.nlm.nih.gov/geo/info/reviewer.html). Please note that since the GSE submission is private, the raw data deposited at SRA may not be accessible until the embargo on GSE229626 has been lifted. Installation and Instructions -------------------------------------- The code included in this submission requires several essential packages, as listed above. Please follow these instructions for installation: > Ensure you have R version 4.1.2 or higher for compatibility. > Although it is not essential, you can use R-Studios (Version 2022.12.0+353 (2022.12.0+353)) for accessing and executing the code. The following code can be used to set working directory in R: > setwd(directory) Steps: 1. Download the "Human_code_April2023.R" and "Install_Packages.R" R scripts, and the processed data from GSE229626. 2. Open "R-Studios"(https://www.rstudio.com/tags/rstudio-ide/) or a similar integrated development environment (IDE) for R. 3. Set your working directory to where the following files are located: - Human_code_April2023.R - Install_Packages.R 4. Open the file titled Install_Packages.R
and execute it in R IDE. This script will attempt to install all the necessary pacakges, and its dependencies. 5. Open the Human_code_April2023.R
R script and execute commands as necessary.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Lung endothelial cells from three published scRNA-seq datasets (GSE122960, GSE149878, GSE171668) of healthy subjects and COVID-19 patients were collected for further integrative analyses. The endothelial cells were classified into three sub-groups according to their distinguished expression of IL7R, DKK2, and EDNRB. For differential analysis of gene expression, counts per million of aggregated UMIs in each group were adopted in Wilcoxon rank-sum test.
There is a growing need for integration of “Big Data” into undergraduate biology curricula. Transcriptomics is one venue to examine biology from an informatics perspective. RNA sequencing has largely replaced the use of microarrays for whole genome gene expression studies. Recently, single cell RNA sequencing (scRNAseq) has unmasked population heterogeneity, offering unprecedented views into the inner workings of individual cells. scRNAseq is transforming our understanding of development, cellular identity, cell function, and disease. As a ‘Big Data,’ scRNAseq can be intimidating for students to conceptualize and analyze, yet it plays an increasingly important role in modern biology. To address these challenges, we created an engaging case study that guides students through an exploration of scRNAseq technologies. Students work in groups to explore external resources, manipulate authentic data and experience how single cell RNA transcriptomics can be used for personalized cancer treatment. This five-part case study is intended for upper-level life science majors and graduate students in genetics, bioinformatics, molecular biology, cell biology, biochemistry, biology, and medical genomics courses. The case modules can be completed sequentially, or individual parts can be separately adapted. The first module can also be used as a stand-alone exercise in an introductory biology course. Students need an intermediate mastery of Microsoft Excel but do not need programming skills. Assessment includes both students’ self-assessment of their learning as answers to previous questions are used to progress through the case study and instructor assessment of final answers. This case provides a practical exercise in the use of high-throughput data analysis to explore the molecular basis of cancer at the level of single cells.
https://www.scilifelab.se/data/restricted-access/https://www.scilifelab.se/data/restricted-access/
Data Set DescriptionSingle cell RNA sequencing (Samrt-Seq3) and Whole exome sequencing from multiple regions of individual tumors from Breast Cancer patients and also single cell RNA seq for two ovarian cancer cell lines.The dataset contains raw sequencing data for various high-throughput molecular tests performed on two sample types: tumor samples from two breast cancer patients and cell lines derived from High-grade serous carcinoma Patients. The breast cancer data comes from two patients: patient 1 (BCSA1) has two tumor regions A-B and patient 2 (BCSA2) has five regions(A-E). For a normal sample and each region from each patient Whole Exome Sequencing was performed using Twist Biosciences Human Exome Kit by the SNP&SEQ Technology platform, SciLifeLab, National Genomics Infrastructure Uppsala, Sweden. Also for each patient, EPCAM+ CD45- sorted cells from all the regions where sorted to a 384 well plate, and Smart-Seq3 libraries were prepared at Karolinska Institutet and sequenced at National Genomics Infrastructure Uppsala, Sweden.The HGSOC cell-line data comes from OV2295R2 and TOV2295R cell lines described in Laks et al Cell 2019 Nov 14; 179(5): 1207–1221.e22 doi: 10.1016/j.cell.2019.10.026 . The cell line Smart-Seq3 libraries were prepared from two 384 well plates at Karolinska Institutet and sequenced at National Genomics Infrastructure Uppsala, Sweden.Terms for accessThis dataset is to be used for research on intratumor heterogeneity and subclonal evolution of tumors. To apply for conditional access to the dataset in this publication, please contact datacentre@scilifelab.se.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset details the scRNASeq and TCR-Seq analysis of sorted PD-1+ CD8+ T cells from patients with melanoma treated with checkpoint therapy (anti-PD-1 monotherapy and anti-PD-1 & anti-CTLA-4 combination therapy) at baseline and after the first cycle of therapy. A major publication using this dataset is accessible here: (reference)
*experimental design
Single-cell RNA sequencing was performed using 10x Genomics with feature barcoding technology to multiplex cell samples from different patients undergoing mono or dual therapy so that they can be loaded on one well to reduce costs and minimize technical variability. Hashtag oligomers (oligos) were obtained as purified and already oligo-conjugated in TotalSeq-C format from BioLegend. Cells were thawed, counted and 20 million cells per patient and time point were used for staining. Cells were stained with barcoded antibodies together with a staining solution containing antibodies against CD3, CD4, CD8, PD-1/IgG4 and fixable viability dye (eBioscience) prior to FACS sorting. Barcoded antibody concentrations used were 0.5 µg per million cells, as recommended by the manufacturer (BioLegend) for flow cytometry applications. After staining, cells were washed twice in PBS containing 2% BSA and 0.01% Tween 20, followed by centrifugation (300 xg 5 min at 4 °C) and supernatant exchange. After the final wash, cells were resuspended in PBS and filtered through 40 µm cell strainers and proceeded for sorting. Sorted cells were counted and approximately 75,000 cells were processed through 10x Genomics single-cell V(D)J workflow according to the manufacturer’s instructions. Gene expression, hashing and TCR libraries were pooled to desired quantities to obtain the sequencing depths of 15,000 reads per cell for gene expression libraries and 5,000 reads per cell for hashing and TCR libraries. Libraries were sequenced on a NovaSeq 6000 flow cell in a 2X100 paired-end format.
*extract protocol
PBMCs were thawed, counted and 20 million cells per patient and time point were used for staining. Cells were stained with barcoded antibodies together with a staining solution containing antibodies against CD3, CD4, CD8, PD-1/IgG4 and fixable viability dye (eBioscience) prior to FACS sorting. Barcoded antibody concentrations used were 0.5 µg per million cells, as recommended by the manufacturer (BioLegend) for flow cytometry applications. After staining, cells were washed twice in PBS containing 2% BSA and 0.01% Tween 20, followed by centrifugation (300 xg 5 min at 4 °C) and supernatant exchange. After the final wash, cells were resuspended in PBS and filtered through 40 µm cell strainers and proceeded for sorting. Sorted cells were counted and approximately 75,000 cells were processed through 10x Genomics single-cell V(D)J workflow according to the manufacturer’s instructions.
*library construction protocol
Sorted cells were counted and approximately 75,000 cells were processed through 10x Genomics single-cell V(D)J workflow according to the manufacturer’s instructions. Gene expression, hashing and TCR libraries were pooled to desired quantities to obtain the sequencing depths of 15,000 reads per cell for gene expression libraries and 5,000 reads per cell for hashing and TCR libraries. Libraries were sequenced on a NovaSeq 6000 flow cell in a 2X100 paired-end format.
*library strategy
scRNA-seq and scTCR-seq
*data processing step
Pre-processing of sequencing results to generate count matrices (gene expression and HTO barcode counts) was performed using the 10x genomics Cell Ranger pipeline.
Further processing was done with Seurat (cell and gene filtering, hashtag identification, clustering, differential gene expression analysis based on gene expression).
*genome build/assembly
Alignment was performed using prebuilt Cell Ranger human reference GRCh38.
*processed data files format and content
RNA counts and HTO counts are in sparse matrix format and TCR clonotypes are in csv format.
Datasets were merged and analyzed by Seurat and the analyzed objects are in rds format.
file name |
file checksum |
PD1CD8_160421_filtered_feature_bc_matrix.zip |
da2e006d2b39485fd8cf8701742c6d77 |
PD1CD8_190421_filtered_feature_bc_matrix.zip |
e125fc5031899bba71e1171888d78205 |
PD1CD8_160421_filtered_contig_annotations.csv |
927241805d507204fbe9ef7045d0ccf4 |
PD1CD8_190421_filtered_contig_annotations.csv |
8ca544d27f06e66592b567d3ab86551e |
*processed data file |
antibodies/tags |
PD1CD8_160421_filtered_feature_bc_matrix.zip |
none |
PD1CD8_160421_filtered_feature_bc_matrix.zip |
TotalSeq™-C0251 anti-human Hashtag 1 Antibody - (HASH_1) - M1_base_monotherapy |
PD1CD8_160421_filtered_contig_annotations.csv |
none |
PD1CD8_190421_filtered_feature_bc_matrix.zip |
none |
PD1CD8_190421_filtered_feature_bc_matrix.zip |
TotalSeq™-C0251 anti-human Hashtag 1 Antibody - (HASH_1) - M2_base_monotherapy |
PD1CD8_190421_filtered_contig_annotations.csv |
none |
Database for insights into single cell gene expression profiles during human developmental processes. Interactive database provides DE gene lists in each developmental pathway, t-SNE map, and GO and KEGG enrichment analysis based on these differential genes.
https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
The single-cell analysis system market is experiencing robust growth, driven by advancements in genomics, proteomics, and bioinformatics. The increasing need for personalized medicine and a deeper understanding of complex biological processes at the cellular level are key factors fueling this expansion. Technological innovations, such as microfluidics, next-generation sequencing, and advanced imaging techniques, are continually enhancing the sensitivity and throughput of single-cell analysis, leading to wider adoption across various research and clinical applications. The market is segmented by technology (e.g., flow cytometry, microfluidics, single-cell RNA sequencing), application (e.g., cancer research, immunology, drug discovery), and end-user (e.g., pharmaceutical companies, academic institutions, hospitals). Major players like Sartorius, Agilent, PerkinElmer, BD, Thermo Fisher Scientific, Illumina, and Fluigent are actively engaged in developing and commercializing advanced single-cell analysis systems, driving competition and innovation within the market. The market's substantial growth trajectory is projected to continue throughout the forecast period (2025-2033). While precise figures are dependent on several market dynamics, a conservative estimate suggests a Compound Annual Growth Rate (CAGR) in the range of 15-20% is achievable. This growth will be influenced by factors like increasing government funding for research, rising investments in biotechnology, and growing adoption of single-cell analysis in clinical settings for diagnostics and personalized therapies. However, challenges such as high costs associated with equipment and reagents, the complexity of data analysis, and the need for skilled personnel could potentially moderate market expansion. Nevertheless, the long-term prospects for the single-cell analysis system market remain exceptionally positive, driven by its crucial role in advancing scientific understanding and improving healthcare outcomes.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Single-cell transcriptomes of the entire adult Drosophila.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains all the Seurat objects that were used for generating all the figures in Pal et al. 2021 (https://doi.org/10.15252/embj.2020107333). All the Seurat objects were created under R v3.6.1 using the Seurat package v3.1.1. The detailed information of each object is listed in a table in Chen et al. 2021.
Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
Raw sequencing data to "Comparative Analysis of Single-Cell RNA Sequencing Methods".
https://www.ncbi.nlm.nih.gov/pubmed/28212749
In addition to the GEO submission https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE75790, you can find here raw bam files for UMI-methods tagged with cell barcode and UMI sequences.
MD5 checksum: f10825509952fffd9c4dc0c1dcb9eb8e
https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
Skeletal muscle repair is driven by the coordinated self-renewal and fusion of myogenic stem and progenitor cells. Single-cell gene expression analyses of myogenesis have been hampered by the poor sampling of rare and transient cell states that are critical for muscle repair, and do not inform the spatial context that is important for myogenic differentiation. Here, we demonstrate how large-scale integration of single-cell and spatial transcriptomic data can overcome these limitations. We created a single-cell transcriptomic dataset of mouse skeletal muscle by integration, consensus annotation, and analysis of 23 newly collected scRNAseq datasets and 88 publicly available single-cell (scRNAseq) and single-nucleus (snRNAseq) RNA-sequencing datasets. The resulting dataset includes more than 365,000 cells and spans a wide range of ages, injury, and repair conditions. Together, these data enabled identification of the predominant cell types in skeletal muscle, and resolved cell subtypes, including endothelial subtypes distinguished by vessel-type of origin, fibro/adipogenic progenitors defined by functional roles, and many distinct immune populations. The representation of different experimental conditions and the depth of transcriptome coverage enabled robust profiling of sparsely expressed genes. We built a densely sampled transcriptomic model of myogenesis, from stem cell quiescence to myofiber maturation and identified rare, transitional states of progenitor commitment and fusion that are poorly represented in individual datasets. We performed spatial RNA sequencing of mouse muscle at three time points after injury and used the integrated dataset as a reference to achieve a high-resolution, local deconvolution of cell subtypes. We also used the integrated dataset to explore ligand-receptor co-expression patterns and identify dynamic cell-cell interactions in muscle injury response. We provide a public web tool to enable interactive exploration and visualization of the data. Our work supports the utility of large-scale integration of single-cell transcriptomic data as a tool for biological discovery.
Methods Mice. The Cornell University Institutional Animal Care and Use Committee (IACUC) approved all animal protocols, and experiments were performed in compliance with its institutional guidelines. Adult C57BL/6J mice (mus musculus) were obtained from Jackson Laboratories (#000664; Bar Harbor, ME) and were used at 4-7 months of age. Aged C57BL/6J mice were obtained from the National Institute of Aging (NIA) Rodent Aging Colony and were used at 20 months of age. For new scRNAseq experiments, female mice were used in each experiment.
Mouse injuries and single-cell isolation. To induce muscle injury, both tibialis anterior (TA) muscles of old (20 months) C57BL/6J mice were injected with 10 µl of notexin (10 µg/ml; Latoxan; France). At 0, 1, 2, 3.5, 5, or 7 days post-injury (dpi), mice were sacrificed and TA muscles were collected and processed independently to generate single-cell suspensions. Muscles were digested with 8 mg/ml Collagenase D (Roche; Switzerland) and 10 U/ml Dispase II (Roche; Switzerland), followed by manual dissociation to generate cell suspensions. Cell suspensions were sequentially filtered through 100 and 40 μm filters (Corning Cellgro #431752 and #431750) to remove debris. Erythrocytes were removed through incubation in erythrocyte lysis buffer (IBI Scientific #89135-030).
Single-cell RNA-sequencing library preparation. After digestion, single-cell suspensions were washed and resuspended in 0.04% BSA in PBS at a concentration of 106 cells/ml. Cells were counted manually with a hemocytometer to determine their concentration. Single-cell RNA-sequencing libraries were prepared using the Chromium Single Cell 3’ reagent kit v3 (10x Genomics, PN-1000075; Pleasanton, CA) following the manufacturer’s protocol. Cells were diluted into the Chromium Single Cell A Chip to yield a recovery of 6,000 single-cell transcriptomes. After preparation, libraries were sequenced using on a NextSeq 500 (Illumina; San Diego, CA) using 75 cycle high output kits (Index 1 = 8, Read 1 = 26, and Read 2 = 58). Details on estimated sequencing saturation and the number of reads per sample are shown in Sup. Data 1.
Spatial RNA sequencing library preparation. Tibialis anterior muscles of adult (5 mo) C57BL6/J mice were injected with 10µl notexin (10 µg/ml) at 2, 5, and 7 days prior to collection. Upon collection, tibialis anterior muscles were isolated, embedded in OCT, and frozen fresh in liquid nitrogen. Spatially tagged cDNA libraries were built using the Visium Spatial Gene Expression 3’ Library Construction v1 Kit (10x Genomics, PN-1000187; Pleasanton, CA) (Fig. S7). Optimal tissue permeabilization time for 10 µm thick sections was found to be 15 minutes using the 10x Genomics Visium Tissue Optimization Kit (PN-1000193). H&E stained tissue sections were imaged using Zeiss PALM MicroBeam laser capture microdissection system and the images were stitched and processed using Fiji ImageJ software. cDNA libraries were sequenced on an Illumina NextSeq 500 using 150 cycle high output kits (Read 1=28bp, Read 2=120bp, Index 1=10bp, and Index 2=10bp). Frames around the capture area on the Visium slide were aligned manually and spots covering the tissue were selected using Loop Browser v4.0.0 software (10x Genomics). Sequencing data was then aligned to the mouse reference genome (mm10) using the spaceranger v1.0.0 pipeline to generate a feature-by-spot-barcode expression matrix (10x Genomics).
Download and alignment of single-cell RNA sequencing data. For all samples available via SRA, parallel-fastq-dump (github.com/rvalieris/parallel-fastq-dump) was used to download raw .fastq files. Samples which were only available as .bam files were converted to .fastq format using bamtofastq from 10x Genomics (github.com/10XGenomics/bamtofastq). Raw reads were aligned to the mm10 reference using cellranger (v3.1.0).
Preprocessing and batch correction of single-cell RNA sequencing datasets. First, ambient RNA signal was removed using the default SoupX (v1.4.5) workflow (autoEstCounts and adjustCounts; github.com/constantAmateur/SoupX). Samples were then preprocessed using the standard Seurat (v3.2.1) workflow (NormalizeData, ScaleData, FindVariableFeatures, RunPCA, FindNeighbors, FindClusters, and RunUMAP; github.com/satijalab/seurat). Cells with fewer than 750 features, fewer than 1000 transcripts, or more than 30% of unique transcripts derived from mitochondrial genes were removed. After preprocessing, DoubletFinder (v2.0) was used to identify putative doublets in each dataset, individually. BCmvn optimization was used for PK parameterization. Estimated doublet rates were computed by fitting the total number of cells after quality filtering to a linear regression of the expected doublet rates published in the 10x Chromium handbook. Estimated homotypic doublet rates were also accounted for using the modelHomotypic function. The default PN value (0.25) was used. Putative doublets were then removed from each individual dataset. After preprocessing and quality filtering, we merged the datasets and performed batch-correction with three tools, independently- Harmony (github.com/immunogenomics/harmony) (v1.0), Scanorama (github.com/brianhie/scanorama) (v1.3), and BBKNN (github.com/Teichlab/bbknn) (v1.3.12). We then used Seurat to process the integrated data. After initial integration, we removed the noisy cluster and re-integrated the data using each of the three batch-correction tools.
Cell type annotation. Cell types were determined for each integration method independently. For Harmony and Scanorama, dimensions accounting for 95% of the total variance were used to generate SNN graphs (Seurat::FindNeighbors). Louvain clustering was then performed on the output graphs (including the corrected graph output by BBKNN) using Seurat::FindClusters. A clustering resolution of 1.2 was used for Harmony (25 initial clusters), BBKNN (28 initial clusters), and Scanorama (38 initial clusters). Cell types were determined based on expression of canonical genes (Fig. S3). Clusters which had similar canonical marker gene expression patterns were merged.
Pseudotime workflow. Cells were subset based on the consensus cell types between all three integration methods. Harmony embedding values from the dimensions accounting for 95% of the total variance were used for further dimensional reduction with PHATE, using phateR (v1.0.4) (github.com/KrishnaswamyLab/phateR).
Deconvolution of spatial RNA sequencing spots. Spot deconvolution was performed using the deconvolution module in BayesPrism (previously known as “Tumor microEnvironment Deconvolution”, TED, v1.0; github.com/Danko-Lab/TED). First, myogenic cells were re-labeled, according to binning along the first PHATE dimension, as “Quiescent MuSCs” (bins 4-5), “Activated MuSCs” (bins 6-7), “Committed Myoblasts” (bins 8-10), and “Fusing Myoctes” (bins 11-18). Culture-associated muscle stem cells were ignored and myonuclei labels were retained as “Myonuclei (Type IIb)” and “Myonuclei (Type IIx)”. Next, highly and differentially expressed genes across the 25 groups of cells were identified with differential gene expression analysis using Seurat (FindAllMarkers, using Wilcoxon Rank Sum Test; results in Sup. Data 2). The resulting genes were filtered based on average log2-fold change (avg_logFC > 1) and the percentage of cells within the cluster which express each gene (pct.expressed > 0.5), yielding 1,069 genes. Mitochondrial and ribosomal protein genes were also removed from this list, in line with recommendations in the BayesPrism vignette. For each of the cell types, mean raw counts were calculated across the 1,069 genes to generate a gene expression profile for BayesPrism. Raw counts for each spot were then passed to the run.Ted function, using
https://www.scilifelab.se/data/restricted-access/https://www.scilifelab.se/data/restricted-access/
This dataset contains single cell RNA sequencing data (fastq-files) from twelve NPM1-positive AML-samples. The single cell libraries were constructed from viably frozen cells from bone marrow (n=8) or peripheral blood (n=4) using the Chromium Single Cell 3' Library & Gel Bead Kit v3 (10X genomics) and sequenced on a Novaseq 6000 or NextSeq 500.
Single Cell Analysis Market Size 2025-2029
The single cell analysis market size is forecast to increase by USD 4.63 billion at a CAGR of 18.2% between 2024 and 2029.
The market is experiencing significant growth due to the increasing prevalence of cancer and the rising incidence of chronic diseases and genetic disorders. This market is driven by the need for more precise and personalized diagnostic and therapeutic approaches, which single cell analysis provides. However, the high cost of single cell analysis products remains a major challenge for market expansion, limiting accessibility to this technology for many healthcare providers and research institutions. Despite this, the market's potential is vast, with opportunities in various end-user industries such as pharmaceuticals, biotechnology, and academia. This approach, which combines data from genomics, transcriptomics, proteomics, and metabolomics, among others, can provide valuable insights into cellular function and behavior.
Companies seeking to capitalize on this market's growth should focus on developing cost-effective solutions while maintaining the high-quality standards required for single cell analysis. Additionally, collaborations and partnerships with key opinion leaders and research institutions can help establish market presence and credibility. Overall, the market presents a compelling opportunity for companies to make a significant impact on the healthcare industry by enabling more accurate diagnoses and personalized treatments.
What will be the Size of the Single Cell Analysis Market during the forecast period?
Request Free Sample
Single-cell analysis, a cutting-edge technology, is revolutionizing the healthcare industry by enabling a more comprehensive knowledge of complex biological systems. This advanced approach allows for the examination of individual cells, providing insights into clinical trial design, tumor microenvironment, and patient stratification. Technologies such as single-cell spatial transcriptomics, microfluidic chips, and droplet microfluidics facilitate the analysis of cell diameter, morphology, immune cell infiltration, and cell cycle phase. Furthermore, single-cell lineage tracing, immune profiling, developmental trajectory analysis, and spatial proteomics offer valuable information on circulating tumor cells and tumor heterogeneity. Single-cell analysis software, genome-wide association studies, and epigenetic analysis contribute to the interpretation of vast amounts of data generated.
Drug response prediction, cell interactions, and biomarker validation are additional applications of this technology. Single-cell analysis services and consulting firms facilitate the implementation of this technology in research and clinical settings. Protein expression profiling, encapsulation, and cell-free DNA analysis through liquid biopsy further expand the scope of single-cell analysis. This technology's potential is vast, offering significant advancements in diagnostics, therapeutics, and fundamental research.
How is this Single Cell Analysis Industry segmented?
The single cell analysis industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.
Product
Consumables
Instrument
Type
Human cells
Animal cells
Technique
Flow cytometry
Next-generation sequencing (NGS)
Polymerase chain reaction (PCR)
Microscopy
Mass spectrometry
Application
Research
Medical
Geography
North America
US
Canada
Europe
France
Germany
Italy
UK
APAC
China
India
Japan
South Korea
By Product Insights
The consumables segment is estimated to witness significant growth during the forecast period. The market encompasses various technologies and applications, including cell stress analysis, omics data integration, cellular heterogeneity, cell engineering, single-cell immunophenotyping, single-cell DNA sequencing, cell proliferation assays, systems biology, precision medicine, cellular metabolism, single-cell proteomics, gene editing, imaging cytometry, academic research, mass cytometry, single-cell barcoding, single-cell spatial analysis, microarray analysis, single-cell sequencing, machine learning, biopharmaceutical industry, data visualization, next-generation sequencing, developmental biology, biotechnology industry, clinical diagnostics, cell cycle analysis, high-throughput screening, cell signaling, regenerative medicine, cell line development, cancer research, flow cytometry, drug discovery, stem cell research, cell culture, cell differentiation assays, biomarker discovery, personalized medicine, single-cell RNA sequencing, single-cell methylation analysis, single-cell data analysis, multiplexed analysi
http://www.apache.org/licenses/LICENSE-2.0http://www.apache.org/licenses/LICENSE-2.0
Codes and processed data to reproduce the analysis discussed in:
Wegmann et Al., CellSIUS provides sensitive and specific detection of rare cell
populations from complex single cell RNA-seq data, Genome Biology 2019 (Accepted)
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
"*.csv" files contain the single cell gene expression values (log2(tpm+1)) for all genes in each cell from melanoma and squamous cell carcinoma of head and neck (HNSCC) tumors. The cell type and origin of tumor for each cell is also included in "*.csv" files.The "MalignantCellSubtypes.xlsx" defines the tumor subtype."CCLE_RNAseq_rsem_genes_tpm_20180929.zip" is downloaded from CCLE database.