5 datasets found
  1. g

    MOCK Big Five Inventory dataset (German metadata demo)

    • rubenarslan.github.io
    • cran.r-project.org
    • +3more
    Updated Jun 1, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ruben Arslan (2016). MOCK Big Five Inventory dataset (German metadata demo) [Dataset]. http://doi.org/10.5281/zenodo.1326520
    Explore at:
    Dataset updated
    Jun 1, 2016
    Dataset provided by
    MPI Human Development, Berlin
    Authors
    Ruben Arslan
    Time period covered
    2016
    Area covered
    Germany, Goettingen
    Variables measured
    age, ended, created, expired, session, modified, BFIK_open, BFIK_agree, BFIK_consc, BFIK_extra, and 20 more
    Description

    a small mock Big Five Inventory dataset

    Table of variables

    This table contains variable names, labels, and number of missing values. See the complete codebook for more.

    namelabeln_missing
    sessionNA0
    createduser first opened survey0
    modifieduser last edited survey0
    endeduser finished survey0
    expiredNA28
    BFIK_open_2Ich bin tiefsinnig, denke gerne über Sachen nach.0
    BFIK_agree_4RIch kann mich schroff und abweisend anderen gegenüber verhalten.0
    BFIK_extra_2Ich bin begeisterungsfähig und kann andere leicht mitreißen.0
    BFIK_agree_1RIch neige dazu, andere zu kritisieren.0
    BFIK_open_1Ich bin vielseitig interessiert.0
    BFIK_neuro_2RIch bin entspannt, lasse mich durch Stress nicht aus der Ruhe bringen.0
    BFIK_consc_3Ich bin tüchtig und arbeite flott.0
    BFIK_consc_4Ich mache Pläne und führe sie auch durch.0
    BFIK_consc_2RIch bin bequem, neige zur Faulheit.0
    BFIK_agree_3RIch kann mich kalt und distanziert verhalten.0
    BFIK_extra_3RIch bin eher der "stille Typ", wortkarg.0
    BFIK_neuro_3Ich mache mir viele Sorgen.0
    BFIK_neuro_4Ich werde leicht nervös und unsicher.0
    BFIK_agree_2Ich schenke anderen leicht Vertrauen, glaube an das Gute im Menschen.0
    BFIK_consc_1Ich erledige Aufgaben gründlich.0
    BFIK_open_4Ich schätze künstlerische und ästhetische Eindrücke.0
    BFIK_extra_4Ich gehe aus mir heraus, bin gesellig.0
    BFIK_extra_1RIch bin eher zurückhaltend, reserviert.0
    BFIK_open_3Ich habe eine aktive Vorstellungskraft, bin phantasievoll.0
    BFIK_agree4 BFIK_agree items aggregated by aggregation_function0
    BFIK_open4 BFIK_open items aggregated by aggregation_function0
    BFIK_consc4 BFIK_consc items aggregated by aggregation_function0
    BFIK_extra4 BFIK_extra items aggregated by aggregation_function0
    BFIK_neuro3 BFIK_neuro items aggregated by aggregation_function0
    ageAlter0

    Note

    This dataset was automatically described using the codebook R package (version 0.9.5).

  2. g

    MOCK Qualtrics dataset

    • rubenarslan.github.io
    • cran.r-universe.dev
    Updated Aug 1, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ruben Arslan (2018). MOCK Qualtrics dataset [Dataset]. http://doi.org/10.5281/zenodo.1326520
    Explore at:
    Dataset updated
    Aug 1, 2018
    Dataset provided by
    MPI Human Development, Berlin
    Authors
    Ruben Arslan
    Time period covered
    2018
    Area covered
    Nowhere
    Variables measured
    Q7, Q10, ResponseSet
    Description

    a MOCK dataset used to show how to import Qualtrics metadata into the codebook R package

    Table of variables

    This table contains variable names, labels, and number of missing values. See the complete codebook for more.

    namelabeln_missing
    ResponseSetNA0
    Q7NA0
    Q10NA0

    Note

    This dataset was automatically described using the codebook R package (version 0.9.5).

  3. g

    Data from: An evolutionary perspective on intergroup dating bias

    • rubenarslan.github.io
    Updated Jan 24, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2018). An evolutionary perspective on intergroup dating bias [Dataset]. https://rubenarslan.github.io/codebook_gallery/intergroup_dating.html
    Explore at:
    https://www.loc.gov/preservation/digital/formats/fdd/fdd000469.shtmlAvailable download formats
    Dataset updated
    Jan 24, 2018
    Time period covered
    2018
    Variables measured
    HRT, age, vsc, Cvsc, BehVig, MC4age, gender, race_1, race_2, race_3, and 135 more
    Description

    Download link

    Open Science Framework

    Table of variables

    This table contains variable names, labels, their central tendencies and other attributes.

    namelabeldata_typeorderedvalue_labelsscale_item_namesmissingcompletenemptyn_uniquetop_countsmedianminmaxmeansdp0p25p50p75p100histformat.spssdisplay_width
    startdateStart timenumericNANANA420022006NANANANANANA1.4e+105.6e+071.4e+101.4e+101.4e+101.4e+101.4e+10▆▁▁▁▁▁▁▇F8.12NA
    enddateEnd timenumericNANANA420022006NANANANANANA1.4e+105.6e+071.4e+101.4e+101.4e+101.4e+101.4e+10▆▁▁▁▁▁▁▇F8.12NA
    ConsentAgreeConsent to participatenumericNANANA1019962006NANANANANANA1011111▁▁▁▇▁▁▁▁F8.0NA
    keepdropExclusion for all critieria except conception risknumericNA0. keep, - 1. dropNA320032006NANANANANANA0.590.4900111▆▁▁▁▁▁▁▇F8.0NA
    conriskkeepdropExclusion for conception risknumericNA0. keep, - 1. dropNA620002006NANANANANANA0.640.4800111▅▁▁▁▁▁▁▇F8.0NA
    targetincomeIncome manipulationnumericNA0. low, - 1. highNA10539532006NANANANANANA0.50.500111▇▁▁▁▁▁▁▇F8.0NA
    targetformidabilityFormidability manipulationnumericNA0. low, - 1. highNA10539532006NANANANANANA0.50.500111▇▁▁▁▁▁▁▇F8.0NA
    targetgroupstatusGroup status manipulationnumericNA0. ingroup, - 1. outgroupNA
  4. g

    How alluring are dark personalities? The Dark Triad and attractiveness in...

    • rubenarslan.github.io
    Updated Oct 7, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Emanuel Jauk (2015). How alluring are dark personalities? The Dark Triad and attractiveness in speed dating [Dataset]. https://rubenarslan.github.io/codebook/articles/codebook_sav.html
    Explore at:
    https://www.loc.gov/preservation/digital/formats/fdd/fdd000469.shtmlAvailable download formats
    Dataset updated
    Oct 7, 2015
    Dataset provided by
    Karl‐Franzens‐Universität Graz, Austria
    Authors
    Emanuel Jauk
    Time period covered
    2015
    Area covered
    Graz, Austria
    Variables measured
    DG, BMI, age, sex, date, PA_R1, PA_R2, PA_R3, PA_R4, PA_avg, and 50 more
    Description

    The data to this speed dating study comes in two different formats: Personwise (one record for each individual) and dyadic (pairwise; one record for each date). The respective SPSS files are named "DarkTriadDate_person.sav" and "DarkTriadDate_dyad.sav".

    Download link

    Open Science Framework

    Personwise datafile

    The personwise datafile contains individual differences variables and perceiver and target effects according to the social relations model. These are centered marginal means that were calculated according to the formulae provided by Kenny, Kashy, and Cook (2006). These effects are not (!) based on multilevel analyses.

    Preprocessing

    All rating variables (i.e., actual choice, friendship, short-term relationship etc.) were corrected for prior acquaintance, which means that dates wih prior acquaintance were excluded (set to missing) on a dyadic basis.

    Variables are labeled in SPSS.

    A list of important abbreviations, prefixes and suffixes:

    • _acq = acquaintance (i.e., variables with this suffix are controlled for prior * acquaintance)
    • avg = average
    • _rat = rating variable
    • _z = z-standardized score
    • BC = booty call
    • DG = dating group (three groups in this study)
    • FIPI = five item personality inventory
    • FS = friendship
    • FWB = friends-with-benefits
    • Int = Intelligence
    • Like = Likeability
    • LTR = long-term relationship
    • MACHIV = mach-iv machiavellianism questionnaire
    • N, E, O, A, C = Big5
    • NPI = narcissistic personality inventory
    • ONS = one night stand
    • P = perceiver
    • PA = physical attractiveness
    • PercEff = perceiver effect
    • SD = speed dating
    • SRM = social relations model
    • SRP = self-report psychopathy scale
    • STR = short-term relationship
    • T = target
    • TargEff = target effect

    Table of variables

    This table contains variable names, labels, and number of missing values. See the complete codebook for more.

    [truncated]

    Note

    This dataset was automatically described using the codebook R package (version 0.9.5).

  5. g

    s1_demo

    • rubenarslan.github.io
    Updated Jun 11, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2020). s1_demo [Dataset]. https://rubenarslan.github.io/gocd2/2_codebook.html
    Explore at:
    Dataset updated
    Jun 11, 2020
    Variables measured
    age, ended, short, gender, height, weight, created, expired, session, lab_code, and 104 more
    Description

    The dataset has N=1660 rows and 114 columns. 0 rows have no missing values on any column.

    Table of variables

    This table contains variable names, labels, and number of missing values. See the complete codebook for more.

    [truncated]

    Note

    This dataset was automatically described using the codebook R package (version 0.9.3).

  6. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Ruben Arslan (2016). MOCK Big Five Inventory dataset (German metadata demo) [Dataset]. http://doi.org/10.5281/zenodo.1326520

MOCK Big Five Inventory dataset (German metadata demo)

Explore at:
2 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Jun 1, 2016
Dataset provided by
MPI Human Development, Berlin
Authors
Ruben Arslan
Time period covered
2016
Area covered
Germany, Goettingen
Variables measured
age, ended, created, expired, session, modified, BFIK_open, BFIK_agree, BFIK_consc, BFIK_extra, and 20 more
Description

a small mock Big Five Inventory dataset

Table of variables

This table contains variable names, labels, and number of missing values. See the complete codebook for more.

namelabeln_missing
sessionNA0
createduser first opened survey0
modifieduser last edited survey0
endeduser finished survey0
expiredNA28
BFIK_open_2Ich bin tiefsinnig, denke gerne über Sachen nach.0
BFIK_agree_4RIch kann mich schroff und abweisend anderen gegenüber verhalten.0
BFIK_extra_2Ich bin begeisterungsfähig und kann andere leicht mitreißen.0
BFIK_agree_1RIch neige dazu, andere zu kritisieren.0
BFIK_open_1Ich bin vielseitig interessiert.0
BFIK_neuro_2RIch bin entspannt, lasse mich durch Stress nicht aus der Ruhe bringen.0
BFIK_consc_3Ich bin tüchtig und arbeite flott.0
BFIK_consc_4Ich mache Pläne und führe sie auch durch.0
BFIK_consc_2RIch bin bequem, neige zur Faulheit.0
BFIK_agree_3RIch kann mich kalt und distanziert verhalten.0
BFIK_extra_3RIch bin eher der "stille Typ", wortkarg.0
BFIK_neuro_3Ich mache mir viele Sorgen.0
BFIK_neuro_4Ich werde leicht nervös und unsicher.0
BFIK_agree_2Ich schenke anderen leicht Vertrauen, glaube an das Gute im Menschen.0
BFIK_consc_1Ich erledige Aufgaben gründlich.0
BFIK_open_4Ich schätze künstlerische und ästhetische Eindrücke.0
BFIK_extra_4Ich gehe aus mir heraus, bin gesellig.0
BFIK_extra_1RIch bin eher zurückhaltend, reserviert.0
BFIK_open_3Ich habe eine aktive Vorstellungskraft, bin phantasievoll.0
BFIK_agree4 BFIK_agree items aggregated by aggregation_function0
BFIK_open4 BFIK_open items aggregated by aggregation_function0
BFIK_consc4 BFIK_consc items aggregated by aggregation_function0
BFIK_extra4 BFIK_extra items aggregated by aggregation_function0
BFIK_neuro3 BFIK_neuro items aggregated by aggregation_function0
ageAlter0

Note

This dataset was automatically described using the codebook R package (version 0.9.5).

Search
Clear search
Close search
Google apps
Main menu