Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
The dataset represents synthetic traffic data for a certain location over a one-year period. It includes information about the traffic volume, weather conditions, and special events that may affect traffic.
Features:
Timestamp: The date and time of the observation.Weather: The weather condition at the time of the observation (e.g., Clear, Cloudy, Rain, Snow).
Events: A binary variable indicating whether there was a special event affecting traffic at the time of the observation (True or False).
Traffic Volume: The volume of traffic at the location at the time of the observation.
The dataset is intended for use in analyzing traffic patterns and trends, as well as for developing and testing models related to traffic prediction and management.
Traffic Analysis Zones (TAZ) for the COG/TPB Modeled Region from Metropolitan Washington Council of Governments. The TAZ dataset is used to join several types of zone-based transportation modeling data. For more information, visit https://plandc.dc.gov/page/traffic-analysis-zone.
Unlock the Potential of Your Web Traffic with Advanced Data Resolution
In the digital age, understanding and leveraging web traffic data is crucial for businesses aiming to thrive online. Our pioneering solution transforms anonymous website visits into valuable B2B and B2C contact data, offering unprecedented insights into your digital audience. By integrating our unique tag into your website, you unlock the capability to convert 25-50% of your anonymous traffic into actionable contact rows, directly deposited into an S3 bucket for your convenience. This process, known as "Web Traffic Data Resolution," is at the forefront of digital marketing and sales strategies, providing a competitive edge in understanding and engaging with your online visitors.
Comprehensive Web Traffic Data Resolution Our product stands out by offering a robust solution for "Web Traffic Data Resolution," a process that demystifies the identities behind your website traffic. By deploying a simple tag on your site, our technology goes to work, analyzing visitor behavior and leveraging proprietary data matching techniques to reveal the individuals and businesses behind the clicks. This innovative approach not only enhances your data collection but does so with respect for privacy and compliance standards, ensuring that your business gains insights ethically and responsibly.
Deep Dive into Web Traffic Data At the core of our solution is the sophisticated analysis of "Web Traffic Data." Our system meticulously collects and processes every interaction on your site, from page views to time spent on each section. This data, once anonymous and perhaps seen as abstract numbers, is transformed into a detailed ledger of potential leads and customer insights. By understanding who visits your site, their interests, and their contact information, your business is equipped to tailor marketing efforts, personalize customer experiences, and streamline sales processes like never before.
Benefits of Our Web Traffic Data Resolution Service Enhanced Lead Generation: By converting anonymous visitors into identifiable contact data, our service significantly expands your pool of potential leads. This direct enhancement of your lead generation efforts can dramatically increase conversion rates and ROI on marketing campaigns.
Targeted Marketing Campaigns: Armed with detailed B2B and B2C contact data, your marketing team can create highly targeted and personalized campaigns. This precision in marketing not only improves engagement rates but also ensures that your messaging resonates with the intended audience.
Improved Customer Insights: Gaining a deeper understanding of your web traffic enables your business to refine customer personas and tailor offerings to meet market demands. These insights are invaluable for product development, customer service improvement, and strategic planning.
Competitive Advantage: In a digital landscape where understanding your audience can make or break your business, our Web Traffic Data Resolution service provides a significant competitive edge. By accessing detailed contact data that others in your industry may overlook, you position your business as a leader in customer engagement and data-driven strategies.
Seamless Integration and Accessibility: Our solution is designed for ease of use, requiring only the placement of a tag on your website to start gathering data. The contact rows generated are easily accessible in an S3 bucket, ensuring that you can integrate this data with your existing CRM systems and marketing tools without hassle.
How It Works: A Closer Look at the Process Our Web Traffic Data Resolution process is streamlined and user-friendly, designed to integrate seamlessly with your existing website infrastructure:
Tag Deployment: Implement our unique tag on your website with simple instructions. This tag is lightweight and does not impact your site's loading speed or user experience.
Data Collection and Analysis: As visitors navigate your site, our system collects web traffic data in real-time, analyzing behavior patterns, engagement metrics, and more.
Resolution and Transformation: Using advanced data matching algorithms, we resolve the collected web traffic data into identifiable B2B and B2C contact information.
Data Delivery: The resolved contact data is then securely transferred to an S3 bucket, where it is organized and ready for your access. This process occurs daily, ensuring you have the most up-to-date information at your fingertips.
Integration and Action: With the resolved data now in your possession, your business can take immediate action. From refining marketing strategies to enhancing customer experiences, the possibilities are endless.
Security and Privacy: Our Commitment Understanding the sensitivity of web traffic data and contact information, our solution is built with security and privacy at its core. We adhere to strict data protection regulat...
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset is designed for urban traffic flow prediction and includes temporal, spatial, and categorical features essential for analyzing traffic patterns.
Key Features: Timestamp: Records the exact date and time in 15-minute intervals, enabling the modeling of temporal dependencies. Location: Identifies the traffic sensor locations (e.g., Sensor_01, Sensor_02), capturing spatial variability. Vehicle_Count: Represents the number of vehicles detected by sensors during each interval. Vehicle_Speed: Measures the average speed of vehicles in km/h, indicating traffic conditions. Congestion_Level: An ordinal variable representing traffic congestion on a scale (e.g., 0 for no congestion, 5 for high congestion). Peak_Off_Peak: Categorical data distinguishing between peak and off-peak hours for better contextual analysis. Target_Vehicle_Count: The predicted vehicle count for the subsequent time interval, serving as the target variable for predictive modeling. Data Overview: Rows: 200 Columns: 7 Temporal Coverage: 2 days and 15 minutes intervals, providing high-resolution data for short-term prediction.
Web traffic statistics for the several City-Parish websites, brla.gov, city.brla.gov, Red Stick Ready, GIS, Open Data etc. Information provided by Google Analytics.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Code:
Packet_Features_Generator.py & Features.py
To run this code:
pkt_features.py [-h] -i TXTFILE [-x X] [-y Y] [-z Z] [-ml] [-s S] -j
-h, --help show this help message and exit -i TXTFILE input text file -x X Add first X number of total packets as features. -y Y Add first Y number of negative packets as features. -z Z Add first Z number of positive packets as features. -ml Output to text file all websites in the format of websiteNumber1,feature1,feature2,... -s S Generate samples using size s. -j
Purpose:
Turns a text file containing lists of incomeing and outgoing network packet sizes into separate website objects with associative features.
Uses Features.py to calcualte the features.
startMachineLearning.sh & machineLearning.py
To run this code:
bash startMachineLearning.sh
This code then runs machineLearning.py in a tmux session with the nessisary file paths and flags
Options (to be edited within this file):
--evaluate-only to test 5 fold cross validation accuracy
--test-scaling-normalization to test 6 different combinations of scalers and normalizers
Note: once the best combination is determined, it should be added to the data_preprocessing function in machineLearning.py for future use
--grid-search to test the best grid search hyperparameters - note: the possible hyperparameters must be added to train_model under 'if not evaluateOnly:' - once best hyperparameters are determined, add them to train_model under 'if evaluateOnly:'
Purpose:
Using the .ml file generated by Packet_Features_Generator.py & Features.py, this program trains a RandomForest Classifier on the provided data and provides results using cross validation. These results include the best scaling and normailzation options for each data set as well as the best grid search hyperparameters based on the provided ranges.
Data
Encrypted network traffic was collected on an isolated computer visiting different Wikipedia and New York Times articles, different Google search queres (collected in the form of their autocomplete results and their results page), and different actions taken on a Virtual Reality head set.
Data for this experiment was stored and analyzed in the form of a txt file for each experiment which contains:
First number is a classification number to denote what website, query, or vr action is taking place.
The remaining numbers in each line denote:
The size of a packet,
and the direction it is traveling.
negative numbers denote incoming packets
positive numbers denote outgoing packets
Figure 4 Data
This data uses specific lines from the Virtual Reality.txt file.
The action 'LongText Search' refers to a user searching for "Saint Basils Cathedral" with text in the Wander app.
The action 'ShortText Search' refers to a user searching for "Mexico" with text in the Wander app.
The .xlsx and .csv file are identical
Each file includes (from right to left):
The origional packet data,
each line of data organized from smallest to largest packet size in order to calculate the mean and standard deviation of each packet capture,
and the final Cumulative Distrubution Function (CDF) caluclation that generated the Figure 4 Graph.
At Echo, our dedication to data curation is unmatched; we focus on providing our clients with an in-depth picture of a physical location based on activity in and around a point of interest over time. Our dataset empowers you to explore the “what” by allowing you to dig deeper into customer movement behaviors, eliminate gaps in your trade area and discover untapped potential. Leverage Echo's Activity datasets to identify new growth opportunities and gain a competitive advantage.
This sample of our Area Activity data provides you insights into the estimated total unique visitors and visits in an area. This helps you understand frequentation dynamics over time, identify emerging trends in people movements and measure the impact of external factors on how people move across a city.
Additional Information: - Understand the actual movement patterns of consumers without using PII data, gaining a 360-degree consumer view. Complement your online behavior knowledge with actual offline actions, and better attribute intent based on real-world behaviors. - Echo collects, cleans and updates its footfall on a daily basis. Normalization of the data occurs on a monthly basis. - We provide data aggregation on a weekly, monthly and quarterly basis. - Information about our country offering and data schema can be found here:
1) Data Schema: https://docs.echo-analytics.com/activity/data-schema
2) Country Availability: https://docs.echo-analytics.com/activity/country-coverage
3) Methodology: https://docs.echo-analytics.com/activity/methodology
Echo's commitment to customer service is evident in our exceptional data quality and dedicated team, providing 360° support throughout your location intelligence journey. We handle the complex tasks to deliver analysis-ready datasets to you.
Business Needs: 1. Site Selection: Leverage footfall data to identify the best location to open a new store. By analyzing areas with high footfall you can select sites that are likely to attract more customers. 2. Urban Planning Development: City planners can use footfall data to optimize the layout and infrastructure of urban areas, guide the development of commercial areas by indicating where pedestrian traffic is heaviest, and aid in traffic management and safety measures. 3. Real Estate Investment: Leverage footfall data to identify lucrative investment opportunities and optimize property management by analyzing pedestrian traffic patterns.
https://www.marketresearchforecast.com/privacy-policyhttps://www.marketresearchforecast.com/privacy-policy
The global website visitor tracking software market is experiencing robust growth, driven by the increasing need for businesses to understand online customer behavior and optimize their digital strategies. The market, estimated at $5 billion in 2025, is projected to expand at a Compound Annual Growth Rate (CAGR) of 15% from 2025 to 2033, reaching approximately $15 billion by 2033. This expansion is fueled by several key factors, including the rising adoption of digital marketing strategies, the growing importance of data-driven decision-making, and the increasing sophistication of website visitor tracking tools. Cloud-based solutions dominate the market due to their scalability, accessibility, and cost-effectiveness, particularly appealing to Small and Medium-sized Enterprises (SMEs). However, large enterprises continue to invest significantly in on-premise solutions for enhanced data security and control. The market is highly competitive, with numerous established players and emerging startups offering a range of features and functionalities. Technological advancements, such as AI-powered analytics and enhanced integration with other marketing tools, are shaping the future of the market. The market's geographical distribution reflects the global digital landscape. North America, with its mature digital economy and high adoption rates, holds a significant market share. However, regions like Asia-Pacific are showing rapid growth, driven by increasing internet penetration and digitalization across various industries. Despite the overall positive outlook, challenges such as data privacy regulations and the increasing complexity of website tracking technology are influencing market dynamics. The ongoing competition among vendors necessitates continuous innovation and the development of more user-friendly and insightful tools. The future growth of the website visitor tracking software market is promising, fueled by the continuing importance of data-driven decision-making within marketing and business strategies. A key factor will be the ongoing adaptation to evolving privacy regulations and user expectations.
https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy
The global traffic management systems market is projected to grow at a CAGR of 8.9% during the forecast period. The market size was valued at $4,720 million in 2025 and is estimated to reach $8,659 million by 2033. The increasing concerns regarding traffic congestion and safety have led to the adoption of advanced traffic management systems. These systems help authorities monitor and control traffic flow in real-time, thereby reducing congestion and improving safety. They also provide information to drivers through variable message signs, mobile apps, and websites, helping them plan their trips and choose the best routes. Key trends in the traffic management systems market include the rise of smart cities, the increasing use of data analytics, and the adoption of connected vehicles. Smart cities are investing in traffic management systems to improve mobility and reduce congestion. Data analytics helps authorities understand traffic patterns and identify areas for improvement. Connected vehicles communicate with each other and with the infrastructure, enabling more efficient traffic management. Some of the key restraints in the market include the high cost of implementation and maintenance, the need for skilled personnel, and privacy concerns.
Urban SDK is a GIS data management platform and global provider of mobility, urban characteristics, and alt datasets. Urban SDK Traffic data provides traffic volume, average speed, average travel time and congestion for logistics, transportation planning, traffic monitoring, routing and urban planning. Traffic data is generated from cars, trucks and mobile devices for major road networks in US and Canada.
"With the old data I used, it took me 3-4 weeks to create a presentation. I will be able to do 3-4x the work with your Urban SDK traffic data."
Traffic Volume, Speed and Congestion Data Type Profile:
Industry Solutions include:
Use cases:
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘Popular Website Traffic Over Time ’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/yamqwe/popular-website-traffice on 13 February 2022.
--- Dataset description provided by original source is as follows ---
Background
Have you every been in a conversation and the question comes up, who uses Bing? This question comes up occasionally because people wonder if these sites have any views. For this research study, we are going to be exploring popular website traffic for many popular websites.
Methodology
The data collected originates from SimilarWeb.com.
Source
For the analysis and study, go to The Concept Center
This dataset was created by Chase Willden and contains around 0 samples along with 1/1/2017, Social Media, technical information and other features such as: - 12/1/2016 - 3/1/2017 - and more.
- Analyze 11/1/2016 in relation to 2/1/2017
- Study the influence of 4/1/2017 on 1/1/2017
- More datasets
If you use this dataset in your research, please credit Chase Willden
--- Original source retains full ownership of the source dataset ---
https://cubig.ai/store/terms-of-servicehttps://cubig.ai/store/terms-of-service
1) Data Introduction • The Traffic Prediction Dataset contains vehicle traffic collected by hour at four intersections in the city (48,120 total), which can be used for traffic forecasting and congestion analysis.
2) Data Utilization (1) Traffic Prediction Dataset has characteristics that: • This dataset contains time and location-based characteristics required for traffic forecasting, such as DateTime, Junction, Vehicle Count, and Data ID. (2) Traffic Prediction Dataset can be used to: • Establishment of traffic forecasting and congestion mitigation strategies: By utilizing time-of-day, intersection-specific vehicle traffic data, we can develop machine learning-based traffic forecasting models, and use them to improve traffic congestion mitigation policies and signaling systems. • Analysis and Optimization of Urban Transportation Infrastructure: By analyzing traffic flow data at various intersections, it can be used to prioritize infrastructure investments, improve road design, develop real-time traffic management systems, and more.
Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
This dataset provides a comprehensive look at traffic data in a futuristic urban setting. It includes over 1.2 million records, each representing a unique snapshot of various factors influencing traffic conditions in six fictional cities.
The dataset is provided in a CSV format, suitable for analysis in various data processing tools and programming languages.
This dataset can be used for a range of studies and analyses, including but not limited to:
Note: This is a simulated dataset created for analytical and educational purposes.
https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The global real-time traffic data market size is anticipated to reach USD 15.3 billion by 2032 from an estimated USD 6.5 billion in 2023, exhibiting a robust CAGR of 10.1% over the forecast period. This substantial growth is driven by the increasing need for efficient traffic management systems and the rising adoption of smart city initiatives worldwide. Governments and commercial entities are investing heavily in advanced technologies to optimize traffic flow and enhance urban mobility, thus fostering market expansion.
The surge in urbanization and the consequent rise in vehicle ownership have led to severe traffic congestion issues in many metropolitan areas. This has necessitated the implementation of real-time traffic data systems that can provide accurate and timely information to manage traffic effectively. With the integration of sophisticated technologies such as IoT, AI, and big data analytics, these systems are becoming more efficient, thereby driving market growth. Furthermore, the growing emphasis on reducing carbon emissions and enhancing road safety is also propelling the adoption of real-time traffic data solutions.
Technological advancements are playing a pivotal role in shaping the real-time traffic data market. Innovations in sensor technology, the proliferation of GPS devices, and the widespread use of mobile data are providing rich sources of real-time traffic information. The ability to integrate data from multiple sources and deliver actionable insights is significantly enhancing traffic management capabilities. Additionally, the development of cloud-based solutions is enabling scalable and cost-effective deployment of traffic data systems, further contributing to market growth.
Another critical growth factor is the increasing investment in smart city projects. Governments across the globe are prioritizing the development of smart transportation infrastructure to improve urban mobility and reduce traffic-related issues. Real-time traffic data systems are integral to these initiatives, providing essential data for optimizing traffic flow, enabling route optimization, and enhancing public transport efficiency. The involvement of private sector players in these projects is also fueling market growth by introducing innovative solutions and fostering public-private partnerships.
The exponential rise in Mobile Data Traffic is another significant factor influencing the real-time traffic data market. As more people rely on smartphones and mobile applications for navigation and traffic updates, the demand for real-time data has surged. Mobile data provides a wealth of information about traffic patterns and congestion levels, enabling more accurate and timely traffic management. The integration of mobile data with other data sources, such as GPS and sensor data, enhances the overall effectiveness of traffic data systems. This trend is particularly evident in urban areas where mobile devices are ubiquitous, and the need for efficient traffic management is critical. The ability to harness mobile data for traffic insights is driving innovation and growth in the market, as companies develop new solutions to leverage this valuable resource.
Regionally, North America and Europe are leading the market due to their early adoption of advanced traffic management technologies and significant investments in smart city projects. However, the Asia Pacific region is expected to witness the highest growth rate over the forecast period, driven by rapid urbanization, increasing vehicle ownership, and growing government initiatives to develop smart transportation infrastructure. Emerging economies in Latin America and the Middle East & Africa are also showing promising growth potential, fueled by ongoing infrastructure development and increasing awareness of the benefits of real-time traffic data solutions.
The real-time traffic data market by component is segmented into software, hardware, and services. Each component plays a crucial role in the overall functionality and effectiveness of traffic data systems. The software segment includes traffic management software, route optimization software, and other analytical tools that help process and analyze traffic data. The hardware segment comprises sensors, GPS devices, and other data collection tools. The services segment includes installation, maintenance, and consulting services that support the deployment and operation of traffic data systems
https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
The global website traffic analysis tool market is experiencing robust growth, driven by the increasing reliance on digital marketing and the need for businesses of all sizes to understand their online audience. The market, estimated at $15 billion in 2025, is projected to grow at a Compound Annual Growth Rate (CAGR) of 15% from 2025 to 2033, reaching approximately $45 billion by 2033. This expansion is fueled by several key factors. The rising adoption of cloud-based solutions provides scalability and cost-effectiveness for businesses, particularly SMEs seeking affordable analytics. Moreover, the evolution of sophisticated analytics features, including advanced user behavior tracking and predictive analytics, enhances the value proposition for both SMEs and large enterprises. The market is segmented by application (SMEs and large enterprises) and by type (cloud-based and web-based), with cloud-based solutions dominating due to their accessibility and flexibility. Competitive pressures among numerous vendors, including established players like Google Analytics, Semrush, and Ahrefs, as well as emerging niche players, drive innovation and affordability, benefiting users. Geographic distribution shows strong growth across North America and Europe, with Asia-Pacific emerging as a high-growth region. However, factors such as data privacy concerns and the increasing complexity of website analytics can act as potential restraints. Despite these challenges, the continued expansion of e-commerce and digital marketing strategies across various industries will solidify the demand for robust website traffic analysis tools. The market is expected to witness further consolidation through mergers and acquisitions, with leading players investing heavily in research and development to enhance their offerings. The increasing need for real-time data analysis and integration with other marketing automation platforms will further shape market evolution. The emergence of AI-powered analytics, providing predictive insights and automated reporting, is transforming the industry and will continue to drive market expansion in the coming years. This makes this market an attractive landscape for investors and technology providers looking for strong future growth.
Unlock insights with Echo's Activity data, offering views of locations based on visitor behavior. Enhance site selection, urban planning, and real estate with metrics like unique visitors and visits. Our high-quality, global data reveals movement patterns, updated daily and normalized monthly.
ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
License information was derived automatically
Traffic-related data collected by the Boston Transportation Department, as well as other City departments and State agencies. Various types of counts: Turning Movement Counts, Automated Traffic Recordings, Pedestrian Counts, Delay Studies, and Gap Studies.
~_Turning Movement Counts (TMC)_ present the number of motor vehicles, pedestrians, and cyclists passing through the particular intersection. Specific movements and crossings are recorded for all street approaches involved with the intersection. This data is used in traffic signal retiming programs and for signal requests. Counts are typically conducted for 2-, 4-, 11-, and 12-Hr periods.
~_Automated Traffic Recordings (ATR)_ record the volume of motor vehicles traveling along a particular road, measures of travel speeds, and approximations of the class of the vehicles (motorcycle, 2-axle, large box truck, bus, etc). This type of count is conducted only along a street link/corridor, to gather data between two intersections or points of interest. This data is used in travel studies, as well as to review concerns about street use, speeding, and capacity. Counts are typically conducted for 12- & 24-Hr periods.
~_Pedestrian Counts (PED)_ record the volume of individual persons crossing a given street, whether at an existing intersection or a mid-block crossing. This data is used to review concerns about crossing safety, as well as for access analysis for points of interest. Counts are typically conducted for 2-, 4-, 11-, and 12-Hr periods.
~_Delay Studies (DEL)_ measure the delay experienced by motor vehicles due to the effects of congestion. Counts are typically conducted for a 1-Hr period at a given intersection or point of intersecting vehicular traffic.
~_Gap Studies (GAP)_ record the number of gaps which are typically present between groups of vehicles traveling through an intersection or past a point on a street. This data is used to assess opportunities for pedestrians to cross the street and for analyses on vehicular “platooning”. Counts are typically conducted for a specific 1-Hr period at a single point of crossing.
https://www.mordorintelligence.com/privacy-policyhttps://www.mordorintelligence.com/privacy-policy
Network Traffic Analysis Market is Segmented by Deployment (On-Premise, Cloud-Based, and Hybrid), Component (Solutions and Services), Organization Size (Large Enterprises and Small and Medium Enterprises), End-User Industry (BFSI, IT and Telecom, and More), and Geography. The Market Sizes and Forecasts are Provided in Value (in USD Million) for all the Above Segments.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains hourly data on the traffic volume for westbound I-94, a major interstate highway in the US that connects Minneapolis and St Paul, Minnesota. The data was collected by the Minnesota Department of Transportation (MnDOT) from 2012 to 2018 at a station roughly midway between the two cities.
- holiday: a categorical variable that indicates whether the date is a US national holiday or a regional holiday (such as the Minnesota State Fair).
- temp: a numeric variable that shows the average temperature in kelvin.
- rain_1h: a numeric variable that shows the amount of rain in mm that occurred in the hour.
- snow_1h: a numeric variable that shows the amount of snow in mm that occurred in the hour.
- clouds_all: a numeric variable that shows the percentage of cloud cover.
- weather_main: a categorical variable that gives a short textual description of the current weather (such as Clear, Clouds, Rain, etc.).
- weather_description: a categorical variable that gives a longer textual description of the current weather (such as light rain, overcast clouds, etc.).
- date_time: a datetime variable that shows the hour of the data collected in local CST time.
- traffic_volume: a numeric variable that shows the hourly I-94 reported westbound traffic volume.
The dataset can be used for regression tasks to predict the traffic volume based on the weather and holiday features. It can also be used for exploratory data analysis to understand the patterns and trends of traffic volume over time and across different conditions.
Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
The dataset represents synthetic traffic data for a certain location over a one-year period. It includes information about the traffic volume, weather conditions, and special events that may affect traffic.
Features:
Timestamp: The date and time of the observation.Weather: The weather condition at the time of the observation (e.g., Clear, Cloudy, Rain, Snow).
Events: A binary variable indicating whether there was a special event affecting traffic at the time of the observation (True or False).
Traffic Volume: The volume of traffic at the location at the time of the observation.
The dataset is intended for use in analyzing traffic patterns and trends, as well as for developing and testing models related to traffic prediction and management.