Mobile accounts for approximately half of web traffic worldwide. In the last quarter of 2024, mobile devices (excluding tablets) generated 62.54 percent of global website traffic. Mobiles and smartphones consistently hoovered around the 50 percent mark since the beginning of 2017, before surpassing it in 2020. Mobile traffic Due to low infrastructure and financial restraints, many emerging digital markets skipped the desktop internet phase entirely and moved straight onto mobile internet via smartphone and tablet devices. India is a prime example of a market with a significant mobile-first online population. Other countries with a significant share of mobile internet traffic include Nigeria, Ghana and Kenya. In most African markets, mobile accounts for more than half of the web traffic. By contrast, mobile only makes up around 45.49 percent of online traffic in the United States. Mobile usage The most popular mobile internet activities worldwide include watching movies or videos online, e-mail usage and accessing social media. Apps are a very popular way to watch video on the go and the most-downloaded entertainment apps in the Apple App Store are Netflix, Tencent Video and Amazon Prime Video.
This dataset contains the current estimated speed for about 1250 segments covering 300 miles of arterial roads. For a more detailed description, please go to https://tas.chicago.gov, click the About button at the bottom of the page, and then the MAP LAYERS tab.
The Chicago Traffic Tracker estimates traffic congestion on Chicago’s arterial streets (nonfreeway streets) in real-time by continuously monitoring and analyzing GPS traces received from Chicago Transit Authority (CTA) buses. Two types of congestion estimates are produced every ten minutes: 1) by Traffic Segments and 2) by Traffic Regions or Zones. Congestion estimate by traffic segments gives the observed speed typically for one-half mile of a street in one direction of traffic.
Traffic Segment level congestion is available for about 300 miles of principal arterials. Congestion by Traffic Region gives the average traffic condition for all arterial street segments within a region. A traffic region is comprised of two or three community areas with comparable traffic patterns. 29 regions are created to cover the entire city (except O’Hare airport area). This dataset contains the current estimated speed for about 1250 segments covering 300 miles of arterial roads. There is much volatility in traffic segment speed. However, the congestion estimates for the traffic regions remain consistent for relatively longer period. Most volatility in arterial speed comes from the very nature of the arterials themselves. Due to a myriad of factors, including but not limited to frequent intersections, traffic signals, transit movements, availability of alternative routes, crashes, short length of the segments, etc. speed on individual arterial segments can fluctuate from heavily congested to no congestion and back in a few minutes. The segment speed and traffic region congestion estimates together may give a better understanding of the actual traffic conditions.
This map contains a dynamic traffic map service with capabilities for visualizing traffic speeds relative to free-flow speeds as well as traffic incidents which can be visualized and identified. The traffic data is updated every five minutes. Traffic speeds are displayed as a percentage of free-flow speeds, which is frequently the speed limit or how fast cars tend to travel when unencumbered by other vehicles. The streets are color coded as follows:Green (fast): 85 - 100% of free flow speedsYellow (moderate): 65 - 85%Orange (slow); 45 - 65%Red (stop and go): 0 - 45%Esri's historical, live, and predictive traffic feeds come directly from TomTom (www.tomtom.com). Historical traffic is based on the average of observed speeds over the past year. The live and predictive traffic data is updated every five minutes through traffic feeds. The color coded traffic map layer can be used to represent relative traffic speeds; this is a common type of a map for online services and is used to provide context for routing, navigation and field operations. The traffic map layer contains two sublayers: Traffic and Live Traffic. The Traffic sublayer (shown by default) leverages historical, live and predictive traffic data; while the Live Traffic sublayer is calculated from just the live and predictive traffic data only. A color coded traffic map can be requested for the current time and any time in the future. A map for a future request might be used for planning purposes. The map also includes dynamic traffic incidents showing the location of accidents, construction, closures and other issues that could potentially impact the flow of traffic. Traffic incidents are commonly used to provide context for routing, navigation and field operations. Incidents are not features; they cannot be exported and stored for later use or additional analysis. The service works globally and can be used to visualize traffic speeds and incidents in many countries. Check the service coverage web map to determine availability in your area of interest. In the coverage map, the countries color coded in dark green support visualizing live traffic. The support for traffic incidents can be determined by identifying a country. For detailed information on this service, including a data coverage map, visit the directions and routing documentation and ArcGIS Help.
This dataset contains the current estimated congestion for the 29 traffic regions. For a detailed description, please go to https://tas.chicago.gov, click the About button at the bottom of the page, and then the MAP LAYERS tab.
The Chicago Traffic Tracker estimates traffic congestion on Chicago’s arterial streets (non-freeway streets) in real-time by continuously monitoring and analyzing GPS traces received from Chicago Transit Authority (CTA) buses. Two types of congestion estimates are produced every 10 minutes: 1) by Traffic Segments and 2) by Traffic Regions or Zones. Congestion estimates by traffic segments gives observed speed typically for one-half mile of a street in one direction of traffic. Traffic Segment level congestion is available for about 300 miles of principal arterials. Congestion by Traffic Region gives the average traffic condition for all arterial street segments within a region. A traffic region is comprised of two or three community areas with comparable traffic patterns. 29 regions are created to cover the entire city (except O’Hare airport area).
There is much volatility in traffic segment speed. However, the congestion estimates for the traffic regions remain consistent for a relatively longer period. Most volatility in arterial speed comes from the very nature of the arterials themselves. Due to a myriad of factors, including but not limited to frequent intersections, traffic signals, transit movements, availability of alternative routes, crashes, short length of the segments, etc. Speed on individual arterial segments can fluctuate from heavily congested to no congestion and back in a few minutes. The segment speed and traffic region congestion estimates together may give a better understanding of the actual traffic conditions.
Retail platforms have undergone an unprecedented global traffic increase between January 2019 and June 2020, surpassing even holiday season traffic peaks. Overall, retail websites generated almost 22 billion visits in June 2020, up from 16.07 billion global visits in January 2020. This is of course due to the global coronavirus pandemic which has forced millions of people to stay at home in order to stop the spread of the virus. Due to many shelter at home orders and a desire to avoid crowded stores in places where it is possible to shop, consumers have turned to the internet to procure everyday items such as groceries or toilet paper.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Vehicle travel time and delay data on sections of road in Hamilton City, based on Bluetooth sensor records. To get data for this dataset, please call the API directly talking to the HCC Data Warehouse: https://api.hcc.govt.nz/OpenData/get_traffic_link_stats?Page=1&Start_Date=2021-06-02&End_Date=2021-06-03. For this API, there are three mandatory parameters: Page, Start_Date, End_Date. Sample values for these parameters are in the link above. When calling the API for the first time, please always start with Page 1. Then from the returned JSON, you can see more information such as the total page count and page size. For help on using the API in your preferred data analysis software, please contact dale.townsend@hcc.govt.nz. NOTE: Anomalies and missing data may be present in the dataset. Column_Info Relationship Disclaimer Hamilton City Council does not make any representation or give any warranty as to the accuracy or exhaustiveness of the data released for public download. Levels, locations and dimensions of works depicted in the data may not be accurate due to circumstances not notified to Council. A physical check should be made on all levels, locations and dimensions before starting design or works. Hamilton City Council shall not be liable for any loss, damage, cost or expense (whether direct or indirect) arising from reliance upon or use of any data provided, or Council's failure to provide this data. While you are free to crop, export and re-purpose the data, we ask that you attribute the Hamilton City Council and clearly state that your work is a derivative and not the authoritative data source. Please include the following statement when distributing any work derived from this data: ‘This work is derived entirely or in part from Hamilton City Council data; the provided information may be updated at any time, and may at times be out of date, inaccurate, and/or incomplete.'
In March 2024, search platform Google.com generated approximately 85.5 billion visits, down from 87 billion platform visits in October 2023. Google is a global search platform and one of the biggest online companies worldwide.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The Google Merchandise Store sells Google branded merchandise. The data is typical of what you would see for an ecommerce website.
The sample dataset contains Google Analytics 360 data from the Google Merchandise Store, a real ecommerce store. The Google Merchandise Store sells Google branded merchandise. The data is typical of what you would see for an ecommerce website. It includes the following kinds of information:
Traffic source data: information about where website visitors originate. This includes data about organic traffic, paid search traffic, display traffic, etc. Content data: information about the behavior of users on the site. This includes the URLs of pages that visitors look at, how they interact with content, etc. Transactional data: information about the transactions that occur on the Google Merchandise Store website.
Fork this kernel to get started.
Banner Photo by Edho Pratama from Unsplash.
What is the total number of transactions generated per device browser in July 2017?
The real bounce rate is defined as the percentage of visits with a single pageview. What was the real bounce rate per traffic source?
What was the average number of product pageviews for users who made a purchase in July 2017?
What was the average number of product pageviews for users who did not make a purchase in July 2017?
What was the average total transactions per user that made a purchase in July 2017?
What is the average amount of money spent per session in July 2017?
What is the sequence of pages viewed?
In March 2024, Amazon.com had approximately 2.2 billion combined web visits, up from 2.1 billion visits in February. In the fourth quarter of 2024, Amazon’s net income amounted to approximately 20 billion U.S. dollars. Online retail in the United States Online retail in the United States is constantly growing. In the third quarter of 2023, e-commerce sales accounted for 15.6 percent of retail sales in the United States. During that quarter, U.S. retail e-commerce sales amounted to over 284 billion U.S. dollars. Amazon is the leading online store in the country, in terms of e-commerce net sales. Amazon.com generated around 130 billion U.S. dollars in online sales in 2022. Walmart ranked as the second-biggest online store, with revenues of 52 billion U.S. dollars. The king of Black Friday In 2023, Amazon ranked as U.S. shoppers' favorite place to go shopping during Black Friday, even surpassing in-store purchasing. Nearly six out of ten consumers chose Amazon as the number one place to go find the best Black Friday deals. Similar findings can be observed in the United Kingdom (UK), where Amazon is also ranked as the preferred Black Friday destination.
The data reflects the NHS Test and Trace operation in England since its launch on 28 May 2020.
This includes 2 weekly reports:
1. NHS Test and Trace statistics:
2. Rapid asymptomatic testing statistics: number of lateral flow device (LFD) tests reported by test result.
There are 4 sets of data tables accompanying the reports.
In November 2024, Google.com was the most popular website worldwide with 136 billion average monthly visits. The online platform has held the top spot as the most popular website since June 2010, when it pulled ahead of Yahoo into first place. Second-ranked YouTube generated more than 72.8 billion monthly visits in the measured period. The internet leaders: search, social, and e-commerce Social networks, search engines, and e-commerce websites shape the online experience as we know it. While Google leads the global online search market by far, YouTube and Facebook have become the world’s most popular websites for user generated content, solidifying Alphabet’s and Meta’s leadership over the online landscape. Meanwhile, websites such as Amazon and eBay generate millions in profits from the sale and distribution of goods, making the e-market sector an integral part of the global retail scene. What is next for online content? Powering social media and websites like Reddit and Wikipedia, user-generated content keeps moving the internet’s engines. However, the rise of generative artificial intelligence will bring significant changes to how online content is produced and handled. ChatGPT is already transforming how online search is performed, and news of Google's 2024 deal for licensing Reddit content to train large language models (LLMs) signal that the internet is likely to go through a new revolution. While AI's impact on the online market might bring both opportunities and challenges, effective content management will remain crucial for profitability on the web.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains the Department of Transport and Main Roads road location details (both spatial and through distance) as well as associated traffic data.
It allows users to locate themselves with respect to road section number and through distance using the spatial coordinates on the state-controlled road network.
Through distance – the distance in kilometres measured from the gazetted start point of the road section.
Note: "Road location and traffic data" resource has been updated as of July 2023.
Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
This data shows traffic volumes for freeways
(excluding toll roads) and arterial roads in Victoria. The annual average daily
traffic volume is provided, including the number of commercial vehicles. The
data provided is for the current year, with values derived from traffic surveys
or estimates.
About this dataset
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
You can also access an API version of this dataset.
TMS
(traffic monitoring system) daily-updated traffic counts API
Important note: due to the size of this dataset, you won't be able to open it fully in Excel. Use notepad / R / any software package which can open more than a million rows.
Data reuse caveats: as per license.
Data quality
statement: please read the accompanying user manual, explaining:
how
this data is collected identification
of count stations traffic
monitoring technology monitoring
hierarchy and conventions typical
survey specification data
calculation TMS
operation.
Traffic
monitoring for state highways: user manual
[PDF 465 KB]
The data is at daily granularity. However, the actual update
frequency of the data depends on the contract the site falls within. For telemetry
sites it's once a week on a Wednesday. Some regional sites are fortnightly, and
some monthly or quarterly. Some are only 4 weeks a year, with timing depending
on contractors’ programme of work.
Data quality caveats: you must use this data in
conjunction with the user manual and the following caveats.
The
road sensors used in data collection are subject to both technical errors and
environmental interference.Data
is compiled from a variety of sources. Accuracy may vary and the data
should only be used as a guide.As
not all road sections are monitored, a direct calculation of Vehicle
Kilometres Travelled (VKT) for a region is not possible.Data
is sourced from Waka Kotahi New Zealand Transport Agency TMS data.For
sites that use dual loops classification is by length. Vehicles with a length of less than 5.5m are
classed as light vehicles. Vehicles over 11m long are classed as heavy
vehicles. Vehicles between 5.5 and 11m are split 50:50 into light and
heavy.In September 2022, the National Telemetry contract was handed to a new contractor. During the handover process, due to some missing documents and aged technology, 40 of the 96 national telemetry traffic count sites went offline. Current contractor has continued to upload data from all active sites and have gradually worked to bring most offline sites back online. Please note and account for possible gaps in data from National Telemetry Sites.
The NZTA Vehicle
Classification Relationships diagram below shows the length classification (typically dual loops) and axle classification (typically pneumatic tube counts),
and how these map to the Monetised benefits and costs manual, table A37,
page 254.
Monetised benefits and costs manual [PDF 9 MB]
For the full TMS
classification schema see Appendix A of the traffic counting manual vehicle
classification scheme (NZTA 2011), below.
Traffic monitoring for state highways: user manual [PDF 465 KB]
State highway traffic monitoring (map)
State highway traffic monitoring sites
In the month of January 2024, the beauty and personal care retailer Nykaa had about 9.87 million website visits. In comparison, the month of December in 2023 clocked over ten million monthly website visits.
Uploaded new ‘Tests conducted: 28 May 2020 to 24 March 2021’ due to an error in the previous version (see the information tab of the spreadsheet for further details).
The data reflects the NHS Test and Trace operation in England since its launch on 28 May 2020.
This includes 2 weekly reports:
1. NHS Test and Trace statistics:
2. Rapid asymptomatic testing statistics:
There are 4 sets of data tables accompanying the reports.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
You might be surprised how much Truth Social is worth based on its small number of users.
This week the https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/950262/Demographic_LA_tables_w31.ods" class="govuk-link">demographic and regional information for people tested and testing positive is not available while we investigate the data quality.
The data reflects the first 32 weeks of operation of NHS Test and Trace in England since late March.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Global ad spend were expected to reach over $134 billion in 2022. This means that it has increased by over 17% yearly.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Data analysis raw data in a PDF file
Mobile accounts for approximately half of web traffic worldwide. In the last quarter of 2024, mobile devices (excluding tablets) generated 62.54 percent of global website traffic. Mobiles and smartphones consistently hoovered around the 50 percent mark since the beginning of 2017, before surpassing it in 2020. Mobile traffic Due to low infrastructure and financial restraints, many emerging digital markets skipped the desktop internet phase entirely and moved straight onto mobile internet via smartphone and tablet devices. India is a prime example of a market with a significant mobile-first online population. Other countries with a significant share of mobile internet traffic include Nigeria, Ghana and Kenya. In most African markets, mobile accounts for more than half of the web traffic. By contrast, mobile only makes up around 45.49 percent of online traffic in the United States. Mobile usage The most popular mobile internet activities worldwide include watching movies or videos online, e-mail usage and accessing social media. Apps are a very popular way to watch video on the go and the most-downloaded entertainment apps in the Apple App Store are Netflix, Tencent Video and Amazon Prime Video.