100+ datasets found
  1. Impact of AI on website traffic anticipated by digital marketers worldwide...

    • statista.com
    Updated Jul 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Impact of AI on website traffic anticipated by digital marketers worldwide 2023 [Dataset]. https://www.statista.com/statistics/1410386/impact-ai-website-traffic-worldwide/
    Explore at:
    Dataset updated
    Jul 3, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    Worldwide
    Description

    According to the results of a survey conducted worldwide in 2023, nearly **** of responding digital marketers believed artificial intelligence (AI) would have a positive impact on website search traffic in the next five years. Some ** percent stated AI would have a neutral effect, while ** percent agreed that the technology would negatively impact search traffic.

  2. Z

    Network Traffic Analysis: Data and Code

    • data.niaid.nih.gov
    • zenodo.org
    Updated Jun 12, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Homan, Sophia (2024). Network Traffic Analysis: Data and Code [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_11479410
    Explore at:
    Dataset updated
    Jun 12, 2024
    Dataset provided by
    Chan-Tin, Eric
    Soni, Shreena
    Homan, Sophia
    Honig, Joshua
    Ferrell, Nathan
    Moran, Madeline
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Code:

    Packet_Features_Generator.py & Features.py

    To run this code:

    pkt_features.py [-h] -i TXTFILE [-x X] [-y Y] [-z Z] [-ml] [-s S] -j

    -h, --help show this help message and exit -i TXTFILE input text file -x X Add first X number of total packets as features. -y Y Add first Y number of negative packets as features. -z Z Add first Z number of positive packets as features. -ml Output to text file all websites in the format of websiteNumber1,feature1,feature2,... -s S Generate samples using size s. -j

    Purpose:

    Turns a text file containing lists of incomeing and outgoing network packet sizes into separate website objects with associative features.

    Uses Features.py to calcualte the features.

    startMachineLearning.sh & machineLearning.py

    To run this code:

    bash startMachineLearning.sh

    This code then runs machineLearning.py in a tmux session with the nessisary file paths and flags

    Options (to be edited within this file):

    --evaluate-only to test 5 fold cross validation accuracy

    --test-scaling-normalization to test 6 different combinations of scalers and normalizers

    Note: once the best combination is determined, it should be added to the data_preprocessing function in machineLearning.py for future use

    --grid-search to test the best grid search hyperparameters - note: the possible hyperparameters must be added to train_model under 'if not evaluateOnly:' - once best hyperparameters are determined, add them to train_model under 'if evaluateOnly:'

    Purpose:

    Using the .ml file generated by Packet_Features_Generator.py & Features.py, this program trains a RandomForest Classifier on the provided data and provides results using cross validation. These results include the best scaling and normailzation options for each data set as well as the best grid search hyperparameters based on the provided ranges.

    Data

    Encrypted network traffic was collected on an isolated computer visiting different Wikipedia and New York Times articles, different Google search queres (collected in the form of their autocomplete results and their results page), and different actions taken on a Virtual Reality head set.

    Data for this experiment was stored and analyzed in the form of a txt file for each experiment which contains:

    First number is a classification number to denote what website, query, or vr action is taking place.

    The remaining numbers in each line denote:

    The size of a packet,

    and the direction it is traveling.

    negative numbers denote incoming packets

    positive numbers denote outgoing packets

    Figure 4 Data

    This data uses specific lines from the Virtual Reality.txt file.

    The action 'LongText Search' refers to a user searching for "Saint Basils Cathedral" with text in the Wander app.

    The action 'ShortText Search' refers to a user searching for "Mexico" with text in the Wander app.

    The .xlsx and .csv file are identical

    Each file includes (from right to left):

    The origional packet data,

    each line of data organized from smallest to largest packet size in order to calculate the mean and standard deviation of each packet capture,

    and the final Cumulative Distrubution Function (CDF) caluclation that generated the Figure 4 Graph.

  3. free-web-traffic-report.com - Historical whois Lookup

    • whoisdatacenter.com
    csv
    Updated Jun 23, 2012
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    AllHeart Web Inc (2012). free-web-traffic-report.com - Historical whois Lookup [Dataset]. https://whoisdatacenter.com/domain/free-web-traffic-report.com/
    Explore at:
    csvAvailable download formats
    Dataset updated
    Jun 23, 2012
    Dataset provided by
    AllHeart Web
    Authors
    AllHeart Web Inc
    License

    https://whoisdatacenter.com/terms-of-use/https://whoisdatacenter.com/terms-of-use/

    Time period covered
    Mar 15, 1985 - Jul 28, 2025
    Description

    Explore the historical Whois records related to free-web-traffic-report.com (Domain). Get insights into ownership history and changes over time.

  4. Share of web traffic in Egypt 2022, by search engine

    • statista.com
    Updated Jul 9, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Share of web traffic in Egypt 2022, by search engine [Dataset]. https://www.statista.com/statistics/1410249/distribution-of-web-traffic-in-south-africa-by-search-engine/
    Explore at:
    Dataset updated
    Jul 9, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Nov 2022
    Area covered
    Egypt
    Description

    Google dominated the Egyptian web traffic. As of November 2022, close to **** percent of the web traffic was referred via this search engine. Bing was its closest competitor, with only *** percent. Yahoo! came in third place, with a share of almost *** percent.

  5. hitt-traffic.net - Historical whois Lookup

    • whoisdatacenter.com
    csv
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    AllHeart Web Inc, hitt-traffic.net - Historical whois Lookup [Dataset]. https://whoisdatacenter.com/domain/hitt-traffic.net/
    Explore at:
    csvAvailable download formats
    Dataset provided by
    AllHeart Web
    Authors
    AllHeart Web Inc
    License

    https://whoisdatacenter.com/terms-of-use/https://whoisdatacenter.com/terms-of-use/

    Time period covered
    Mar 15, 1985 - Jul 15, 2025
    Description

    Explore the historical Whois records related to hitt-traffic.net (Domain). Get insights into ownership history and changes over time.

  6. DataForSEO Labs API for keyword research and search analytics, real-time...

    • datarade.ai
    .json
    Updated Jun 4, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    DataForSEO (2021). DataForSEO Labs API for keyword research and search analytics, real-time data for all Google locations and languages [Dataset]. https://datarade.ai/data-products/dataforseo-labs-api-for-keyword-research-and-search-analytics-dataforseo
    Explore at:
    .jsonAvailable download formats
    Dataset updated
    Jun 4, 2021
    Dataset provided by
    Authors
    DataForSEO
    Area covered
    Armenia, Mauritania, Micronesia (Federated States of), Cocos (Keeling) Islands, Tokelau, Morocco, Kenya, Azerbaijan, Isle of Man, Korea (Democratic People's Republic of)
    Description

    DataForSEO Labs API offers three powerful keyword research algorithms and historical keyword data:

    • Related Keywords from the “searches related to” element of Google SERP. • Keyword Suggestions that match the specified seed keyword with additional words before, after, or within the seed key phrase. • Keyword Ideas that fall into the same category as specified seed keywords. • Historical Search Volume with current cost-per-click, and competition values.

    Based on in-market categories of Google Ads, you can get keyword ideas from the relevant Categories For Domain and discover relevant Keywords For Categories. You can also obtain Top Google Searches with AdWords and Bing Ads metrics, product categories, and Google SERP data.

    You will find well-rounded ways to scout the competitors:

    • Domain Whois Overview with ranking and traffic info from organic and paid search. • Ranked Keywords that any domain or URL has positions for in SERP. • SERP Competitors and the rankings they hold for the keywords you specify. • Competitors Domain with a full overview of its rankings and traffic from organic and paid search. • Domain Intersection keywords for which both specified domains rank within the same SERPs. • Subdomains for the target domain you specify along with the ranking distribution across organic and paid search. • Relevant Pages of the specified domain with rankings and traffic data. • Domain Rank Overview with ranking and traffic data from organic and paid search. • Historical Rank Overview with historical data on rankings and traffic of the specified domain from organic and paid search. • Page Intersection keywords for which the specified pages rank within the same SERP.

    All DataForSEO Labs API endpoints function in the Live mode. This means you will be provided with the results in response right after sending the necessary parameters with a POST request.

    The limit is 2000 API calls per minute, however, you can contact our support team if your project requires higher rates.

    We offer well-rounded API documentation, GUI for API usage control, comprehensive client libraries for different programming languages, free sandbox API testing, ad hoc integration, and deployment support.

    We have a pay-as-you-go pricing model. You simply add funds to your account and use them to get data. The account balance doesn't expire.

  7. d

    Click Global Data | Web Traffic Data + Transaction Data | Consumer and B2B...

    • datarade.ai
    .csv
    Updated Mar 13, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Consumer Edge (2025). Click Global Data | Web Traffic Data + Transaction Data | Consumer and B2B Shopper Insights | 59 Countries, 3-Day Lag, Daily Delivery [Dataset]. https://datarade.ai/data-products/click-global-data-web-traffic-data-transaction-data-con-consumer-edge
    Explore at:
    .csvAvailable download formats
    Dataset updated
    Mar 13, 2025
    Dataset authored and provided by
    Consumer Edge
    Area covered
    Marshall Islands, Bermuda, Congo, El Salvador, Bosnia and Herzegovina, Finland, South Africa, Nauru, Montserrat, Sri Lanka
    Description

    Click Web Traffic Combined with Transaction Data: A New Dimension of Shopper Insights

    Consumer Edge is a leader in alternative consumer data for public and private investors and corporate clients. Click enhances the unparalleled accuracy of CE Transact by allowing investors to delve deeper and browse further into global online web traffic for CE Transact companies and more. Leverage the unique fusion of web traffic and transaction datasets to understand the addressable market and understand spending behavior on consumer and B2B websites. See the impact of changes in marketing spend, search engine algorithms, and social media awareness on visits to a merchant’s website, and discover the extent to which product mix and pricing drive or hinder visits and dwell time. Plus, Click uncovers a more global view of traffic trends in geographies not covered by Transact. Doubleclick into better forecasting, with Click.

    Consumer Edge’s Click is available in machine-readable file delivery and enables: • Comprehensive Global Coverage: Insights across 620+ brands and 59 countries, including key markets in the US, Europe, Asia, and Latin America. • Integrated Data Ecosystem: Click seamlessly maps web traffic data to CE entities and stock tickers, enabling a unified view across various business intelligence tools. • Near Real-Time Insights: Daily data delivery with a 5-day lag ensures timely, actionable insights for agile decision-making. • Enhanced Forecasting Capabilities: Combining web traffic indicators with transaction data helps identify patterns and predict revenue performance.

    Use Case: Analyze Year Over Year Growth Rate by Region

    Problem A public investor wants to understand how a company’s year-over-year growth differs by region.

    Solution The firm leveraged Consumer Edge Click data to: • Gain visibility into key metrics like views, bounce rate, visits, and addressable spend • Analyze year-over-year growth rates for a time period • Breakout data by geographic region to see growth trends

    Metrics Include: • Spend • Items • Volume • Transactions • Price Per Volume

    Inquire about a Click subscription to perform more complex, near real-time analyses on public tickers and private brands as well as for industries beyond CPG like: • Monitor web traffic as a leading indicator of stock performance and consumer demand • Analyze customer interest and sentiment at the brand and sub-brand levels

    Consumer Edge offers a variety of datasets covering the US, Europe (UK, Austria, France, Germany, Italy, Spain), and across the globe, with subscription options serving a wide range of business needs.

    Consumer Edge is the Leader in Data-Driven Insights Focused on the Global Consumer

  8. d

    Stop Data 2019 to 2022

    • catalog.data.gov
    • opendata.dc.gov
    • +3more
    Updated Feb 5, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Washington, DC (2025). Stop Data 2019 to 2022 [Dataset]. https://catalog.data.gov/dataset/stop-data-2019-to-2022
    Explore at:
    Dataset updated
    Feb 5, 2025
    Dataset provided by
    City of Washington, DC
    Description

    In July 2019, the Metropolitan Police Department (MPD) implemented new data collection methods that enabled officers to collect more comprehensive information about each police stop in an aggregated manner. More specifically, these changes have allowed for more detailed data collection on stops, protective pat down (PPDs), searches, and arrests. (For a complete list of terms, see the glossary on page 2.) These changes support data collection requirements in the Neighborhood Engagement Achieves Results Amendment Act of 2016 (NEAR Act).The accompanying data cover all MPD stops including vehicle, pedestrian, bicycle, and harbor stops for the period from July 22, 2019 to December 31, 2022. A stop may involve a ticket (actual or warning), investigatory stop, protective pat down, search, or arrest.If the final outcome of a stop results in an actual or warning ticket, the ticket serves as the official documentation for the stop. The information provided in the ticket include the subject’s name, race, gender, reason for the stop, and duration. All stops resulting in additional law enforcement actions (e.g., pat down, search, or arrest) are documented in MPD’s Record Management System (RMS). This dataset includes records pulled from both the ticket (District of Columbia Department of Motor Vehicles [DMV]) and RMS sources. Data variables not applicable to a particular stop are indicated as “NULL.” For example, if the stop type (“stop_type” field) is a “ticket stop,” then the fields: “stop_reason_nonticket” and “stop_reason_harbor” will be “NULL.” Each row in the data represents an individual stop of a single person, and that row reveals any and all recorded outcomes of that stop (including information about any actual or warning tickets issued, searches conducted, arrests made, etc.). A single traffic stop may generate multiple tickets, including actual, warning, and/or voided tickets. Additionally, an individual who is stopped and receives a traffic ticket may also be stopped for investigatory purposes, patted down, searched, and/or arrested. If any of these situations occur, the “stop_type” field would be labeled “Ticket and Non-Ticket Stop.” If an individual is searched, MPD differentiates between person and property searches. The “stop_location_block” field represents the block-level location of the stop and/or a street name. The age of the person being stopped is calculated based on the time between the person’s date ofbirth and the date of the stop.There are certain locations that have a high prevalence of non-ticket stops. These can be attributed to some centralized processing locations. Additionally, there is a time lag for data on some ticket stops as roughly 20 percent of tickets are handwritten. In these instances, the handwritten traffic tickets are delivered by MPD to the DMV, and then entered into data systems by DMV contractors. On August 1, 2021, MPD transitioned to a new version of its current records management system, Mark43 RMS.Due to this transition, the data collection and structures for the period between August 1, 2021 – December 31, 2021 were changed. The list below provides explanatory notes to consider when using this dataset.New fields for data collection resulted in an increase of outliers in stop duration (affecting 0.98% of stops). In order to mitigate the disruption of outliers on any analysis, these values have been set to null as consistent with past practices.Due to changes to the data structure that occurred after August 1, 2021, six attributes pertaining to reasons for searches of property and person are only available for the first seven months of 2021. These attributes are: Individual’s Actions, Information Obtained from Law Enforcement Sources, Information Obtained from Witnesses or Informants, Characteristics of an Armed Individual, Nature of the Alleged Crime, Prior Knowledge. These data structure changes have been updated to include these attributes going forward (as of April 23, 2022).Out of the four attributes for types of property search, warrant property search is only available for the first seven months of 2021. Data structure changes were made to include this type of property search in future datasets.The following chart shows how certain property search fields were aligned prior to and after August 1, 2021. A glossary is also provided following the chart. As of August 2, 2022, these fields have reverted to the original alignment.https://mpdc.dc.gov/sites/default/files/dc/sites/mpdc/publication/attachments/Explanatory%20Notes%202021%20Data.pdfIn October 2022 several fields were added to the dataset to provide additional clarity differentiating NOIs issued to bicycles (including Personal Mobility Devices, aka stand-on scooters), pedestrians, and vehicles as well as stops related specifically to MPD’s Harbor Patrol Unit and stops of an investigative nature where a police report was written. Please refer to the Data Dictionary for field definitions.In March 2023 an indicator was added to the data which reflects stops related to traffic enforcement and/or traffic violations. This indicator will be 1 if a stop originated as a traffic stop (including both stops where only a ticket was issued as well as stops that ultimately resulted in police action such as a search or arrest), involved an arrest for a traffic violation, and/or if the reason for the stop was Response to Crash, Observed Moving Violation, Observed Equipment Violation, or Traffic Violation.Between November 2021 and February 2022 several fields pertaining to items seized during searches of a person were not available for officers to use, leading to the data showing that no objects were seized pursuant to person searches during this time period. Finally, MPD is conducting on-going data audits on all data for thorough and complete information. For more information regarding police stops, please see: https://mpdc.dc.gov/stopdataFigures are subject to change due to delayed reporting, on-going data quality audits, and data improvement processes.

  9. Data from: Analysis of the Quantitative Impact of Social Networks General...

    • figshare.com
    • produccioncientifica.ucm.es
    doc
    Updated Oct 14, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    David Parra; Santiago Martínez Arias; Sergio Mena Muñoz (2022). Analysis of the Quantitative Impact of Social Networks General Data.doc [Dataset]. http://doi.org/10.6084/m9.figshare.21329421.v1
    Explore at:
    docAvailable download formats
    Dataset updated
    Oct 14, 2022
    Dataset provided by
    Figsharehttp://figshare.com/
    figshare
    Authors
    David Parra; Santiago Martínez Arias; Sergio Mena Muñoz
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    General data recollected for the studio " Analysis of the Quantitative Impact of Social Networks on Web Traffic of Cybermedia in the 27 Countries of the European Union". Four research questions are posed: what percentage of the total web traffic generated by cybermedia in the European Union comes from social networks? Is said percentage higher or lower than that provided through direct traffic and through the use of search engines via SEO positioning? Which social networks have a greater impact? And is there any degree of relationship between the specific weight of social networks in the web traffic of a cybermedia and circumstances such as the average duration of the user's visit, the number of page views or the bounce rate understood in its formal aspect of not performing any kind of interaction on the visited page beyond reading its content? To answer these questions, we have first proceeded to a selection of the cybermedia with the highest web traffic of the 27 countries that are currently part of the European Union after the United Kingdom left on December 31, 2020. In each nation we have selected five media using a combination of the global web traffic metrics provided by the tools Alexa (https://www.alexa.com/), which ceased to be operational on May 1, 2022, and SimilarWeb (https:// www.similarweb.com/). We have not used local metrics by country since the results obtained with these first two tools were sufficiently significant and our objective is not to establish a ranking of cybermedia by nation but to examine the relevance of social networks in their web traffic. In all cases, cybermedia whose property corresponds to a journalistic company have been selected, ruling out those belonging to telecommunications portals or service providers; in some cases they correspond to classic information companies (both newspapers and televisions) while in others they refer to digital natives, without this circumstance affecting the nature of the research proposed.
    Below we have proceeded to examine the web traffic data of said cybermedia. The period corresponding to the months of October, November and December 2021 and January, February and March 2022 has been selected. We believe that this six-month stretch allows possible one-time variations to be overcome for a month, reinforcing the precision of the data obtained. To secure this data, we have used the SimilarWeb tool, currently the most precise tool that exists when examining the web traffic of a portal, although it is limited to that coming from desktops and laptops, without taking into account those that come from mobile devices, currently impossible to determine with existing measurement tools on the market. It includes:

    Web traffic general data: average visit duration, pages per visit and bounce rate Web traffic origin by country Percentage of traffic generated from social media over total web traffic Distribution of web traffic generated from social networks Comparison of web traffic generated from social netwoks with direct and search procedures

  10. M

    Google Search: The Most-visited Website in the World

    • scoop.market.us
    Updated May 31, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market.us Scoop (2024). Google Search: The Most-visited Website in the World [Dataset]. https://scoop.market.us/google-search-the-most-visited-website-in-the-world/
    Explore at:
    Dataset updated
    May 31, 2024
    Dataset authored and provided by
    Market.us Scoop
    License

    https://scoop.market.us/privacy-policyhttps://scoop.market.us/privacy-policy

    Time period covered
    2022 - 2032
    Area covered
    World, Global
    Description

    Google Search Statistics 2023

    • Google is the most searched website in the World.
    • Google receives more visitors than any other site. Google is accessed 89.3 trillion times per month.
    • Google is used by billions of people every day to conduct their searches. Google is much more than a simple search engine.
    • Google provides many other services. Google Shopping and Google News also feature. Google Mail, Google's popular email service, is included.
    • Google organic search traffic is 16.3% of the total US searches.
  11. Z

    Kaggle Wikipedia Web Traffic Daily Dataset (without Missing Values)

    • data.niaid.nih.gov
    • explore.openaire.eu
    • +1more
    Updated Apr 1, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Webb, Geoff (2021). Kaggle Wikipedia Web Traffic Daily Dataset (without Missing Values) [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_3892918
    Explore at:
    Dataset updated
    Apr 1, 2021
    Dataset provided by
    Godahewa, Rakshitha
    Hyndman, Rob
    Webb, Geoff
    Montero-Manso, Pablo
    Bergmeir, Christoph
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset was used in the Kaggle Wikipedia Web Traffic forecasting competition. It contains 145063 daily time series representing the number of hits or web traffic for a set of Wikipedia pages from 2015-07-01 to 2017-09-10.

    The original dataset contains missing values. They have been simply replaced by zeros.

  12. instinctive-web-traffic.com - Historical whois Lookup

    • whoisdatacenter.com
    csv
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    AllHeart Web Inc, instinctive-web-traffic.com - Historical whois Lookup [Dataset]. https://whoisdatacenter.com/domain/instinctive-web-traffic.com/
    Explore at:
    csvAvailable download formats
    Dataset provided by
    AllHeart Web
    Authors
    AllHeart Web Inc
    License

    https://whoisdatacenter.com/terms-of-use/https://whoisdatacenter.com/terms-of-use/

    Time period covered
    Mar 15, 1985 - Jul 7, 2025
    Description

    Explore the historical Whois records related to instinctive-web-traffic.com (Domain). Get insights into ownership history and changes over time.

  13. Puerto Rico: web traffic share of search engines 2020

    • statista.com
    Updated Jul 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Puerto Rico: web traffic share of search engines 2020 [Dataset]. https://www.statista.com/statistics/1197642/puerto-rico-web-traffic-share-search-engines/
    Explore at:
    Dataset updated
    Jul 10, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jan 2020 - Dec 2020
    Area covered
    Puerto Rico
    Description

    In 2020, Google was the most popular online search engine in Puerto Rico, accounting for approximately **** percent of web traffic. It was followed by Microsoft's Bing, with a *** percent share that year. In addition, Google also concentrated most of the web traffic in the Dominican Republic.

  14. increase-website-traffic.org - Historical whois Lookup

    • whoisdatacenter.com
    csv
    Updated May 30, 2005
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    AllHeart Web Inc (2005). increase-website-traffic.org - Historical whois Lookup [Dataset]. https://whoisdatacenter.com/domain/increase-website-traffic.org/
    Explore at:
    csvAvailable download formats
    Dataset updated
    May 30, 2005
    Dataset provided by
    AllHeart Web
    Authors
    AllHeart Web Inc
    License

    https://whoisdatacenter.com/terms-of-use/https://whoisdatacenter.com/terms-of-use/

    Time period covered
    Mar 15, 1985 - Jul 1, 2025
    Description

    Explore the historical Whois records related to increase-website-traffic.org (Domain). Get insights into ownership history and changes over time.

  15. internet-traffic.ru - Historical whois Lookup

    • whoisdatacenter.com
    csv
    Updated Aug 8, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    AllHeart Web Inc (2024). internet-traffic.ru - Historical whois Lookup [Dataset]. https://whoisdatacenter.com/domain/internet-traffic.ru/
    Explore at:
    csvAvailable download formats
    Dataset updated
    Aug 8, 2024
    Dataset provided by
    AllHeart Web
    Authors
    AllHeart Web Inc
    License

    https://whoisdatacenter.com/terms-of-use/https://whoisdatacenter.com/terms-of-use/

    Time period covered
    Mar 15, 1985 - Jul 17, 2025
    Description

    Explore the historical Whois records related to internet-traffic.ru (Domain). Get insights into ownership history and changes over time.

  16. Website traffic strategies by industry and size of enterprise

    • www150.statcan.gc.ca
    • datasets.ai
    • +3more
    Updated Jun 11, 2014
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2014). Website traffic strategies by industry and size of enterprise [Dataset]. http://doi.org/10.25318/2210001801-eng
    Explore at:
    Dataset updated
    Jun 11, 2014
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    Area covered
    Canada
    Description

    Digital technology and Internet use, website traffic strategies, by North American Industry Classification System (NAICS) and size of enterprise for Canada from 2012 to 2013.

  17. d

    Swash Web Browsing Clickstream Data - 1.5M Worldwide Users - GDPR Compliant

    • datarade.ai
    .csv, .xls
    Updated Jun 27, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Swash (2023). Swash Web Browsing Clickstream Data - 1.5M Worldwide Users - GDPR Compliant [Dataset]. https://datarade.ai/data-products/swash-blockchain-bitcoin-and-web3-enthusiasts-swash
    Explore at:
    .csv, .xlsAvailable download formats
    Dataset updated
    Jun 27, 2023
    Dataset authored and provided by
    Swash
    Area covered
    India, Saint Vincent and the Grenadines, Jordan, Belarus, Jamaica, Uzbekistan, Latvia, Liechtenstein, Russian Federation, Monaco
    Description

    Unlock the Power of Behavioural Data with GDPR-Compliant Clickstream Insights.

    Swash clickstream data offers a comprehensive and GDPR-compliant dataset sourced from users worldwide, encompassing both desktop and mobile browsing behaviour. Here's an in-depth look at what sets us apart and how our data can benefit your organisation.

    User-Centric Approach: Unlike traditional data collection methods, we take a user-centric approach by rewarding users for the data they willingly provide. This unique methodology ensures transparent data collection practices, encourages user participation, and establishes trust between data providers and consumers.

    Wide Coverage and Varied Categories: Our clickstream data covers diverse categories, including search, shopping, and URL visits. Whether you are interested in understanding user preferences in e-commerce, analysing search behaviour across different industries, or tracking website visits, our data provides a rich and multi-dimensional view of user activities.

    GDPR Compliance and Privacy: We prioritise data privacy and strictly adhere to GDPR guidelines. Our data collection methods are fully compliant, ensuring the protection of user identities and personal information. You can confidently leverage our clickstream data without compromising privacy or facing regulatory challenges.

    Market Intelligence and Consumer Behaviuor: Gain deep insights into market intelligence and consumer behaviour using our clickstream data. Understand trends, preferences, and user behaviour patterns by analysing the comprehensive user-level, time-stamped raw or processed data feed. Uncover valuable information about user journeys, search funnels, and paths to purchase to enhance your marketing strategies and drive business growth.

    High-Frequency Updates and Consistency: We provide high-frequency updates and consistent user participation, offering both historical data and ongoing daily delivery. This ensures you have access to up-to-date insights and a continuous data feed for comprehensive analysis. Our reliable and consistent data empowers you to make accurate and timely decisions.

    Custom Reporting and Analysis: We understand that every organisation has unique requirements. That's why we offer customisable reporting options, allowing you to tailor the analysis and reporting of clickstream data to your specific needs. Whether you need detailed metrics, visualisations, or in-depth analytics, we provide the flexibility to meet your reporting requirements.

    Data Quality and Credibility: We take data quality seriously. Our data sourcing practices are designed to ensure responsible and reliable data collection. We implement rigorous data cleaning, validation, and verification processes, guaranteeing the accuracy and reliability of our clickstream data. You can confidently rely on our data to drive your decision-making processes.

  18. search.yahoo.com Website Traffic, Ranking, Analytics [June 2025]

    • semrush.com
    Updated Jul 12, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Semrush (2025). search.yahoo.com Website Traffic, Ranking, Analytics [June 2025] [Dataset]. https://www.semrush.com/website/search.yahoo.com/overview/
    Explore at:
    Dataset updated
    Jul 12, 2025
    Dataset authored and provided by
    Semrushhttps://fr.semrush.com/
    License

    https://www.semrush.com/company/legal/terms-of-service/https://www.semrush.com/company/legal/terms-of-service/

    Time period covered
    Jul 12, 2025
    Area covered
    Worldwide
    Variables measured
    visits, backlinks, bounceRate, pagesPerVisit, authorityScore, organicKeywords, avgVisitDuration, referringDomains, trafficByCountry, paidSearchTraffic, and 3 more
    Measurement technique
    Semrush Traffic Analytics; Click-stream data
    Description

    search.yahoo.com is ranked #6 in US with 1.44B Traffic. Categories: . Learn more about website traffic, market share, and more!

  19. Fastest-growing job search sites 2021-2023, by traffic growth

    • statista.com
    Updated Jun 5, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2023). Fastest-growing job search sites 2021-2023, by traffic growth [Dataset]. https://www.statista.com/statistics/1388564/fastest-growing-job-search-sites-online-traffic/
    Explore at:
    Dataset updated
    Jun 5, 2023
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jan 2021 - Mar 2023
    Area covered
    Worldwide
    Description

    Between January 2021 and March 2023, the job search site Collegerecruiter.com was the fastest-growing job search site worldwide with a global traffic increase of over 637 percent during the measured period. During the measured period, four of the ten fastest-growing job search sites globally explicitly center on remote work.

  20. uk-web-traffic.com - Historical whois Lookup

    • whoisdatacenter.com
    csv
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    AllHeart Web Inc, uk-web-traffic.com - Historical whois Lookup [Dataset]. https://whoisdatacenter.com/domain/uk-web-traffic.com/
    Explore at:
    csvAvailable download formats
    Dataset provided by
    AllHeart Web
    Authors
    AllHeart Web Inc
    License

    https://whoisdatacenter.com/terms-of-use/https://whoisdatacenter.com/terms-of-use/

    Time period covered
    Mar 15, 1985 - Jul 30, 2025
    Area covered
    United Kingdom
    Description

    Explore the historical Whois records related to uk-web-traffic.com (Domain). Get insights into ownership history and changes over time.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2025). Impact of AI on website traffic anticipated by digital marketers worldwide 2023 [Dataset]. https://www.statista.com/statistics/1410386/impact-ai-website-traffic-worldwide/
Organization logo

Impact of AI on website traffic anticipated by digital marketers worldwide 2023

Explore at:
Dataset updated
Jul 3, 2025
Dataset authored and provided by
Statistahttp://statista.com/
Time period covered
2023
Area covered
Worldwide
Description

According to the results of a survey conducted worldwide in 2023, nearly **** of responding digital marketers believed artificial intelligence (AI) would have a positive impact on website search traffic in the next five years. Some ** percent stated AI would have a neutral effect, while ** percent agreed that the technology would negatively impact search traffic.

Search
Clear search
Close search
Google apps
Main menu