A Waiter's Tips
The following description was retrieved from Kaggle page. Food servers’ tips in restaurants may be influenced by many factors, including the nature of the restaurant, size of the party, and table locations in the restaurant. Restaurant managers need to know which factors matter when they assign tables to food servers. For the sake of staff morale, they usually want to avoid either the substance or the appearance of unfair treatment of the servers, for whom tips (at… See the full description on the dataset page: https://huggingface.co/datasets/scikit-learn/tips.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Prediction Data of Base Models from Auto-Sklearn 1 on 71 classification datasets from the AutoML Benchmark for Balanced Accuracy and ROC AUC.
The files of this figshare item include data that was collected for the paper:
Q(D)O-ES: Population-based Quality (Diversity) Optimisation for Post Hoc Ensemble Selection in AutoML, Lennart Purucker, Lennart Schneider, Marie Anastacio, Joeran Beel, Bernd Bischl, Holger Hoos, Second International Conference on Automated Machine Learning, 2023.
The data was stored and used with the assembled framework: https://github.com/ISG-Siegen/assembled.
In detail, the data contains the predictions of base models on validation and test as produced by running Auto-Sklearn 1 for 4 hours. Such prediction data is included for each model produced by Auto-Sklearn 1 on each fold of 10-fold cross-validation on the 71 classification datasets from the AutoML Benchmark. The data exists for two metrics (ROC AUC and Balanced Accuracy). More details can be found in the paper.
The data was collected by code created for the paper and is available in its reproducibility repository: https://doi.org/10.6084/m9.figshare.23613624.
Its usage is intended for but not limited to using assembled to evaluate post hoc ensembling methods for AutoML.
Details The link above points to a hosted server that facilitates the download. We opted for a hosted server, as we found no other suitable solution to share these large files (due to file size or storage limits) for a reasonable price. If you want to obtain the data in another way or know of a more suitable alternative, please contact Lennart Purucker.
The link resolves to a directory containing the following:
example_metatasks: contains an example metatask for test purposes before committing to downloading all files.
metatasks_roc_auc.zip: The Metatasks obtained by running Auto-Sklearn 1 for ROC AUC.
metatasks_bacc.zip: The Metatasks obtained by running Auto-Sklearn 1 for Balanced Accuracy.
The size after unzipping the entire file is:
metatasks_roc_auc.zip: ~450GB metatasks_bacc.zip: ~330GB
We suggest extracting only files that are of interest from the .zip archive, as these can be much smaller in size and might suffice for experiments.
The metatask .zip files contain 2 subdirectories for Metatasks produced based on TopN or SiloTopN pruning (see paper for details). In each of these subdirectories, 2 files per metatask exist. One .json file with metadata information and a .hdf or .csv file containing the prediction data. The details on how this should be read and used as a Metatask can be found in the assembled framework and the reproducibility repository. To obtain the data without Metataks, we advise looking at the file content and metadata individually or parsing them by using Metatasks first.
Released datasets for the pre-print: An Improved Framework for Scaling Party Positions from Texts with Transformer. Replication data can be found on the project's Github page: https://github.com/hungnguyen167/ContextScale Note: Position scores in both datasets have been rescaled by topic using MinMaxScaler (range from 0 to 1, with 0 being the most extreme left) from sklearn.
https://www.gnu.org/copyleft/gpl.htmlhttps://www.gnu.org/copyleft/gpl.html
The compressed package (Study_code.zip) contains the code files implemented by an under review paper ("What you see is what you get: Delineating urban jobs-housing spatial distribution at a parcel scale by using street view imagery based on deep learning technique").The compressed package (input_land_parcel_with_attributes.zip) is the sampled mixed "jobs-housing" attributes data of the study area with multiple probability attributes (Only working, Only living, working and living) at the land parcel scale.The compressed package (input_street_view_images.zip) is the surrounding street view data near sampled land parcels (input_land_parcel_with_attributes.zip) with the pixel size of 240*160 obtained from Tencent map (https://map.qq.com/).The compressed package (output_results.zip) contains the result vector files (Jobs-housing pattern distribution and error distribution) and file description (Readme.txt).This project uses some Python open source libraries (Numpy, Pandas, Selenium, Gdal, Pytorch and sklearn). This project complies with the GPL license.Numpy (https://numpy.org/) is an open source numerical calculation tool developed by Travis Oliphant. Used in this project for matrix operation. This library complies with the BSD license.Pandas (https://pandas.pydata.org/) is an open source library, providing high-performance, easy-to-use data structures and data analysis tools. This library complies with the BSD license.Selenium(https://www.selenium.dev/) is a suite of tools for automating web browsers.Used in this project for getting street view images.This library complies with the BSD license.Gdal(https://gdal.org/) is a translator library for raster and vector geospatial data formats.Used in this project for processing geospatial data.This library complies with the BSD license.Pytorch(https://pytorch.org/) is an open source machine learning framework that accelerates the path from research prototyping to production deployment.Used in this project for deep learning.This library complies with the BSD license.sklearn(https://scikit-learn.org/) is an open source machine learning tool for python.Used in this project for comparing precision metrics.This library complies with the BSD license.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
https://i.imgur.com/ZUX61cD.png" alt="Overview">
The method of disuniting similar data is called clustering. you can create dummy data for classifying clusters by method from sklearn package but it needs to put your effort into job.
For users who making hard test cases for example of clustering, I think this dataset helps them.
Try out to select a meaningful number of clusters, and dividing the data into clusters. Here are exercises for you.
All csv files contain a lots of x
, y
and color
, and you can see above figures.
If you want to use position as type of integer, scale it and round off to integer as like x = round(x * 100)
.
Furthermore, here is GUI Tool to generate 2D points for clustering. you can make your dataset with this tool. https://www.joonas.io/cluster-paint
Stay tuned for further updates! also if any idea, you can comment me.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Replication Package
This repository contains data and source files needed to replicate our work described in the paper "Unboxing Default Argument Breaking Changes in Scikit Learn".
Requirements
We recommend the following requirements to replicate our study:
Package Structure
We relied on Docker containers to provide a working environment that is easier to replicate. Specifically, we configure the following containers:
data-analysis
, an R-based Container we used to run our data analysis.data-collection
, a Python Container we used to collect Scikit's default arguments and detect them in client applications.database
, a Postgres Container we used to store clients' data, obtainer from Grotov et al.storage
, a directory used to store the data processed in data-analysis
and data-collection
. This directory is shared in both containers.docker-compose.yml
, the Docker file that configures all containers used in the package.In the remainder of this document, we describe how to set up each container properly.
Using VSCode to Setup the Package
We selected VSCode as the IDE of choice because its extensions allow us to implement our scripts directly inside the containers. In this package, we provide configuration parameters for both data-analysis
and data-collection
containers. This way you can directly access and run each container inside it without any specific configuration.
You first need to set up the containers
$ cd /replication/package/folder
$ docker-compose build
$ docker-compose up
# Wait docker creating and running all containers
Then, you can open them in Visual Studio Code:
If you want/need a more customized organization, the remainder of this file describes it in detail.
Longest Road: Manual Package Setup
Database Setup
The database container will automatically restore the dump in dump_matroskin.tar
in its first launch. To set up and run the container, you should:
Build an image:
$ cd ./database
$ docker build --tag 'dabc-database' .
$ docker image ls
REPOSITORY TAG IMAGE ID CREATED SIZE
dabc-database latest b6f8af99c90d 50 minutes ago 18.5GB
Create and enter inside the container:
$ docker run -it --name dabc-database-1 dabc-database
$ docker exec -it dabc-database-1 /bin/bash
root# psql -U postgres -h localhost -d jupyter-notebooks
jupyter-notebooks=# \dt
List of relations
Schema | Name | Type | Owner
--------+-------------------+-------+-------
public | Cell | table | root
public | Code_cell | table | root
public | Md_cell | table | root
public | Notebook | table | root
public | Notebook_features | table | root
public | Notebook_metadata | table | root
public | repository | table | root
If you got the tables list as above, your database is properly setup.
It is important to mention that this database is extended from the one provided by Grotov et al.. Basically, we added three columns in the table Notebook_features
(API_functions_calls
, defined_functions_calls
, andother_functions_calls
) containing the function calls performed by each client in the database.
Data Collection Setup
This container is responsible for collecting the data to answer our research questions. It has the following structure:
dabcs.py
, extract DABCs from Scikit Learn source code, and export them to a CSV file.dabcs-clients.py
, extract function calls from clients and export them to a CSV file. We rely on a modified version of Matroskin to leverage the function calls. You can find the tool's source code in the `matroskin`` directory.Makefile
, commands to set up and run both dabcs.py
and dabcs-clients.py
matroskin
, the directory containing the modified version of matroskin tool. We extended the library to collect the function calls performed on the client notebooks of Grotov's dataset.storage
, a docker volume where the data-collection should save the exported data. This data will be used later in Data Analysis.requirements.txt
, Python dependencies adopted in this module.Note that the container will automatically configure this module for you, e.g., install dependencies, configure matroskin, download scikit learn source code, etc. For this, you must run the following commands:
$ cd ./data-collection
$ docker build --tag "data-collection" .
$ docker run -it -d --name data-collection-1 -v $(pwd)/:/data-collection -v $(pwd)/../storage/:/data-collection/storage/ data-collection
$ docker exec -it data-collection-1 /bin/bash
$ ls
Dockerfile Makefile config.yml dabcs-clients.py dabcs.py matroskin storage requirements.txt utils.py
If you see project files, it means the container is configured accordingly.
Data Analysis Setup
We use this container to conduct the analysis over the data produced by the Data Collection container. It has the following structure:
dependencies.R
, an R script containing the dependencies used in our data analysis.data-analysis.Rmd
, the R notebook we used to perform our data analysisdatasets
, a docker volume pointing to the storage
directory.Execute the following commands to run this container:
$ cd ./data-analysis
$ docker build --tag "data-analysis" .
$ docker run -it -d --name data-analysis-1 -v $(pwd)/:/data-analysis -v $(pwd)/../storage/:/data-collection/datasets/ data-analysis
$ docker exec -it data-analysis-1 /bin/bash
$ ls
data-analysis.Rmd datasets dependencies.R Dockerfile figures Makefile
If you see project files, it means the container is configured accordingly.
A note on storage
shared folder
As mentioned, the storage
folder is mounted as a volume and shared between data-collection
and data-analysis
containers. We compressed the content of this folder due to space constraints. Therefore, before starting working on Data Collection or Data Analysis, make sure you extracted the compressed files. You can do this by running the Makefile
inside storage
folder.
$ make unzip # extract files
$ ls
clients-dabcs.csv clients-validation.csv dabcs.csv Makefile scikit-learn-versions.csv versions.csv
$ make zip # compress files
$ ls
csv-files.tar.gz Makefile
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains cleaned 2,245 ageing test traces (time vs. MPPT PCE/ maximum power point tracking power conversion efficiency) for perovskite solar cells with various device stacks and architectures in the pickle (.pkl) format.
The dataset can be loaded with the following commands on Python.
import pickle5 as pickle import pandas as pd import numpy as np
with open('20230303_mySeriesDrop.pkl', "rb") as fh: mySeriesDrop = pickle.load(fh)
The following command can be used to call a specific row (row 0) within the dataset.
mySeriesDrop[0]
The next steps to use the dataset is using scaling/ normalisation (for instance using sklearn.preprocessing.MaxAbsScaler) and smoothing (for instance using Savitzky-Golay filter).
The code to run the complete analysis, including self-organising map clustering, can be accessed here: https://doi.org/10.5281/zenodo.8181602.
Attribution-NonCommercial 3.0 (CC BY-NC 3.0)https://creativecommons.org/licenses/by-nc/3.0/
License information was derived automatically
Prediction of Phakic Intraocular Lens Vault Using Machine Learning of Anterior Segment Optical Coherence Tomography Metrics. Authors: Kazutaka Kamiya, MD, PhD, Ik Hee Ryu, MD, MS, Tae Keun Yoo, MD, Jung Sub Kim MD, In Sik Lee, MD, PhD, Jin Kook Kim MD, Wakako Ando CO, Nobuyuki Shoji, MD, PhD, Tomofusa, Yamauchi, MD, PhD, Hitoshi Tabuchi, MD, PhD.
We hypothesize that machine learning of preoperative biometric data obtained by the As-OCT may be clinically beneficial for predicting the actual ICL vault. Therefore, we built the machine learning model using Random Forest to predict ICL vault after surgery.
This multicenter study comprised one thousand seven hundred forty-five eyes of 1745 consecutive patients (656 men and 1089 women), who underwent EVO ICL implantation (V4c and V5 Visian ICL with KS-AquaPORT) for the correction of moderate to high myopia and myopic astigmatism, and who completed at least a 1-month follow-up, at Kitasato University Hospital (Kanagawa, Japan), or at B&VIIT Eye Center (Seoul, Korea).
This data file (RFR_model(feature=12).mat) is the final trained random forest model for MATLAB 2020a.
Python version:
from sklearn.model_selection import train_test_split import pandas as pd import numpy as np from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import RandomForestRegressor
from google.colab import auth auth.authenticate_user() from google.colab import drive drive.mount('/content/gdrive')
dataset = pd.read_csv('gdrive/My Drive/ICL/data_icl.csv') dataset.head()
y = dataset['Vault_1M'] X = dataset.drop(['Vault_1M'], axis = 1)
train_X, test_X, train_y, test_y = train_test_split(X, y, test_size=0.2, random_state=0)
parameters = {'bootstrap': True, 'min_samples_leaf': 3, 'n_estimators': 500, 'criterion': 'mae' 'min_samples_split': 10, 'max_features': 'sqrt', 'max_depth': 6, 'max_leaf_nodes': None}
RF_model = RandomForestRegressor(**parameters) RF_model.fit(train_X, train_y) RF_predictions = RF_model.predict(test_X) importance = RF_model.feature_importances_
Not seeing a result you expected?
Learn how you can add new datasets to our index.
A Waiter's Tips
The following description was retrieved from Kaggle page. Food servers’ tips in restaurants may be influenced by many factors, including the nature of the restaurant, size of the party, and table locations in the restaurant. Restaurant managers need to know which factors matter when they assign tables to food servers. For the sake of staff morale, they usually want to avoid either the substance or the appearance of unfair treatment of the servers, for whom tips (at… See the full description on the dataset page: https://huggingface.co/datasets/scikit-learn/tips.